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Abstract: The Newton method for the solution of the Theodorsen integral equation in conformal mapping is studied.
One step of this method consists of solving a linear integral equation, the solution of which is given explicitly as the
result of a Riemann-Hilbert problem. Quadratic convergence of the Newton method is established under certain
assumptions. Whereas in other methods a so-called e-condition with ¢ <1 is required to hold, our method converges
also for € >1. We will also present a numerical implementation in which the result of one step of the Newton method
is approximated by a vector in R2" which can be computed with 2N log N +O(N) multiplications. In comparison,

one step of the Newton method for the discrete Theodorsen equation requires n( N3\ mnlnr\llnnnnnc

1e step of the ! 1ethod discrete Theodorsen equation requires O(N ) multiplications.
Keywords: Conformal mapping, Theodorsen integral equation, Newton method, Riemann—Hilbert problem.

1. Introduction

Let K be the conjugation operator
1 2x
K[hl(9)=5- [ "h(8) cot®
0

where the integral is taken in the Cauchy mean value sense. Theodorsen [15] showed in 1931 that
O is a solution of the Theodorsen integral equation

n(m\—_m-i- ,([ n(@{g\)](m\ (T)
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(see Gaier [1, p. 65; 2], Hubner [10]). Gaier [1, p. 66] proved that (T) has exactly one solution

which is continuous and strongly monotone. Grunsky improved this resuit in 1966 by showing
that (T) has exactly one continuous solution. His proof together with a substantially new one has
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been puoubncu Dy von Woifersdorf [19]

We assume for the entire paper that the 2ﬂ-periodic and positive function
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= p’/p. If we put ¥(¢):= O(¢p)— @, equation (T) becomes
¥(g)=K[log p(¥(8) +6)](o),

where the only continuous solution, always denoted by ¥*, is also 2n-periodic.

Let

L,= {f:/ is 2m-periodic and bounded},
L,= {f:f is 2u-periodic and quadratically

T ahecone-intearahla in [0 2o

uvu\:obuv llll\:{&l CAU/AN, 411 lU o J
Hp= {f: f 1s 2m-periodic |f((P1) )| <L|p,— @, |*

for all o, m,e_ml O<pxgl,

¥l v2 hlV B M=

H = (f:f€H, for some u € (0, 1}},
W= {f:fis 2'rr-periodic and absolutely continuous, and f' € L,}.

The following basic results can be found in the book of Gaier [1, p. 63 ff.]:

feL,=KfeL,, |Kfll.<Ifll
fewW=Kfew, (Kf)=Kf.

Here we have defined

Nfll,= (;—ﬂj:)Zﬂf(x)zdx)ll/z

As usual we put || f [, = maxy,,;[f(x)[ for a function f continuous in [0, 2x]. It is easy to see
that

£ 1= max(|| f Il 1 /1l 2)

is a norm in the Sobolev space W, and that (W, || -||) is a Banach space. From Wegmann [18,
Lemma 1] we learn that

L] 1/2
ileIlmsf%_;(fo (f’(X))zdx) =CJ|ifll, withC=1%4/3w<2,

and so || Kf|| < C||f] for all f& W. It should be mentioned here that Wegmann uses a different
L,-norm.

To obtain the solution of (T) numerically, one usually first discretizes the integral equation and
then applies iterative methods. For the convergence of these methods one always needs an
e-condition with € <1, except in the case of certain symmetric curves I', as was shown by
Gutknecht [7,8); see also Hubner [10). Warschawski and others (see Gaier [1, p. 68 ff.]) applied
the Jacobi method directly to (T) and showed that € <1, ¥, € W implies || ¥, — ¥*||, —» 0 and
¥, - ¥*||,—0asn— co.

Recently Wegmann [17,18) proposed and analyzed a new method for solving our conformal
mapping problem. At first sight this method has nothing to do with the Theodorsen integral
equation. He proved quadratic convergence of his method if I' is smooth enough, even if € > 1.
We will show here the same for the Newton method applied to (T). Influenced by Wegmann’s
papers and by von Wolfersdorf’s paper [19], we solve in each Newton step a Riemann-Hilbert
problem.

More precisely, with

F(¥(9))=¥(p) - (K [log p(¥(8) +6)])(%),
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we have F: W — W, and the Newton method for (T) becomes
Y, e W,
F(¥)[¥,..—-¥]=-F(¥,), n=0,1,2,....

Here F'(¥,) is the F-derivative of F in (W, |} -|}) at '¥,. We will show (under certain assumptions)
that the operator F'('¥) has an inverse for any ¥ € W, and we will express this inverse operator
in closed form with the help of the solution of a Riemann-Hilbert problem. Of course, we then
have

¥, =¥ - (F(¥)) ' F(¥E,). (N)

n

It will turn out that the determination of ¥,,, from ¥, will require two applications of the
conjungation operator K. This is the same amount of work as for one step of the Wegmann
method. If o’ € H,, we will then show that the Newton method for (T) converges quadratically in
(W, ] -]|) without any restriction on € in the e-condition. Moreover, we will prove global
convergence in (W, || -|,) if o’ € L and € < §. Wegmann has no counterpart to the last result.
But his method works also for a non-starlike I'.

For the numerical implementation of the method we propose discretization of (N) instead of
(T). If one approximates ¥, by a vector € R%", one can compute an approximation of ¥,,, in
the same space using FFTs with a total of 2N log N + O(N) multiplications. This is again the
same amount of work as in one step of the discretized Wegmann method. Our example at the end
shows that the Wegmann method and the Newton method for (T) are not identical.

2. The F-derivative of F and its inverse
First we compute the F-derivative of F in (W, || -]|).

Lemma 1. If ' € H and ¥ € W, then the F-derivative of F at ¥ in (W, || -||) exists and is given by
(F()A) (@) =24(p) = (K[o(¥(6) +8)-4(8)]) (o).

Proof. For the function defined by 8 — ¥(8)+ 8 we write ¥ + id. o' € H implies 0’ € L . Let
M be an upper bound for ¢’ and let F'(¥) be defined by the last line of Lemma 1 for some
A € W. Clearly F'(¥) is linear (in A). It is also bounded in (W, || - ||), since we have

| F'(¥)Al < 1Al +2][(e(¥ +id)) - 4|
and
lo-All, <elldll, <ellAll,
(o -A)lla=llo" (¥ +1)-All,+ lo- A, < M A I +1]|, + e[| 4] 5,
hence
IF(¥)8l < [1+2(M| ¥ +1]1,+ ] 4]
To show that F’(¥) is the F-derivative, define
G=logp(¥+A+id)—logp(¥+id)—(a(¥ +id))-A.
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Then
I1Gll.=llo(¥+id+74)—a(¥+id)]-A||, <M| A2 withO<7T<1,
NG, =)lo(P+A+id)- (¥ +A +1)—o(P+id)- (¥ +1)
—o(T+id)- (¥ +1)-A-o(¥+id)-2A"|,
Sllo(¥+A+id)—o(¥+id) || 114],
+||~p'+1||2|4f (¥ +id + tA) —o'(¥ +id))d1 |

SM|ANlLNAN+ N + 1,140, - LTANL.

Therefore, we have

| F(¥ +4) - F(¥) - F(¥)Al| = | K[G] | <2)IG||

<const- JJAI** iffldll<1l. O
Thus given ¥,, to compute ¥,,, in (N) we have to solve the linear (but singular) integral

equation

A-K[o(¥,+id)-A] =r (N)
for A, where A=Y, ,— ¥, and r= —F(¥,).

Theorem 1. If 0 € H and ¥, € H, then (N') has at most one continuous and 2w-periodic solution.

Proof. If A, and A, are two such solutions, then h:= A, — 4, is continuous and 2x-periodic and
solves the homogeneous integral equation h — K[o - h]=0. By the Dirichlet principle, there are
functions u, v which are harmonic in D and continuous on' D with u(e'?) = a(¥,(p)+o) -h(e)
and v(e'®) = h(@). Because of & = Ko - 4], the functions « and v are conjugates and H:=u+iv
is continuous in D and analytic in . Moreover, h being a conjugate implies [ (p)de =0, and
therefore

B 1 pH(e®). o 1 o= B
Im H(O)—Imzﬂi/o e dcp—zﬂ/o h(p)de=0.

In addition, we have H(z)=u+iv=0h+ih= (o +1)h, and therefore H is a solution of the
following Riemann-Hilbert problem:
Find H, continuous in D, analytic in D, with Re ¢’*H(z) =0 on 3D, Im H(0) = 0, where

S1B(9) _ 1+io(¥,(p)+9)
11+io(¥,()+@)|’

Because o € H and ¥, € H, the functions ¢ and s defined by c(e'?) = cos B(¢) and s(e'®):=
sin B(¢) are continuous on 0D and satisfy a Holder condition there; moreover ¢? +s*=1#0.
All solution of this problem are given in Muschelischwili [13, p. 155 ff.]. The number of solutions
depends on the index of the Riemann—Hilbert problem, which is in this case

o= [arg(c —is)] .= = 1B =o0.

Here [B], denotes the change of B(e'®):= B(9) if one goes once around the unit circle. Since

|B(®)| <im.
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k = 0, all solutions are of the form
H(z)= Coe“"/zem), Im H(0) =

with an arbitrary real constant G,

1 2« [ cosB—isinB), 1 f2m .\
a=__'n.’0 arg\ cosB+isin B/ zﬁjo \TTERRY
1 p2n
="T—;j0 Bde,
and
p(z)=_1_f =284,

(O) 0 iff C,=0 or sinja=0.
Now, since |,B(q>)| < im, singa # 0, and therefore C; =0, H=0, h=0and 4, =4,.

Now we consider the inhomogeneous integral equation (N”).

Theorem 2. Ifr, ¥, € W, and ¢’ € L, then

e ona2R 1L KB
rcos’pre

0
~—

>
]

with
2 27
C= f {r sin?8 — eXP cos B K [e~XPr sin B] }dqa/f eXf cos Bdeo
0 0
is a solution of (N') in W. |

Proof. We consider the Riemann-Hilbert problem

rin\ .

Im H{0)=0, (n)

H
where r, = r sin 8. According to Gaier [1, p. 62] any solution H = u + iv satisfies
v=v(0)=Ku ondD.

FITN Cmm e 1o
\11) uupuca

ucosB—vsinB=rsinB or u=(v+r)-¢ and 0v(0)=0.

So we have

ATV 7 I P T W |
vTr I—Al\UTr}'UJ.
This means that A = v + r satisfies (N’).

Since r € W, we have A € W if v € W. So we have to find a solution of the Riemann—Hilbert
problem with v € W. Let

H(z)=(re *# +iK[rne *?] +iC) exp[—i(,B+iKB)]

I, T and
Y. & and ¢

re ] we find B e
L, WE IiNa p &
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Hence re™*# is again in W and conjugate to K(re *#), so re * +iK(re %f) can be
extended continuously to D in such a way that the extended function is analytic in D. The same
applies to 8 + i KB. Therefore H is continuous in D and analytic in D. Moreover, H satisfies the
boundary condition

Re[ePH(z)] = Re[r, +i XK [re %P] +iCeX?]| = r,.

Furthermore,
1 2= .
= — 19
Im H(0) zﬂ/;=01m H(e'®)dg
2m
- L f (=7 sin B+eXPcos BK[re ¥B] + Ce¥Bcos B)dp =0
27 =0

yields the constant C in the theorem. Because of ¢*# > 0 and cos 8=1/V1 + o2 > 0, the integral
in the numerator of C is # 0. Finally, since products and sums of functions in W are again in W,

v=1Im H(e!?)= —r sin B+ e*¥cos B K(re X#) + CeXPcos B W.
Hence A=v+re W.

We study now the implication of the last two theorems for the operator F'(¥) defined by
F(¥)A=A4~-K(o(¥ +1id)A).

Theorem 3. If o' € L, ¥ € W, then F'(¥) has an inverse which is a bounded linear operator in
(W - 1D). (F(¥) 1 is locally uniformly bounded with respect to ¥.

Proof. 6’€ L_, ¥ € W implies 6 € H, ¥ € H. Theorem 1 tells us therefore (choosing ¥, = ¥)
that

F(¥)A=0
has exactly one solution in W, namely A = 0. Theorem 2 shows that for any re W, F(¥)A=r
is solvable. That suffices for F’(¥) to have an inverse which is a bounded linear operator (see
"Gohberg and Goldberg [4, p. 221)).

We still have to show that ( F’(¥)) ™! is locally uniformly bounded. This means that ( F/(¥))~!
has an operator norm which is bounded by a constant depending on ¥, € W and p > 0 but not
on Y, forall ¥ {¥:| ¥, — VY| <p, ¥€ W}. This can be proved by a somewhat lengthy but
straightforward computation, with the result ||[(F(¥))"!r|| < C,|ir| forall re W. O

Given ¥,, we need three applications of the operator K for the computation of the next
Newton iteration ¥, ,, = ¥, + A with the help of Theorem 2. This number can be reduced to two
by the next theorem.

Theorem 4. If o' € L, ¥, € W, the next Newton iteration ¥, _, can be calculated by
¥,,, = —Fsin B cos B+ eXfcos B(K[Fcos Be%#] + C),

n

with

- [ Fsin Bcos B—e P cos BKle “FFcos B} ldop/ ZTre cos S deo
¢ KB KB KB 8
0 0
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and
F=—o(¥ +id)- ¥ +log p( ¥, +id).

Proof. From (N’) we get

Y~ —K[o- (¥~ %)= —¥ +Klog p( ¥, +id)
or

¥, . —K[o-¥,,  +F=0.

By the proof of Theorem 2 we know that the Riemann-Hilbert problem (H) is solvable for any
r, € W. We choose r, =7 cos B &€ W. Then (H) implies for H = u + iv that u cos 8 —v sin 8=
7 cos B, and again by Gaier [1, p. 62] we have

v=10(0) = Ku.
These two facts and v(0) = 0 give
v=K[o-v+F].

Thus we have v =¥,

n

+1> and we can take v from the proof of Theorem 2 with r, =% cos 8. O

Usually a direct numerical application of the Newton method as treated so far will not be
possible. But the method has numerical implementations. One runs as follows.

(i) Choose ¥,& W, and compute the vector P¥,= (¥ (@ )i%"'. o, =ka/N (k=
0,1,...,2N —1).

(i) Compute by interpolation the trigonometric polynomial P, of degree N (with zero
coefficient of the sin Ng-term) for which

O(‘I'o(‘Pk)‘*"Pk) .
\/1 + Uz(‘%(‘l’k) +(Pk)

(ii1) KP,B is then available by a simple and well-known procedure (see Gaier [1, p. 63]).

(iv) Compute the vector P,KP,B = ((KP,B)(¢,))iY5". The main work involved is trigonomet-
ric interpolation and the evaluation of the trigonometric polynomial at equidistant points. Both
can be done rapidly with an FFT at the cost of $N log, N complex multiplications each, if N is a
power of 2, which we assume from now on (see Gaier and Hubner [3], Gutknecht [6] and Hubner
[10)).

The application of the FFT in this context was first suggested by Henrici [9] and Ives [11].
Continuing in the way described and using the formulae in Theorem 4, one can compute a vector
approximation of ¥, at the cost of 2N log N + O(N) complex multiplications. Of course, here
the evaluations of log p and ¢ have not been counted.

(P,8)(@,) = arc sin

3. Convergence of the Newton method

We turn now to (N), i.e. to the exact application of the Newton method to (T). We want to
apply a Newton-Kantorovich theorem for a mapping of one Banach space into another, for
example, in the form of Gragg and Tapia [5], see also Ortega and Rheinboldt {14, p. 421 and
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428]. Here, both Banach spaces are (W, || -||). We know F: W — W, and from Lemma 1 we also
know that F is F-differentiable in W if ¢’ € H.

As before, ¥* is the only continuous solution of (T). We first show that ¢ € H implies
¥* € . For any 8 > 0 we then define Dy = { ¥: || ¥ — ¥*|| <8, ¥ € W }. The local convergence
of the Newton method is proven if we can show

|F'(®)-F(¥)||<G||®—- Y| foral @, ¥e Dy,

and that there is a §; with 0 <8, < 8 such that for any starting point ¥ &€ D

h=2G,|| F/( 0) Il ||F(‘I'o)||<l and

, 2 -
(V¥ =l <t YeW)CD, ift*=3(1=VT=h)IF (%) F(¥%)I.

We start with
Lemma 2. 0 € H implies ¥* € W.

Proof. We have ¥*(¢)= O(¢)— ¢, where O is defined by f(e'®) = p(O(¢))e'®'®), f being the
normalized conformal mapping from D onto the interior of I'. Let x(©) be the angle between
the normal to I at f(e'®) and the radius vector leading from 0 to f(e'?). Then o(@) = tan x(©).
Further, let §(s) be the angle between the real axis and the tangent to I" at f(e!?), where s =

oy p'(t) + p(t)2 d¢ is the arc length. An easy geometric consideration shows that o € H implies
8 € H. According to Kellog and Warschawski (see Gaier [1, p. 263)), this suffices for the existence
of

o f2)—fze) L _
um ———=:J'Z;), Zy€
I 2y 22— 2

|21

_r:JI

Using the continuity of ® we find
Olo+h)—0O(p)
MY v ) ~A Y/
h

rf’ei{¢+r‘=)) —f(ei?) el®+h ~eiv

- - . ; 1
l |(q)+h)_e|(p ih J
ei®@+h) _ oi0(e) }

+h\ m,)

T

[P(@@(EP(P:hh);_@(((P()@)) le(wh)*‘f’(@(w))
f’(ei )ei"’ie’ie(“’)
‘(e (<P))+lp(@(q>))

p
for h — 0. This means that @ is differentiable and @’ is continuous; therefore ¥* € W. O

Next we show that F’ satisfies a Lipschitz condition.

Lemma 3. If &, ¥, ¥* € W, ¢’ € H,, then
F(®)-F(¥)|| <GP~ Y| foral &, ¥ € D;.
1Y)
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Proof. We have to estimate the operator norm

”F’(¢)—F'(‘P) ” = sup ”(F’((D)_F,(‘P))AH

A%0 141
Aew
NA—K[o(®+id)-A] —A+ K[o(¥ +id)-A]}
= sup
A4l
<Sup2||(cr(<l5+1d)—o(‘;l’+ld))-A” '

tal
Now with |6(0,)—0(0,)| < L,|O, - 6,]|, we have
[(a(@+id)—o(¥+id) Al < Lol @ = ¥l 1| Al o
and with |0’(0,)—0'(0,)| < L0, - 0,], we get
1{(o(®+id) - o (¥ +id))-A)|I
=|lo(®+id)- (P +1)-A—o' (¥ +id)- (¥ +1)-A
+(o(® +id) —o( ¥ +id))-A'}),
<|lo'(@+id)- @ — o' (@ +id)- ¥'||, || Al
+llo/(@+id) ¥ — (¥ +id)- ||, | 4]l .
+o/(@ +id) — o’ ( ¥ +id) |, 11 A1) .
+llo(@+id)— (¥ +id) |, 114],
SM|Q =¥, + LI P - ¥l 1 ¥Il.114]
HLI® =Yl 1Al + Lol @ — Pl 147,
S(M+L|¥||+L+ L)1~ ¥ 1A
S(M+L(8+ || ¥*[+1)+Ly) | @~ ¥| | 4]l
Together these results yield
| F(@)—F(¥)|| < Cllo— ¥
for all @, ¥ € Dy with C,=2[M + L(6 + || ¥*||+1)+ L,). O

For ¥ € D; and o € H, we find

I F() I = 1 F(¥) = F(¥*) || = || ¥ — ¥* — K log p(¥ +id) + K log p(¥* +id) |

< || — ¥*[[+2(log p(¥ +id) — log p(¥* +id) ||,

lllog p(¥ +id) —log p(¥* +id) ||, < e|| ¥ — ¥*||,,

li (log (¥ +id) — log p(¥* +id))'|| ,
=|lo(¥+id)- (¥ +1)—0a(¥*+id)-(¥* + 1),
<lo(¥+id)- ¥~ o(¥ +id)- ¥*||, + | o(¥ +id) - ¥* — o(¥* +id)- ¥+,

+||o(¥+id) —o(¥* +id) |,
S|V =¥+ Lol ¥ = F*[ I ¥¥ |+ Lol ¥ — P,
<(e+ Lo(N )2+ 1)) | ¥ — ¥¥).
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Altogether we have
NF(P)| <Gl ¥ —¥*| with Co=1+2e+2L(||¥*|,+1).

Thearem 2 we Frow =11 -~ foc oWl dr =D F 7 =T If e mew chomee W = U7

uy 1 NEorem o> wé Know || F Lr) IS Ly o all ¥ S g i1 0 = L. 11 WC NIOW CHoOSE ¥y & v
with || ¥* - ¥, || <6, where 8, satisfies

h=2CC,G8, <1
and

. 2
81+t <8!+1__\T—CC8 (1+2C!C3)5!S8
+ —

all conditions required for the Newton—Kantorovich theorem are fulfilled. So we have proven

Theorem 8. If o' H .r

= ARG 2. 4y —.;1,

SO g :
f the Newton—-Kantorovich theorem where for ample the assumption

then auadratic fgee

There are variants o
1

.t << 1 a5 and whare tha rate of convereengc

Qg
aliu WHUIL b 1aws Vi vouavligua OO0 LV uauiiauly (ouy

of (W, || -]]), other spaces could be taken. We do not elaborate all these

1
— Lk ¥YYALLIL W ~ T~
u =

Keller [12}). Also instead
liti

Instead we will show that sometimes global convergence of the Newton method in (W, || -||,)

taikbo prate,

Theorem 6. If |o| <} and o’ € L, then the Newton method for the Theodorsen integral equation
converges globally in (W, || || ;).
Proof. Let ¥, € W, and let ¥, be defined by (N'), L.e.

Y, -V, -Kl[o(¥,+id)(¥,,, - ¥,)] = —¥,+K log p(¥, +id).
According to Theorem 2, ¥,,, € W. We subtract

¥* =K log p(¥* +id)
from the above equation and obtain

¥~ ¥ = K[o(¥, +id)-(¥,,, - ¥)] - K[o(¥, +id) - (¥* - ¥, )]

= K [log p( ¥, +id) — log p( v+ +id)],
[RATER S PRI AVES S PR Al 4 PRIh Al 4l Pt
11 = #H 2 < e 1, = Pl < T ) 1= #4100
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We finish with the question of whether for boundary curves given in polar coordinates, the
method of Wegmann and the Newton method for (T) are identical. The answer is no. As an
example we take p(©) =1 and ¥, = sin ¢. This gives F(¥,(¢)) = ¥, — K[1] = sin ¢. In Theorem
4 we have r=0 and therefore ¥, =0. This is the exact solution of (T). With some further
computations one can show that in this example the Wegmann method does not give the exact
solution after one step.

However, after studying this manuscript, Gutknecht has noticed a close connection between
the Wegmann method and our method. Let I" be given in polar coordinates. If one applies the
idea of the Wegmann method to the auxiliary function h(:)=1log f(z)/z (instead of the
mapping function f(z) as in Wegmann’s work), one gets our method as presented in Theorem 4.
It will require some numerical experiments to decide whether our method has advantages over the
original Wegmann method. In addition, it is worthwhile to check whether or not discretizing the
formula in Theorem 2 gives a more stable method than doing this with the formula in Theorem 4.

Gutknecht has also pointed out that Vertgejm [16] has previously applied the Newton method
even to a generalized Theodorsen integral equation. However, Vertgejm used the modified
Newton method

v —(F{Y

I W E(w )
n+1 “n \ 077 L\ 4y

J

and proved linear convergence in H,, whereas we have quadratic convergence in W.
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