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In this paper an efficient method is presented for solving the problem of 

approximation of convex curves by functions that are piecewise linear, in such 
a manner that the maximum absolute value of the approximation error is mini- 

mized. The method requires the curves to be convex on the approximation 
interval only. The boundary values of the approximation function can be either 

free or specified. The method is based on the property of the optimal solution to 

be such that each linear segment approximates the curve on its interval optimally 

while the optimal error is uniformly distributed among the linear segments of 

the approximation function. IJsing this method the optimal solution can be 

determined analytically to the full extent in certain cases, as it was done for 

functions a+ and ~r/~. In general, the optimal solution has to be computed 

numerically foIlowing the procedure suggested in the paper. Using this 
procedure, optimal solutions were computed for functions sin JC, tg s, and 

arc tg x. Optimal solutions to these functions were used in practical applications. 

1. INTR~DuOTION 

The approximation of curves by chains of linear segments has great 
significance in science and technology. Thus, for example, this approximation 
is used in generating nonlinear functions in analog computers, in modeling 
nonlinear elements when analyzing a system, or for rapid computation of 
functions by table look-up and interpolation, etc. Various methods [I, 2, 3, 4] 
have been developed to solve this problem. 

In this paper an efficient method is presented for solving the problem 
of approximation of convex curves by functions that are piecewise linear, by 

which the maximum absolute value of the approximation error is minimized. 
The class of problems that can be solved by this method is extensive since 

the curve that is being approximated is required to be convex, particularly 
in the interval of approximation. 

* This work was supported by Social and Rehabilitation Service, Department of 

H.E.W., Washington, D.C., under Grant 19-P-58393-F-01. 
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For some curves the method presented can be carried out completely 
analytically. Thus, for example, analytical solutions for optimal approximation 
of curves x2 and x112 are derived. 

However, in the general case, the method must be carried out numerically. 
An efficient algorithm is described, which was realized as a BASIC program 
and with which the optimal solution for approximation of convex curves that 
have the continuous first and second derivatives can be determined. As an 
illustration the optimal solutions for approximation of the curves sin x, tg x, 
and arc tg x are computed. 

2. PROBLEM STATEMENT 

Let the curve g(x) be strictly convex1 on the segment [a, b]. The curve g(x) 
on that segment is to be approximated by 

Z(x) = &(x) = yn + y - yn (x - x,), 
n+1 - xn x E bn > %+J, (1) 

where n = 0, 1, 2 ,..., N, and 

whose plot represents a continuous polygonal line. 
The maximum absolute value of the error of approximation has to be 

minimized. 
Curve E(x) presents a chain of straight linear segments. 
Therefore, the problem of optimal approximation of curve g(x) on the 

segment [x0 , xN+J where this curve is convex, is reduced to determining the 
value of the parameters x1 , x, ,..., xN and y,, , yi , ya ,..., yN , yN+i for which 
the maximum absolute value of approximation error assumes a minimum 
value fN , 

fN = min 
X~,XZ....+N (2) 

Yo,Y1,Yz,...rYN,YN+l 

1 Curve g(x) is called strictly convex on segment [a, b] if and only if the inequality 
g(hx, + (1 - h)x,) < hg(x,) + (1 - h) g&J holds for all x1 , xs E [a, ZJ], x1 # x2 for 
all real numbers h E [0, 11, [S]. A geometrical interpretation of strict convexity of a 
curve g(x) on the segment [a, b] is that the line segment which connects the points 
(a, g(u)) and (b, g(b)) lies above the curve g(x) in the interval [a, b]. The convex curve is 
continuous and has a left and a right derivative on [u, b]. Curve g(x) is strictly concave 
if the curve -g(x) is strictly convex. The text concerns convex curves, meaning strict 
convexity, and all the results obtained with the appropriate changes apply to strictly 
concave carves. 
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In addition to this problem in which the values of the approximation chain 
I(x) are not specified at the ends of the chain, there are interesting problems 
where such values are specified in the left, right, or both end-points: 

Yo = &o) and/or Yx+1 = d%d- (3) 

If  the parameters yO and yNfl in expression (2), which might be specified and 

in which case they are excluded from the process of minimization, are marked 
by putting them in brackets, then the expression for fN assumes the following 
general form: 

fN = min 
X1,Xz,...,Ql 

(Yo),Y~,Y~....,YN.(YN+~) 

(4) 

3. APPROXIMATION OF A CONVEX CURVE BY A LINEAR FUNCTION 

ON A GIVEN SEGMENT 

Let us first analyze the approximation of the curve g(x) on the segment 

hz > x,+11 by a linear function Z,(x) whose values yn+l = Z,(X,+,) and 
yn = Zn(xn) at th e end-points are not specified in advance. The expression 
for the optimal error of approximation fo(xn , xnbl) is formed using notation 
in accord with expression (4) 

fo % ‘Y-l+1) 9(x n+l’ 
yIl+1 

In(x) 
q(x) 

fo(xntxn 1) 

9 (x,) 

Yi-l 

4 

fo%‘xn+l) 

XII X* x n+l 

FIGURE 1 

(5) 

The optimal solution is presented in Fig. 1. Line y  = Z,(X) intersects the 
curve y  = g(x) at two points, and the errors of approximation are equal at the 
ends of the segment and are equal to the maximum error of approximation 
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inside the interval (xn , x,+r ). The optimal solution is described by the follow- 
ing set of equations: 

fo(% > %+r) = I d4 - Yn I 

Function fo(xn , x,+r) has the following properties: fo(xn , x,+J decreases 
monotonously with x, , increases monotonously with x,+a , and has a zero 
value when x,+~ = x, . 

That is, if we translate the linear function Z,(x) upwards for the value of 

fo(xn > &at-l) it will intersect the curve g(x) at the end-points of the segment 

txn 9 xn+A an d h t e maximum error of approximation will be 2fo(xn , x,+3. 
From the convexity of curve g(x) we conclude that f0 monotonously increases 
with x,+r and monotonously decreases with x, , whilef,(x, , x,) = 0 results 
from the continuity of curve g(x). 

Let us now consider the approximation of curve g(x) on the segment 

1x0 ) 1 x ] by a linear function Z,(x) whose value at the left end-point is specified 
in advance, y,, = g(xJ, and the value at the right end-point yr is free. From 
expression (4) the optimal error of approximationf,(x, , x1) can be written as 

where y0 = g(x,). 
When an analysis, similar to the previous one, is undertaken, we find that 

the optimal solution to the problem defined by expression (7) is described by 
the following expressions: 

0 =&Go) - Yo 

.Mxo 7 Xl) = I &l) - Yl [ 
(8) 

fo(xo ) ) Xl) = sEg31) 1 g(x) - Yo - E (x - x0) 1 . 

The optimal solution is shown in Fig. 2. 
Let us analyze the approximation of curve g(x) on the segment [xN , xN+r] 

by a linear function Z,(x) whose value in the right end-point of the segment 
is specified in advance, yN+r = g(xN+a), and the value of the left end-point 
yN is free. From expression (4) the optimal error of approximationf,(x, , xN+r) 
can be written as 

fo(x~, xN+l) = 7” xELEf;+II 1 dx) - ‘dx)I ’ (9) 

where YN+l = &id 
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x0 
X* 

*1 

FIGURE 2 

Analogous to the previous analysis, the optimal solution to the probiem 

which is defined by expression (9) is 

f&N, xN+l) = dxN) - YN 

0 =dxN+l) - YN+l (10) 

fdxN, xN+l) = ~~c~~~+,) j dx) - YN - ;;I; 1;; cx - xN) / ' 

A graphical interpretation of this optimal solution is given in Fig. 3. 

The properties of the curve fo(xn , x,+r) which have already been described 

could also be seen in curves fO(xO , x1) and fo(xN , x,,,+r) which could easily 

be shown by analogy. 

yN+l"y(%+l) 

g(x,) 

'N 

xN X* XN+l 

FIGURE 3 

4. UNIFORM DISTRIBUTION OF THE OPTIMAL ERROR 

The optimal solution to the approximation of a convex curve by a function 
which is piecewise linear, is defined by the following theorem. 
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THEOREM. Let g(x) be a convex curve on the segment [a, b], and Z(x) a 
piecewise linear function which is defined by Eqs. (1). If we choose the parameters 

(YOh Yl 9 YZ >***P YN > (YN+l) so that for each segment [xn , x,+J (where 
n = 0, l,..., N), linear function Z,(x) represents the optimal approximation of the 

curve g(x) as given by Eqs. (6) (Eqs. (8) for the segment [x,, , x1] ;fy,, = g(x,) 
is specified and Eqs. (10) for the segment [x, , xNfl] if yN+l = g(xN+l) 
is specified), and we choose the parameters x1 , x2 ,..., x, in such a way that 

fdxO , xl> = “’ = fdxn Y x,+1) = “’ = fdxN 3 xN+l) = fNcxO Y  xN+l)> (l l) 

then the function Z(x) approximates the curve g(x) on the segment [a, b] in the 
optimal way according to expression (4). The optimal error of approximation 

zxo 7 

xN+J on segment [a, b] equals the optimal error of approximation 
o x, , x,+~) on individual segments [xn , x lL+l]. This optimal approximation is 

unique. 

Proof. We shall prove the theorem by mathematical induction. For 
N = 1 (the plot of function Z(x) consists of two straight linear segments) 
expression 4 for the optimal error of approximation is reduced to 

Let us assume that the function Z(x) has a discontinuity at point x1 (the 
straight linear segments Z. and Zr are not connected in a chain) and let 

w = HO = Yl'? 

,&,m,o 44 = 4%) = r; and Yl’ #Yr;- 
1 

Instead of expression (12) we could write 

Since fo(xo , x1) increases, and fo(xl , x2) decreases with the increase of 
x1 , the minimum value of function fi(xo , x2) is assumed if the following 
condition is fulfilled: 

fo(x0 ) 4 = fo(x1 Y x2) = fdxo > x2) (14) 
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from which it follows that 

yl’ = y; FL y1 . (15) 

Thus the theorem is proved for N = 1. 
From Eqs. (14) it can be seen that when the boundary value xa monoton- 

ously increases, the value of xi also increases. The properties that characterize 

curve fO also apply to curve fi(xs , ~a), i.e., fr(~a, ~a) tends to zero when x2 
tends to x,, , it decreases monotonously with the increase of x0 , and increases 

monotonously with the increase of xa . 
We shall now prove the theorem for an arbitrary value N, under the 

assumption that it holds for N - 1. 
Let us denote the optimal value of the approximation error byf,-,(x0 , x.~), 

Let us also assume that JCN-r(x,, , x,,,) monotonously increases with xN , 
decreases with x0 , and has a zero value for x, = x0 (which might be con- 
sidered as a part of an inductive assumption since it has already been shown 
that it holds for N = 1). 

Therefore, from expression (4) the following can be written: 

fN(% Y ‘N+l) = min 
E~,XZ,...,XN (17) 

(Yo),YI,Yz,..,,YNl(YN+1) 

In order to simplify the proof we shall separate the straight linear segment 
Z,,,(x) from the segment &,-r(x) by introducing different values at the point 

xN’YN ’ = IN-r(x) and y$ = ZN(xN). Now we could replace expression (17) by 

fN(% , %‘I+l) 

zzz min 
.-+,“2,...,?N 

(Y,),Y,,Yz,...,YN”Y;;.(YN+l) 

= min max{ min max 
XN ?+,.%, ,..., XN-1 , “E[+XNl I g(x) - WI , 

(Y~),Y~,Yz,....~‘N-~,YN 

min max ,‘;;.~‘N+I) .=h>xN+,l 1 dx> - zN(x)I) 

= 2” m~{fN-l(xO , xN)! h@N I xN+l))- 

Since the assumption that fN-r(x,, , xN) monotonously increases and 

f&N 3 %‘+I) monotonously decreases with the increase of x, , the minimum 
value of function &(x0 , xN+r) is assumed when 

fN--I(% Y  %V) =fO@N Y  xN+l) =fN(% , xN+l)~ (19) 
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that is, when 

“fo(xo > Xl) = fo(x1 9 x2) = -‘* =.MG 2 TV+*) = f&o P %a 
from which follows that 

(20) 

Thus it is proved that the solution to the problem which is defined by 
expression (18), is also the solution to the previously stated problem which is 
defined by expression (17). 

The increase of the value for x,,, causes an increase of the optimal value 
xN which follows from Eqs. (19) f rom which we could deduce that the prop- 
erties offs also apply to function &(x0 , xN+J, e.g., it monotonously decreases 
with the increase of x0 , monotonously increases with the increase of xN+r , 
and it has a zero value for x0 = xN+i . 

Thus the theorem is proved for every N. 

5. ANALYTICAL DETERMINATION OF THE OPTIMAL APPROXIMATION 

The analytical method for determining the optimal approximation can be 
carried out, in certain cases, analytically to full extent. The method is system- 
atically presented using as examples the approximation of curves xs and 
x1/2. 

(4 g(x) = x2 (y,, and Y,,,+~ are free). 

From Eqs. (6) the following equations are deduced, for optimal approxima- 
tion of curve x2 by a linear function Z,(x) on the interval [xn , .xn+r], 

Yn = %a2 - fo(%a 3 xn+J 

Y 
2 

n+1 = xn+l - fo@n 3 x,+1) 

h@n 3 x,+1 )-(+$+q2, 

(21) 

- n=0,1,2 )..., N. 

Introducing the expression for fo(xn , x,+r) into Eqs. (11) and simplifying 
them, the following set of equations is deduced: 

x*+1 - x, = 2(2)‘/” (jp2, n = 0, 1, 2, 3 ,...) Iv. (22) 

Summing Eqs. (22) the expression for the optimal value of the error fO 
of approximation as a function of boundary values of the interval becomes 

fo=fAI= (&F 
xiv+1 - x0 

) 

2 

iv+1 * (23) 

409/S&-6 
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From Eqs. (21) to (23), the equations for the optimal values of the param- 
eters x, and JJ~ , are derived: 

-2^?l = x0 + n; -& 1 ?- (XNfl - x0> 

Yn=xn2-fN, n = 0, 1) 2 ,... , N + 1. 
(24) 

(b) g(x) = x2 (xo = x: , YN+~ = d+,>. 

From Eqs. (8), (6), and (10) the following equations for the optimal 
approximation of curve x2 by the linear function Z,(X), are deduced, 

fob0 , Xl) = [ ;1J27z]” 

h&z t x,+1 )-[x.;;2)“:.]2, - n-l,2 ,...) N-l (25) 

hl(XN > xN+l ) - r*-+q*. - 
When Eqs. (25) are introduced into Eqs. (11) and when these equations 

are rearranged, the following is obtained: 

x1 - x0 = (1 + 219 (fo)‘/2 

x,+1 - x, = 2(2)1/a (fo)li2, n -= 1,2,...,N- 1 (26) 

XNi.1 - XN = (1 + 21’2) (f,)liZ. 

Summing Eqs. (26), the solution for f.  , i.e., fN is derived 

fo=ft?= [ XNil - 30 
2 

2(2)1/Z (N + l/219 1 a (27) 

From Eqs. (26), (27), and (6) the equations for the optimal values of the 
required parameters are deduced to be 

x, = x0 + 
n - l/2 + l/2(2)‘/” 

N + 1/21/a ( xN+l - x0> 

Yn =xn2 -f NT n = 1, 2 ,..., N. 

From Eq. (27) the optimal errors of approximation on the segment [0, l] 
for N = 1, 2,..., 15 are calculated and given in Table I. 
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TABLE I 

Optimal Approximation of X* *2 

X(0) = 0 X(N + 1) = 1 
Optimal errors 

N 

1 
2 
3 
4 
5 
G 
I 
8 
9 

10 
11 
12 
13 
14 
15 

F 

4.28932E - 02 
1.705683 - 02 
9.095773 - 03 
5.641593 - 03 
3.837763- 03 
2.778696 - 03 
2.104393 - 03 
1.64877E - 03 
1.326573- 03 
1.09035E - 03 
9.120346 - 04 
7.74135E - 04 
6.65302E - 04 
5.77904E - 04 
5.066613 - 04 

TABLE II 

Optimal Approximation of X**2 

1 
X(0) = 0 X(N + 1) = 1 N=7 

xl) Y(l) 

0 0 0 
1 0.110748 1 .01609E - 02 
2 0.240499 5.57355E- 02 
3 0.370249 0.13498 
4 0.5 0.247895 
5 0.62915 0.394481 
6 0.759501 0.574737 
7 0.889251 0.788663 
8 1 1 

F = 2.10439E - 03 

From Eqs. (27) and (28) the optimal solution for approximation of the 
curve x2 on the segment [0, I] for N = 7 is calculated and given in Table II. 
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(c) g(x) = xliz (y. and yN+l are free). 

From Eqs. (6) the following expressions for the optimal approximation of 
curve x1/2 in the interval [xn , x n+I] by a linear function In(x), n = 0, I,..., N 

are derived 

f&n , x,+1) = + %;: y;” > n = 0, 1, 2 ,..., N, (29) 
71 

where g, = (x#~. 
By introduction of these expressions into Eqs. (11) the following equation 

is deduced, 

gn+1 =g?z 1 [ 
1 i 2 Rn - gn-1 

I if?, +gn-1 ’ 
n = 0, 1, 2 )..., N, (30) 

from which follows 

1 
s.=2~~[(n+l)g,-(n-l)fiol[~g~-((n-2)gol, 

n = 0, 1, 2 ,..., N, N + 1. (31) 

Equation (31) could easily be proved by mathematical induction. When 
n = N + 1 is introduced into Eq. (31) and then is solved for g, = (x&s, 
the following is obtained, 

gl = - go + @jy l)‘(N + 2J WN + 112 - 11 go + i?n+l 

+ [{[WV + II2 - Ilgo +g,+,12 - 4N(N + 1)” (N + 2)go21”2J (32) 

The optimal values of parameters X, , n = 1, 2,..., N are calculated by 
squaring the values that are obtained from Eqs. (31) and (32), the optimal 
value fN(xo , xN+J is calculated from Eq. (29) by taking any of the given 
values for n. The optimal values of parameter yn are calculated from the 
first two equations of Eqs. (6). 

(4 k’(x) = X1” (Yo = (Xo)“‘, YN+l = (%~+l)~‘~). 

The expressions for the optimal errors of approximation of curve x112 

are derived: for the interval [x o , x1] from Eqs. (8), for the intervals [x, , xn+r], 

n = 1, 2,..., N - 1 from Eqs. (6), and for the interval [x, , xN+J from 
Eqs. (10): 

foko P 4 = z(&) ;;;;g$Jo 

fo(% , x,+1) = + ‘FnT1 ,$” , 

kN+l - gN12 
fob ’ xN+l) = ~(1 ; 2112) 21/2gN+G ’ 

where g, = (x,J~/~. 

n = 1, 2,..., N - 1 (33) 
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When Eqs. (33) are introduced into the set of Eqs. (11) the following set of 

equations is obtained: 

g, = g, 1 + 2(2)1/Z g1 -go ) 
i g1 + 2'/"go 

g7a+1 =gn 1 + 2(-J)‘/” ATn - gn-l ) , 

gn f&-l 
n = 2, 3,..., N - 1 (34) 

The following is deduced from the first two equations of Eqs. (34): 

gn = fp ;,zb, w2n + l)g, - 21’2(n - l>g,l 
(35) 

- [(292 - 1) + l)g, - 21/2(?2 - 2)g,], n = 1, 2,.. ., N, 

which could be easily proved by induction. 
When Eqs. (35) are introduced into the third equation of Eqs. (34) and this 

one is solved for g, = (A#/~ the following is obtained: 

1 + 2112 
g, = - 21j2go + 

2(21j2N + 1) (21i2N + 2) {[W”“N + 1)2 - 11 go + gN+l 

+ [([W”“N + 1J2 - 11 &‘o + gN+1j2 

-- 4(2’/“) N(2rj2N + 1)” (2112N + 2) go)2]1/“>. (36) 

The rest of the values for g, = (x,J112, n = 2, 3,..., N are calculated from 
Eqs. 35. 

The optimal values of parameters X, , n = 1,2,..., N are calculated by 
squaring the derived values for g, = (x#~. The optimal value of the error 
of approximation fN =fo is caiculated from one of Eqs. (33). The optimal 
values of parameters y,, are calculated from the first two equations of Eqs. (6). 

When the lower limit of the approximation interval is equal to zero, x0 = 0, 
then the above expressions are simplified to a great extent. Thus Eq. (36) 

is reduced to 

gl = (21/2N; If;:;2jv + 2)hl (37) 

and Eqs. (35) to 

g 
n 

= v2n + 1) P2(n - 1) + 11 gN+l ) 
(21j2N + 1) (2l/aN + 2) 

n = 1, 2 ,..., N. (38) 
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When Eq. (37) is introduced into the first equation of Eqs. (33), the follow- 
ing is obtained for optimal error of approximation: 

TABLE III 

Optimal Approximation of SQRT(X) 

X(0) = 0 X(N + 1) = 1 
Optimal errors 

N F 

1 6.06601E - 02 
2 2.704853 - 02 
3 1.52774E - 02 
4 9.80958E - 03 
5 6.82937E - 03 
6 5.02736E - 03 
7 3.85509E - 03 
8 3.049873 - 03 
9 2.473OOE - 03 

10 2.0456OE - 03 
11 1.72017E - 03 
12 1.46665E - 03 
13 1.26533E - 03 
14 1.102783 - 03 
15 9.6967OE - 04 

TABLE IV 

Optimal Approximation of SQRT(X) 

X(0) = 0 X(N -I- 1) = 1 N=7 

.J -WI Y(J) 

0 0 

1 3.464833 - 04 
2 5.07834E - 03 
3 2.39481E - 02 
4 7.240493 - 02 
5 0.171605 
6 0.348411 
7 0.635393 
8 1 

F = 3.855093 - 03 

0 
2.246913 - 02 
7.511763 - 02 
0.158606 
0.272936 
0.418107 
0.594119 
0.80097 
1 
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The optimal values of the parameters x, , n = 1,2,..., N are calculated by 
squaring the values g, = (xn)+ which are calculated from expressions (37) 
and (38). The optimal values of parametersy, are calculated from the first two 

equations of Eqs. (6). 
From Eq. (39) the values of the optimal error of approximation of curve 

XI/~ on the segment [0, l] for N = 1, 2,..., 15 are calculated and given in 
Table III. 

From Eqs. (38), (39), and (6), the optimal solution of the approximation 
of curve x1j2 on the segment [0, I] for N = 7 is calculated and presented in 
Table IV. 

6. NUMERICAL DETERMINATION OF THE OPTIMAL APPROXIMATION 

The determination of the optimal approximation reduces to determining 
the piecewise linear function which satisfies the conditions defined by the 
theorem in Section 4. In this section the method of numerical determination 
of the optimal approximation of convex curves which have continuous first 
and second derivatives will be described. 

The optimal error of approximationf,(x, , x,,,+r) is a function which tends 
to zero when xN+i tends to x0 , it monotonously decreases with the increase of 
x,, , and monotonously rises with the increase of xNfl . We can deduce from 

there, that the inverse function x,+,(x,, ,fa) tends to x,, , whenf,, tends to zero, 
and it monotonously rises with the increase of x0 andf, . The set of optimal 
values of the upper boundary x,,,+r corresponds to the set of values f,, , for 
the given lower boundary x0 = a. Therefore, from the set of optimal solutions 
xN+i(xO ,fa) we have to select the one whose boundaries of the approximation 
interval coincide with the given one, 

6 - xN+l(~,fO) = 0. (40) 

Since curve g(x) is convex and has continuous first and second derivatives, 
Eq. (40) could be easily solved numerically using the Newton-Raphson 
method. The block diagram for that method is presented in Fig. 4. The 
computation of the required values ~~+~(a, fO) and ~~~+~(a,fa)/~fo is done 
sequentially starting from the values x1(x0 ,f& &Q(x,, ,f,,)/afO , and then 
computing x2(x1 ,fO), ax2(xl , fa)/afe , etc. The method for computing these 
values will be presented first for the interval [x, , xn+J for which the boundary 
values yn and yn+r of the linear function are free. The optimal position of that 

linear segment in respect to the curve g(x) is described by the set of Eqs. (6). 
I f  we denote the value on the x-axis which has the maximum error of 
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FIGURE 4 

approximation inside the interval (xn , x,+J, with x*, then the optimal 
solution can be described by the set of equations, 
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where the upper sign is taken when curve g(x) is convex and the lower one 

when it is concave. 
Since the optimal values of parameters yn and yntl can be easily computed 

from the first two equations of the set (41) assuming that the optimal value 
for the error of approximation has been found previously, Eqs. (41) can be 
reduced to two equations by eliminating the variables y,, and yn+l , 

Ph+A - k+%J - k+*> (%+1 - 4 = 0 

g(x*> - d%) i 2.h - g’b*> (x* - 4 = 0. 
(42) 

In the general case, Eqs. (41) could not be soIved explicitly for 

X a+1 = %+1(% ,fo)* H owever, since the curve g(x) is convex and has continu- 
ous first and second derivative, Eqs. 42 could be easily solved numerically 
using the Newton-Raphson method. In Eqs. (42) the parameters X, and fO 
are the constants to be specified. However, in the iterative method which is 

shown in Fig. 4, the value f. is the current value and value x, is the one that 
was obtained for the previous interval [xnel , xn]. 

To compute the derivative iixn+l/3fo, Eqs. (42) are differentiated in 
respect to f. . Thus we get the set of linear equations for &xn+l/i3fo and for 
ax*/afo . When we solve that system for &,,,/ajs we obtain the following 
expression : 

a%+1 1 
afo= It 

%+1- % 

d(%l+J - g'@*> x* - x, 4 

* [g’(x*> - g’(%)l+ It 2 x;;lIx; 1 3 
(43) 

0 

which is used for direct computation of the required derivative. 
Let us now compute x1(x0 , fo) and &r(xo , fo)/8fo . The set of Eqs. (8) 

reduces to 

0 = &o) - Yo 

h(%,%) = f [&J - YJ 

fo@o 7 Xl) = T Cg(x*> - Yo - g’(x*> (x* - x0)1 (44 

0 = g’(x*) - e . 

1 0 

Eliminating parameters y. and y1 , Eqs. (44) reduce to the following 
system of equations: 

gb*> - &o) It fo - g’(x*) cx* - x0) = 0 

&l) - &o) T fo - g(x*> (Xl - x0> = 0, 
(45) 
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from which we compute, for the given values x,, and fO, the boundary x1 
numerically in the general case. Equations (45) are solved using the Newton- 
Raphson methods just as efficiently as Eqs. (42). From Eqs. (45) we derive 
the following expression for derivative &r/Z& , 

6x1 I ! 
8fo - * g'(xl) - g'(x*) ( x* - x0 x1 - xo + l1 . 

Let us calculate functions xN+r(xN , fo) and 3xN+r (x,,, , to)/Zfo when the 
value of the linear function ZN(x) on the right end of the interval is specified, 
yN+l = g(x,+,). The system of Eqs. (10) re d uces to the system of equations 

fO@N > %N+l ) = h [dxN) - YNI 

o = g@N+l) - YN+l 

focxN 9 xN+l ) = ‘F [dx*) - YN -g’@*) (x - xN)] (47) 

0 = g’(x”) - y+s . 
N 

We compute for given x, and f. the right boundary x,,, , by solving the 

following system of equations, 

dxN+l ) - g(xN) Ikfo - it+*) &+I - ?‘J) = ’ 

g(x*) - ,&N) + 2fO - g’(x*> @* - xN) = O7 
(48) 

to which Eqs. (47) are reduced. Eqs. (48) are solved numerically in the same 
manner as are Eqs. (42) and (45). We derive the following expression for 
&N+l/8fo from the system of Eqs. (48) 

axN+l I x N+l - xN 

afo dxN+l) - g’tx*, x*--x,&, - 

* [g’(x*) - g’(+,)] + + 2 “,“*“-“” $ 11 . 

(49) 

0 

The block diagram of the method for solving the values, x,+r and 8xn+J3fo 
forn = 0, 1, 2 ,..., N is presented in Fig. 5. The left sides of the set of Eqs. (42) 
for n = 1,2 ,..., N - 1 (Eqs. (45) for n = 0, and Eqs. (48) for n = N) are 
denoted by u(x,+r , x*) and v(x*). 

The method described for numerical determination of the optimal solution 
was realized using the BASIC programming language on computer Varian 
620-i. The optimal solutions for approximation of some standard curves are 
computed using that program. 
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FIGURE 5 

(a) g(x) = sin x(x0 = 0, y0 = 0; x~+~ = 42, yN+l = 1). 

The optimal errors of approximation of curve sin x in the interval [0, r/2] 
with the boundary values of the approximating function y0 = 0, Y,,+~ = 1 
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are computed for various values of parameters N and the values are given 
in Table V. 

TABLE V 

Optimal Approximation of SIN(X) 

X(0) = 0 X(N + 1) = 1.5708 E = l.OOOOOE - 04 
Optimal errors 

N F 
1 3.25547E - 02 
2 1.26675E - 02 
3 6.69129E - 03 
4 4.12798E - 03 
5 2.79862E - 03 
6 2.02133E - 03 
7 1.52814E - 03 
8 1.195836 - 03 
9 9.61079E - 04 

10 7.89192E - 04 

The optimal solution for the approximation is computed for the case when 
N = 7. The parameters which describe this solution are given in Table VI. 

TABLE VI 

Optimal Approximation of SIN(X) 

X(0) = 0 X(N + 1) = 1.5708 N=7 S=l 
E = l.OOOOOE - 04 El = l.OOOOOE- 04 T=l Tl = 1 

Initial values: X(1) = 0.67 F = 1.27OOOE - 02 

J x0 Y(J) 
0 0 0 
1 0.333017 0.328423 
2 0.569716 0.540921 
3 0.7683 0.696442 
4 0.948101 0.813837 
5 1.11689 0.900268 
6 1.27896 0.959244 
7 1.43715 0.992611 
8 1.57077 0.999999 

F = 1.528143 - 03 I=5 

(b) g(X) = tg %(%a = 0, J’s = 0; %N+l = =‘/4> YN+l = l>- 

The optimal values of the approximation error method for the interval 
of approximation [O, a/4] when the boundary values of the approximating 
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function are y0 = 0, y N+l = 1, and for different numbers of breaking points 
N, are computed for curve tg X. The values of optimal errors of approximation 
are given in Table VII. 

TABLE VII 

Optimal Approximation of TAN(X) 

X(0) = 0 X(N + 1) = 0.7854 E = l.OOOOOE - 04 
Optimal errors 

N F 
1 1.447453 - 02 
2 5.65688E - 03 
3 2.991823 - 03 
4 1.84703E - 03 
5 1.25247E - 03 
6 9.04862E - 04 
7 6.841283 - 04 
8 5.35257E - 04 
9 4.3022OE - 04 

10 3.53293E - 04 

TABLE VIII 

Optimal Approximation of TAN(X) 

X(0) = 0 X(N + 1) = 0.7854 N=l s= -1 
E = l.OOOOOE - 04 El = l.OOOOOE - 04 T=l Tl = 1 

Initial values: X(1) = 0.21 F = 9.OOOOOE - 04 

J X(J) 
0 0 
1 0.200371 
2 0.336042 
3 0.442712 
4 0.532361 
5 0.609925 
6 0.67814 
7 0.73878 I 
8 0.785401 

F = 6.841283 - 04 I=4 

Y(l) 
0 
0.202412 
0.348606 
0.473414 
0.588408 
0.698123 
0.804907 
0.910173 
1 

The parameters of the optimal solution of approximation are computed 
for the case when N = 7 and the results are given in Table VIII. 
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(c) g(x) = arc tg x (x0 = 0, y0 = 0; xNtl = 1, yN+r = n/4). 

The optimal values for the errors of approximation in the interval [0, I] 
when the boundary values of the approximating function are y0 = 0, 

Y N+l = 7r/4 are computed for curve arc tg x. The optimal value of approxi- 
mation errors are computed for various numbers of breaking points N and 
they are listed in Table IX. 

TABLE IX 

Optimal Approximation of ATAN 

X(0) = 0 X(N + 1) = 1 E=1.OOOOOE-04 
Optimal errors 

N F 

1 1.080993 - 02 
2 4.19885E- 03 
3 2.21666E- 03 
4 1.367163 - 03 
5 9.26933E - 04 
6 6.684493 - 04 
7 5.061733 - 04 
8 3.95990E - 04 
9 3.18073E - 04 

10 2.61445E - 04 

The parameters of the optimal solution for the case when N = 7 are listed 
in Table X. 

TABLE X 

Optimal Approximation of ATAN 

X(0) = 0 X(N + 1) = 1 N=7 S=l 
E = 1.00000E-04 El = l.OOOOOE - 04 T=l Tl = 1 

Initial values: X(1) = 0.11 F = 6.5oOOOE - 04 

J aI) 
0 0 
1 0.18399 
2 0.319067 
3 0.437449 
4 0.550158 
5 0.662042 
6 0.775887 
7 0.894062 
8 1.00007 

F = 5.061043 - 04 I=3 

Y(l) 
0 
0.182461 
0.309362 
0.412874 
0.50347 
0.5853 
0.660371 
0.73003 1 
0.785436 
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7. CONCLUSION 

This paper treats the problem of optimal approximation of a given curve 
by a function which is piecewise linear on the segment in which the given 
curve is convex, for which the value of the approximating function at the 
boundaries of the approximation segment can be either free or specified. 

It was proved that the optimal solution, in the sense that it minimizes the 
maximum value of the approximation errors, is the one for which each of the 
linear functions optimally approximates the given curve in its interval, and 
that the intervals are chosen in such a manner that all the optimal errors in 

the intervals of approximation are equal among themselves. The efficiency of 
the presented procedure is based on the fact that the search is done among 
optimal solutions in order to select the one that satisfies the specified boundary 
conditions. 

In certain cases the problem of optimal approximation could be solved 
analytically to full extent using the method presented. To illustrate the 
analytical method, the solutions of optimal approximation of curves x2 and 
x1/2 were derived. 

In general, the problem of optimal approximation, is solved using the 
method presented, but numerically. A method for numerical solution of 
optimal approximation of convex curves which have continuous first and 
and second derivatives is described in this paper. To determine the optimal 

positions of the linear segments in respect to its intervals of approximation 
and to obtain the optimal approximating function which satisfies the specified 
boundary conditions, the Newton-Raphson method is chosen. The method 
described was realized using the BASIC programming language. Using this 
program the optimal solutions for approximation of curves sin X, tg x, and 
arc tg X, were computed for the purpose of illustration. However, the approxi- 
mation of convex curves, in the general case, requires a different method 
instead of the Newton-Raphson method, which does not require the con- 
tinuity of the first and second derivatives of the curve to be approximated. 
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