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Abstract.  In this paper, two efficient numerical methods for solving system of
fractional differential equations (SFDEs) are considered. The fractional derivative is
described in the Caputo sense. The first method is based upon Chebyshev approxima-
tions, where the properties of Chebyshev polynomials are utilized to reduce SFDEs to
system of algebraic equations. Special attention is given to study the convergence and
estimate the error of the presented method. The second method is the fractional finite
difference method (FDM), where we implement the Griinwald-Letnikov’s approach.
We study the stability of the obtained numerical scheme. The numerical results show
that the approaches are easy to implement implement for solving SFDEs. The methods
introduce a promising tool for solving many systems of linear and non-linear fractional
differential equations. Numerical examples are presented to illustrate the validity and
the great potential of both proposed techniques.

Keywords: System of fractional differential equations; Caputo derivative; Chebyshev
approximation; Convergence analysis; Griinwald—Letnikov’s approach; Fractional
FDM

1. INTRODUCTION

Fractional differential equations have recently been applied in various applications of
engineering, science, finance, applied mathematics, bio-engineering and others. How-
ever, many researchers remain unaware of this field. Ordinary and partial fractional
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differential equations have been the focus of many studies due to their frequent appear-
ance in various applications in fluid mechanics, viscoelasticity, biology, physics and
engineering [23]. Consequently, considerable attention has been given to the solutions
of FDEs of physical interest. Most FDEs do not have exact solutions, so approximate
and numerical techniques [6,8,31], must be used. Recently, several numerical methods
to solve the FDEs have been given such as, variational iteration method [10,30],
homotopy perturbation method [29], homotopy analysis method [9], collocation meth-
od [7,14,16,17,19,24] and finite difference method [1.2,13,20,21,27,32,33].

We describe some necessary definitions and mathematical preliminaries of the frac-
tional calculus theory required for our subsequent development.

Definition 1. The Riemann-Liouville fractional derivative operator D% of order o is
defined by [23]

1 anopx Ay
D* f(X) o T(m—u) dxX" fO (x—1)* ! d[’ m—1<oa< m,
R - 1 41
i) o =m,
X/

where m is a positive integer and I' is the Gamma function.

Definition 2. The Caputo fractional derivative operator D* of order o is defined in the
following form

ooy L )
D*f(x) = T j /o o l)a—m+1 dt, o> 0,

(m—ua
where m — 1 <o <mymée N, x> 0.

Similar to integer-order differentiation, Caputo fractional derivative operator is a
linear operation

D*(2f(x) + ug(x)) = AD°f(x) + uD*g(x),

where A and p are constants. For Caputo’s derivative we have [23]

D*C =0, C is a constant, (1)
) 0, for n € Ny and n < [a]; 5
DXt = rgfﬁl)a) x"*  forneNyand n > [o]. )

We use the ceiling function [o] to denote the smallest integer greater than or equal to «,
and No = {0,1,2,...}. Recall that for o € N, the Caputo differential operator coin-
cides with the usual differential operator of integer order.

For more details on fractional derivative definitions and their properties sece
[22,23,25].

The main aim of the present work is to apply the Chebyshev collocation method and
the fractional finite difference method to solve numerically the system of fractional
differential equations. The two proposed methods discretize the introduced problem
to system of algebraic equations thus greatly simplifying the problem. Chebyshev
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polynomials are well known family of orthogonal polynomials on the interval [—1, 1]
that have many applications [18,28]. They are widely used because of their good prop-
erties in the approximation of functions. Khader [15] introduced a new approximate
formula of the fractional derivative and used it to solve numerically the fractional
diffusion equation. Ashyralyev and Cakir [4] presented stable difference schemes for
the fractional parabolic equation with Dirichlet and Neumann boundary conditions.
Also, stability estimates and almost coercive stability estimates for the solution of these
difference schemes are obtained. A procedure of the modified Gauss elimination meth-
od is used for solving these difference schemes of one dimensional fractional parabolic
PDEs. In this work, we will extend this formula to solve SFDEs and prove the error
estimate of the introduced formula.

In this article, we consider the following general form of the non-linear system of
differential equations

Du;(x) = filx,up, ua, . . 1), ug')(O) =c, 0<r<[vl]. (3)

The existence and the uniqueness of this initial value problem for the system of FDEs
(3) have been proved in [5]. Many authors considered this system to solve it using dif-
ferent numerical methods, for example, differential transform method [8] and Adomian
decomposition method [11].

The organization of this paper is as follows. In the next section, the approximation
of fractional derivative D*x(t) is derived, study the convergence analysis and estimate
the error of the derived formula. Section 3, summarizes the definitions of Griinwald—
Letnikov’s approaches to Caputo’s derivative. Section 4, is assigned to implement the
two proposed methods to solve numerically two systems of FDEs. Also, a conclusion is
given in Section 5.

2. DERIVATION OF AN APPROXIMATE FORMULA FOR FRACTIONAL DERIVATIVES USING
CHEBYSHEV SERIES EXPANSION

The well-known Chebyshev polynomials [28] are defined on the interval [—1, 1] and can
be determined with the aid of the following recurrence formula

To1(2) =22T,(2) = T, (2), To(z)=1, Ti(z)=2z, n=1.2,....
The analytic form of the Chebyshev polynomials 7,(z) of degree n is given by
- } —i—1)!
]—vn — -1 i 21172171 (l’l !
) ”ﬁf ) (i) (n — 21)!

where [n/2] denotes the integer part of n/2. The orthogonality condition is

A =34, (4)

' 1T (2) n, fori=j=0;
i\Z)1;\Z . .
/ —=Lrdz=<¢Z2 fori=j#0;
T2 29 . ’
oovl=s 0, for i#).
In order to use these polynomials on the interval [0, 1] we define the so called shifted
Chebyshev polynomials by introducing the change of variable z = 27 — 1.
The shifted Chebyshev polynomials are defined as T7(7) = T,(2t — 1) = T»,(\/7).
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The analytic form of the shifted Chebyshev polynomial 77 (¢) of degree  is given by

2Xmtk—1),
nk —
fng —(n—k)!t’ n=12.... (5)

The function x(l), which belongs to the space of square integrable functions in [0, 1],
may be expressed in terms of shifted Chebyshev polynomials as

x(1) = e T; (1), (6)
=0
where the coefficients ¢; are given by
1) / 1) .
— ——=— dI == ——" d, i=1,2,.... 7
n/o Vit —1? TJo Vi—¢ )

In practice, only the first (m + 1)-terms of shifted Chebyshev polynomials are con-
sidered. Then we have

X(1) = Z ¢ TH(1). (8)

Theorem 1. (Chebyshev truncation theorem) [28]

The error in approximating x(¢) by the sum of its first m terms is bounded by the
sum of the absolute values of all the neglected coefficients. If

) =3 e Tuld), 9)
k=0
then
ET(m) = |X( - Xm Z |C/» (10)

for all x(7), all m, and all r € [-1,1].
The main approximate formula of the fractional derivative of x(¢) is given in the fol-
lowing theorem.

Theorem 2. Let x(t) be approximated by Chebyshev polynomials as (8) and also suppose
o> 0, then

D*(x,, (1 ch, w k”‘, (11)

i=[o]k=[x]
where WE‘“),( is given by

ik 2 (i k= DIT(k+1)

W= (1) (i — )Tk +1—a) (12)
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Proof. Since Caputo’s fractional differentiation is a linear operation we have

(X (1 Zc .D*(T, (13)
Employing Egs. (1) and (2) we have
D*T;(t) =0, i=0,1,....J0] =1, a>0. (14)

Also, for i = [a], [a] + 1,...,m, and by using Egs. (1) and (2), we get

2%+ k—1)

1 k ok
=i 7D
kZM R)126)

1 k 22]&(l+k )‘r(k+ 1) k—o
’% DTk T (15)

A combination of Eqgs. (14) and (15) and (13) leads to the desired result (11). [

Theorem 3. The Caputo fractional derivative of order o for the shifted Chebyshev poly-
nomials can be expressed in terms of the shifted Chebyshev polynomials themselves in the
following form

i k—[a]
T; t)) = Z Z®ij,k7—;'k(l)a (16)
k=[o] j=0
where
1) 2i(i+k— )T (k—a+1
@iy = (=1)""2i(i+ N (k—a+3) ho=2, hy=1, j=1,2,....

W (k+3(i—k)T(k—a—j+1)T(k+j—a+1)

Proof. See [7,18]. [

Theorem 4. The error |Er(m)| = |D*x(t) — D*x,(t)| in approximating D*x(t) by
D*x,,(t) is bounded by

i k—[o]
So(x3en)
i=m+1 k=[a] j=0

Proof. A combination of Egs. (6), (8) and (16) leads to

S o( X Touno)|

i=m+1 [a] j=0

(17)

|ET( \

|Er(m)| = [D*x(1) = D*x,u(1)] =

but |77 (#)| < 1, so, we can obtain

< To( 3w,

i=m+1 k=[a] j=0

|ET( \
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and subtracting the truncated series from the infinite series, bounding each term in the
difference, and summing the bounds completes the proof of the theorem. [

Remark 1. The difference between the Caputo derivative and Riemann-Liouville deriv-
ative is given by the equation [23]
m—1 lk o

Dy(t) = Dy (1) “T(k+1-2)

Under natural condmons on the functlon y(1), for a—n, Caputo’s derivative be-
comes a conventional n-th derivative of the function y(¢).

Y 0), m—1<a<m (18)

3. GRUNWALD—LETNIKOV’S APPROACH TO CAPUTO’S DERIVATIVE

In this section, we introduce the definition of Griinwald-Letnikov fractional derivative
[23].

Definition 3. The Griinwald—Letnikov’s approach is defined as

o 1l e 19

i = Jim ) (q)i (1 — ih) (19)
and the shifted Griinwald—Letnikov fractional derivative is defined as

Iy 1H o . 20

where [f] means the integer part of ¢. Here, we state a lemma given in [12].

Lemma 1. Assume that y satisfies some smoothness conditions e.g., y(t) can be written in
the form of a power series for |t| < p. The Griinwald—Letnikov formula holds for each
0 <r < p and a series of step size h with ; € N,

1 o
Dipp() = 5 My (nh) + O(h), (h—0),
where

n ; o

Ay (nh) = ) (=17{ . |y(tad)- (21)
=0

In the case of Caputo’s operator, we have according to Eq. (18), for 0 < o < 1,
" [ T
Dy(r) = hfohJ’(”h) my(o) +0(h), (h—0). (22)

The most favorable case is when the initial values for Caputo’s differential equation
are given to be zero.
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The numerical formula (22) is used to solve numerically more problems, for example
this formula is implemented to solve the Bagley—Torvik equation [23]. Also, it has been
applied to solve the fractional-order heat equation [26]. In this paper, we extend this
implementation of this formula to solve the system of fractional differential equations.

4. NUMERICAL IMPLEMENTATION

In this section, we solve numerically system of FDEs using the two approches, the
Chebyshev spectral method and the Griinwald-Letnikov finite difference approach.
To achieve this purpose we will consider the following two examples.

Example 1. We consider the following system of linear fractional differential equations

D* x(1) = x(1) + »(1),
DF y(1) = —x(1) + (1),
the parameters o and f§ refer to the fractional order of time derivative with 0 < o, f < 1

(23)

We also assume the following initial conditions
x(0) =0, »(0) = 1. (24)
1.I: Implementation of Chebyshev approximation

Consider the systems of fractional differential Eq. (23). In order to use the Cheby-
shev collocation method, we first approximate x(z) and y(¢) as

5l0) = Y0 T, Zb T (0 5)

From Eq. (23) and Theorem 2 we have

) Zalw,k ST+ S BT )
i=0 i=0

i=[a]k=[u]

m i m

Zwa = ZazT* +ibiTi*(l)
0

i=[fk
We now collocate Eq. (26) at (m+ 1 — [v]) points 7,(p =0,1,...,m — [v]) as

ZZalw,,‘p Za,T* +ZbT* p=0,1,...,m—[a],

olk= [a]

(26)

m

ZZbW,,‘ 0P =N "aT; (1) + > bTi(1,), p=0,1,...,m—[B].
i=0 i=0

i=[fk

For suitable collocation points we use roots of shifted Chebyshev polynomial

T (0)-
Also, by substituting Eq. (25) in the initial conditions (24) we can find

m m

S (=Da=0, > (=1)b =1 (28)

i=0 i=0
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Eq. (27), together with the equations of the initial conditions (28), give (2m + 2) of
linear algebraic equations which can be solved using the conjugate gradient method,
for the unknowns @; and b;,i =0,1,...,m.

1.I1: Implementation of the fractional finite difference method

Here we will discretize the considered system (23) using the approximate formula
(22) as follows. First, for system, we consider

D*x(t,) = x(t) + y(1a),
DPy(t,) = —x(t,) + y(t,).
Second, we use the uniform grid ¢, = nh, where n =0, 1,..., M, Mh = T and use the
abbreviations x, and y, for approximation of the true solutions x(z,) and y(#,) in the

grid point z,. Applying the shifted definition of the Griinwald—Letnikov fractional
derivative and (22) to our system (29), we obtain

1 o . nh)™"
WZ(_I) ianrlfl _ﬁXO =Xy +yn7

i=0

(29)

s , (nh)fﬁ

— —1)ph N
hﬁ;( 1) Giyn+l—1 l—(l_ﬁ)yo Xn +ym
p>p=%ﬂ

where ¢ = r

To study the stability of the numerical scheme in (30), we state and prove the follow-
ing two theorems.

Theorem 5. [3] Numerical approximation (30) is consistent with fractional-order
differential Eqs. (29), Xy — x(t) = O(h"**) and y,, — y(t,,) = O(h'*F).

Theorem 6. The numerical scheme (30) of the system of fractional differential Egs. (29)
is stable.

Proof. Let (x,,y,) and (X,,y,) be two solutions of the numerical scheme (30). Let
e, =X, — X, and E, =y, — y,, we have

1 - (nh)™

=) (D) X — =< X0 = X+, (31)
h IZO: it —o)
1 & (nh)™"
(_1)’01 Xnpl—i — )’o —Xp +.Vn7 (32)
h” ; r'(1-p)
n+1 ) 00 )
(1= ey = => (=1)'0Ze, i+ h"E, < =Y (=1)'0e,s, (33)
i=1 i=0
n+1 ) 00 )
(1 =WE, = => (~1)0/E,_; — h'e, < => (=1)'0/E,_.. (34)

i=1 i=0

We have (=1)°0) = 1,(=1)'0? <0,i=1,2,,...and X7 (- 1)'® =1, p=a, .
Thus from (33) and (34), we have
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max([leoll, [ledll - - s [leatl]) < ... <leoll;
max([| Eoll, [|E4l], - - [[Eaa[]) < - < (1Bl

[leal

<
1EAl <

Therefore, the numerical approximation (30) for solving fractional differential Eq. (29)
is stable. [

The obtained numerical results of this example using the two proposed methods are
presented in Figs. 1 and 2. Where in Fig. 1, we presented the behavior of the exact solu-
tion (¢ = § = 1) with the numerical solutions using the Chebsyhev collocation method
(at m = 6) and the fractional finite difference method with z = 0.1. But, in Fig. 2, we
presented the behavior of numerical solutions using the two proposed methods at
(0 =0.7,/=0.9). From these figures, we can see that our numerical results are in
excellent agreement with the exact solution, this gives us induction that these two meth-
ods are well to implement for solving such a system of fractional differential equations.

Example 2. We consider the following system of non-linear fractional differential
equations
D*x(t) = 2)?, 0<a<l,
DFy(1) = tx, 0<pB
D'z(t) = yz, 0<y
with the initial conditions
x(0)=0, y0)=1, z(0)=1. (36)
2.1: Implementation of Chebyshev approximation

In order to use the Chebyshev collocation method, we first approximate x(¢), y(t)
and z(7) as

25

O Exact Solution
#  Chebyshev Solution
5 *  FDM Solution &
&
&
2
15 yit) k****; ¥ % g 4
&
s ¥ ®
s ®
= s % ®
<o 7 @ 1
= &
&
&
x(t) "
05F @ J
@
®
®
e ®
o §
05 L 1 I L I I | I L
0 0.1 02 0.3 0.4 0.5 0.6 07 0.8 0.9 1

Fig. 1 The behavior of the exact solution (at o = 1, f# = 1), the numerical solution using the Chebyshev
collocation method with m = 6 and the fractional FDM with 4 = 0.1.
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35 T T T T
O Chebyshev Solution
*  FDM Solution
3k 3
?
?
25+ Q |
x(t) Q
)
2 {
X {
= K
* 15k ¥(t) ® R
@ % ]
o @ % ° ® 8 e g,
1L % ® ® ® i
@ @
] ¥
@ @
0.5 @ 4
@
2
®
0 Il Il 1 1 1 Il Il Il 1
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 08 1

Fig.2  The behavior of the numerical solution (at « = 0.7, f = 0.9) using the Chebyshev collocation method
with m = 6 and the fractional FDM with 4 = 0.1.

) = aTi (1), v ZbT* fult) = ST (1), (37)
i=0 i=0

From Egs. (35)—(37) and Theorem 2 we have

2
St =2(Shma).
i=0

i=[alk= ﬂx

Z Z bl P = lia,—T;‘(t), (38)
=TRk=TH] i=0

Zie,w,k k7 = (Zb T; (¢ ) (iqﬂ*(t))

i=[ylk=[7] i=0

We now collocate Eq. (38) at (m + 1 — [v]) points #,(p =0, 1,...,m — [v]) as

; 2
Zza’wtk ; 12<Zb1’1—7(1p)> ) pzovlv"'am_[a]a
i=0

i=[a]k=[o]

m i

Zwalkpﬁ—lpZa,T* p=0,1,....m—[p],

i=[pk

Z chlk i‘, T = (ibiT;ﬂ(zPO (iqTi(tﬁ))’ p=01,....m—1[y].

=Ty k=71
(39)

For suitable collocation points we use roots of shifted Chebyshev polynomial
T

m+1—[v] (l)
Also, by substituting Eq. (37) in the initial conditions (36) we can find
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m m m

Y (=Va=0 > (-D)bh=1, Y (-De=1 (40)

i=0 =0 i=0

Eq. (39), together with the equations of the initial conditions (40), give (3m + 3) of
non-linear algebraic equations which can be solved using the Newton iteration method
for the unknowns a;,b; and ¢;,i =0,1,...,m.

2.11: Implementation of the fractional finite difference method

Here we will discretize the considered system (35) using (22) as follows. First, for
system, we consider

D*x(t,) = 2y2(t,,),

Dﬁy(tn) - an(tn)a (41)
D'z(1,) = y(t,)z(1,).
Second, we use the uniform grid ¢, = nh, where n =0, 1,..., M, Mh = T and use the

abbreviations x,, y, and z, for approximation of the true solutions x(¢,), y(#,) and z(t,)
in the grid point ¢,.

Applying the shifted definition of the Griinwald-Letnikov fractional derivative and
(22) to system (41), we obtain

1 n+1 . /’l
FZ(_I)IG;anrI—i - (n ) X() — 2y,217
1 F

;—J
—~
—_
\/

n+1 (

i Z )07 iVny1-i =
1 n+1 . nh -y
ﬁZ(*l) G;Zani - %Z = VnZn,

where ¢ = (?),p:a,ﬂ,y.

The obtained numerical results of this example using the two proposed methods are
presented in Figs. 3 and 4. Where in Fig. 3, we presented the behavior of the exact solu-
tion (¢ = f =y =1) with the numerical solutions using the Chebsyhev collocation
method (at m = 6) and the fractional FDM with 2 = 0.1. But, in Fig. 4, we presented
the behavior of numerical solutions using the two proposed methods at
(0 =0.8,=0.7,7=0.6). From these figures, we can see that our numerical results
are in excellent agreement with the exact solution, this gives us induction that these
two methods are well to implement for solving such a system of FDEs.

:
By
\/
‘tx

X, (42)

5. CONCLUSION

In this article, we implemented two computational methods, the Chebyshev spectral
method and the fractional FDM for solving system of FDEs. The work emphasized
our belief that the methods are reliable techniques to handle linear and non-linear sys-
tem of FDEs. We derived an approximate formula of the fractional derivative. The
properties of the Chebyshev polynomials are used to reduce FDEs to the solution of
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35 T T T T T
O Exact solution x(t)
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Fig. 3  The behavior of the exact solution (at « = § = y = 1), the numerical solution using the Chebyshev
collocation method with m = 6 and the fractional FDM with & = 0.1.

12 T T T T T
O Chebyshev Solution
*  FDM solution Q
10+ -
LUBS
sk 4
Q
g 9 g
= ooy @
> Q
g 4L @ ]
X< 4 . @
e PR U
@ o ®
o g ® ¥ il
888
o ® e ® -
2 1 L 1 1 L 1 L Il L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4 The behavior of the numerical solution (at « = 0.8, f = 0.7,y = 0.6) using the Chebyshev collocation
method with m = 6 and the fractional FDM with & = 0.1.

system of algebraic equations. Special attention is given to study the convergence
analysis and estimate the upper bound of the error of the derived formula. Also, we
studied the stability of the numerical scheme which was obtained from the fractional
FDM using the Griinwald-Letnikov’s approach. From the solutions obtained using
the suggested methods, we can conclude that these solutions are in excellent agreement
with the exact solution and show that these approaches can solve the problem
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effectively. It is evident that the overall errors can be made smaller by adding new
terms from the Chebyshev series (25). All numerical results are obtained using Matlab
7.5.
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