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SUMMARY

MicroRNAs (miRNAs) are an important set of oligonu-
cleotide sequences with a biogenesis that involves
Dicer-mediated cleavage as a critical step. Dicer
cleaves the precursor miRNA (pre-miRNA) stem-
loop structure to produce the mature miRNA. Using
bioinformatics analysis, we discovered the presence
of putative G-quadruplex (GQ)-forming sequences in
about 16% of pre-miRNAs. We report the existence
of a GQ as an alternative to the canonical stem-
loop structure in the clinically important human pre-
miRNA 92b. GQ formation led to unwinding of the
stem-loop structure imparting resistance to Dicer-
mediated cleavage both in vitro and in vivo. A poten-
tial K+ ion-dependent equilibrium between GQ and
the stem-loop structure has the ability to regulate
the Dicer-mediated maturation of pre-miRNA 92b,
which consequently affects target gene silencing.
These findings unravel a new mechanism of regula-
tion in pre-miRNA maturation, albeit at the RNA
structure level.

INTRODUCTION

MicroRNAs (miRNAs) are endogenous short RNA sequences

(�22 nucleotides) that regulate expressions of more than one-

half of the human protein coding genes (Bartel, 2004; Friedman

et al., 2009). The genes that encode miRNAs are transcribed

by RNA polymerase II or III, and these transcripts adopt a long

hairpin-like structure termed primarymiRNA (pri-miRNA) (Borch-

ert et al., 2006; Lee et al., 2004). A microprocessor complex con-

taining an RNase III enzyme, Drosha, and DiGeorge critical

region 8 (DGCR8) protein cleaves the pri-miRNA hairpin stem

to generate the precursor miRNA (pre-miRNA), which adopts a

stem-loop structure (Denli et al., 2004; Lee et al., 2003). Alterna-

tively, some pre-miRNAs namedmirtrons are directly spliced out

from host genes bypassing the Drosha-mediated cleavage

(Ruby et al., 2007; Sand, 2014). In the cytoplasm, the enzyme

Dicer belonging to the RNase III family cleaves the pre-miRNA

stem loop to produce mature miRNAs, which are eventually

loaded onto the RNA-induced silencing complex (Bernstein

et al., 2001; Hutvágner et al., 2001; Winter et al., 2009). Thus,
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Dicer-mediated miRNA cleavage is a critical step in miRNA

biogenesis as it regulates the mature miRNA levels in cells that

are often linked with different disease conditions, including can-

cer (Di Leva et al., 2014; Hesse and Arenz, 2014; Winter and Die-

derichs, 2011).

The stem-loop structure is a characteristic of pre-miRNAs and

contains internal loops, short overhangs, mismatches, and

bulges (Griffiths-Jones, 2004; Krol et al., 2004). The double-

stranded stem loop is critical for Dicer-mediated maturation of

pre-miRNAs as the enzyme is known to recognize the double-

stranded ends via its PAZ domain (MacRae et al., 2007). It has

been shown that the different domains of human Dicer enzyme

act coordinately to recognize and cleave the pre-miRNA stem

loops and produce mature miRNA duplex (Ma et al., 2012). Dicer

cleavage site is known to be determined by the features of the

stem-loop structures. It has been illustrated that Dicer measures

a fixed distance from either 50 phosphate group (50 counting rule)

or 30 overhang (30 counting rule) to determine the cleavage site

(MacRae et al., 2007, 2006; Park et al., 2011). In addition, Dicer

also recognizes the loop/bulge structure of pre-miRNAs for ac-

curate processing (loop counting rule) (Gu et al., 2012). Human

Dicer tolerates a significant amount of structural variations in

stem-loop characteristics, such as mismatch-containing stem,

large end loop, and 30 overhang, which favor the pre-miRNA

cleavage (Feng et al., 2012). The current dogma solely takes

into account the fact that all the pre-miRNAs adopt stem-loop

structures that are critical for Dicer-mediated maturation and

thus alternative secondary structures are not actively consid-

ered. However, after a comprehensive sequence analysis of all

the pre-miRNAs, we discovered that many human pre-miRNAs

contain guanosine (G)-rich regions, some of which overlap with

the corresponding mature miRNAs. Therefore, we proposed

that these G-rich regions can adopt G-quadruplex (GQ) struc-

tures as an alternative to the canonical stem-loop structure.

Since the Dicer enzyme is considered to be stem-loop structure

specific, GQ formation may act as an impediment to the Dicer-

mediated cleavage.

We have elucidated the potential regulatory role of the nonca-

nonical GQ secondary structure in the Dicer-mediated matura-

tion of a human pre-miRNA that results in the clinically important

miRNA 92b (hsa-mir-92b). The humanmiRNA 92b is significantly

upregulated in non-small-cell lung cancer (NSCLC) and it is

involved in the development of drug resistance in NSCLC (Li

et al., 2013). Increased miRNA 92b expression in glioblastomas

makes it function as a potential oncogene via targeting of the

Smad3 (Wu et al., 2013). It is also specifically expressed in
vier Ltd All rights reserved
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Figure 1. Pre-miRNA 92b Contains Putative

GQ Forming Sequence (PQS)

(A–D) Predicted stem-loop structure for (A) WT pre-

miRNA 92b, (B) Mut 1, (C) Mut 2, and (D) mature

miR-92b. G tracts in the PQS region and swapped

base pairs are boxed. See also Tables S1 and S2.
primary brain tumors and can potentially be used to differentiate

primary frommetastatic brain tumors (Nass et al., 2009). In addi-

tion, miRNA 92b controls the G1/S checkpoint gene p57 in

human embryonic stem cells (Sengupta et al., 2009). Human

pre-miRNA 92b contains six stretches of 3Gs, raising the poten-

tial for robust GQ formation. RNAmolecules can coexist as a GQ

and a hairpin structure under the physiologically relevant salt

concentrations (Bugaut et al., 2012). GQ structures are formed

by stacking of two or more square planar structures known as

G-quartets and are stabilized bymonovalent cations, particularly

potassium (Campbell and Neidle, 2012). G-quartets are formed

by four consecutive G stretches of two or more Gs in each

stretch and are often found in G-rich regions (Neidle and Balasu-

bramanian, 2006). GQs arewidespread in various types of RNAs,

including mRNA, long noncoding RNA, telomeric RNA, and viral

genomic RNA, and have been shown to play vital roles in RNA

biology (Kumari et al., 2007; Arora et al., 2008; Jayaraj et al.,

2012; Martadinata and Phan, 2013; Millevoi et al., 2012; Sund-

quist and Heaphy, 1993). Using different biochemical and bio-

physical approaches, we unraveled the role of GQ formation in

the maturation of human pre-miRNA 92b. The findings reported

here will broaden our understanding about the mechanism of

Dicer-mediated maturation at the pre-miRNA structural level

and add a new layer to the set of regulations in miRNA

biogenesis.

RESULTS

In Silico Analysis Identified a Large Number of Putative
GQ Sequences in Pre-miRNAs
We investigated putative GQ sequences (PQSs) that are found in

human pre-miRNAs via in-house analysis using QGRS mapper

(a GQ structure prediction software) (Kikin et al., 2006). It

is well known that DNA or RNA sequences that contain

G2-5N1-7G2-5N1-7G2-5N1-7 G2-5 can adopt GQ structures, where

N can be any nucleotide (Kikin et al., 2006). We discovered

that of 1881 human pre-miRNA sequences published in the
Chemistry & Biology 22, 262–272, February 19, 2015
miRNA database (http://www.mirbase.

org, release 21: June 2014), 298 pre-

miRNAs contained PQS with high predic-

tive scores (G scoreR30); the top 50 from

that list are shown in Table S1 (Griffiths-

Jones et al., 2008). Furthermore, we

investigated the location of the GQ in the

pre-miRNAs. We found that the GQs are

present in the passenger strand, guide

strand, and outside the mature miRNAs.

However, the majority of the miRNAs are

not fully characterized and the guide and

passenger strands are not accurately

identified. Thus, it was not possible to
detect any pattern of the location of the GQs. Given that the

canonical stem-loop structures are universally present in the

known pre-miRNAs, the discovery of the existence of PQSs

led us to rationalize that in those pre-miRNAs the GQ can poten-

tially be an alternative structure, which may remain in equilibrium

with the stem-loop and affect Dicer-mediated maturation.

Human Pre-miRNA 92b Contains a Conserved Putative
GQ Forming Region
Human miRNA 92b is one of the clinically important miRNAs

found among the above-mentioned set of G-rich pre-miRNAs

and is one of the top 20 potential disease-related miRNAs

(Chen and Yan, 2014). Pre-miRNA 92b is 96 nucleotides long

and can adopt a characteristic stem-loop structure that was

confirmed by mfold structure prediction software (Figure 1A)

(Zuker, 2003). According to the miRNA database, both 3p-

miR-92b and 5p-miR-92b strands of the mature miRNA 92b

duplex (miR-92b) are 22 nucleotides (nt) long (Figure 1D) (Grif-

fiths-Jones et al., 2008). Pre-miRNA 92b has six G stretches,

each containing three Gs, which are located 2–28 nucleotides

from the 50 end (Figure 1A). This region can be recognized as a

PQS, as it fits to the G2-5N1-7G2-5N1-7G2-5N1-7 G2-5 formula. Us-

ing QGRS mapper multiple overlapping, PQSs were found with

high G scores (highest G score 62, Table S2), indicating its ability

to adopt stable GQ structures (Kikin et al., 2006). As a reference,

using the same set of parameters, we analyzed two well-charac-

terized and very stable GQs found in the 50 UTRs of MT3-MMP

and NRAS mRNAs and in both cases the G score turned out to

be 60, indicating that the PQS in pre-miRNA 92b (G score 62)

can form a very stable GQ structure (Kumari et al., 2007; Morris

and Basu, 2009). Identical or very similar type of three-tier PQSs

were found to be conserved among pre-miRNA 92b of several

species, such as Chinese hamster, cattle, mouse, and many

others, including some of the primates (Table S2). Putative quad-

ruplex forming sequence and its complementary strand cover

about one-half the length of the human miRNA 92b stem loop

and therefore GQ formation can potentially destabilize the
ª2015 Elsevier Ltd All rights reserved 263
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Figure 2. GQ Formation Unwinds the Canonical Stem-loop Structure of Pre-miRNA 92b

(A) RNase T1 structuremapping ofWT shows that the stem-loop structure unwinds in the presence of 100mMK+but not with 100mMLi+. The enlarged panel was

obtained by running the same samples for a longer time. The bands were assigned according to a base hydrolysis ladder. The entire gel image is shown in

Figure S1.

(B) RNase T1 structure mapping of Mut 1 and Mut 2, indicating that the stem-loop structure does not unwind under any salt condition due to the inability to form

the GQ.

(C) Mfold predicted stem-loop structure of pre-miRNA 92b with numbered G residues.

(A) and (B) follow the numbering shown in (C). See also Figure S1.
stem-loop structure. Thus, we hypothesized that if GQ structure

forms in the presence of K+, the canonical hairpin structure

would unwind.

Formation of GQ Structure Unwinds the Canonical
miRNA 92b Stem Loop
To investigate the stem-loop unwinding of pre-miRNA 92b due to

the formation of GQ structure, RNase T1 structure mapping was

performed. Guanosines (G) that are involved in either stem re-

gions or GQ structures are known to be protected from the

RNase T1 enzymatic cleavage (Aldaz-Carroll et al., 2002; Darnell
264 Chemistry & Biology 22, 262–272, February 19, 2015 ª2015 Else
et al., 2001; Morris and Basu, 2009). The data showed that in the

absence of K+, most of the Gswere protected except the G in the

hairpin loop (G56), indicating that the pre-miRNA 92b exists as a

canonical stem-loop structure (Figure 2A). Gs close to the hairpin

loop (G36 to G44) were slightly less protected compared with the

other Gs, which may be due to their involvement in relatively

weaker wobble base pairing. In the presence of 100 mM K+,

almost all of the Gs that were protected in the absence of K+ un-

derwent some level of cleavage, indicating the unwinding of the

pre-miRNA stem-loop structure, most likely due to formation of

the GQ, which enabled RNase T1 to have increased access to
vier Ltd All rights reserved



Figure 3. Pre-miRNA 92b Coexists as GQ

and Stem-loop Structures in the Presence

of K+

(A) Gel mobility shift assay shows the coexistence

of two structures in the presence of 100 mM K+. A

less compact structure was observed only with WT

pre-miRNA 92b in the presence of 100 mM K+ but

not with Mut 1 or Mut 2, indicating the GQ structure

formation causes the unwinding of the stem loop.

See also Figures S2 and S3.

(B and C) First derivative of a representative CD

melting curve of WT (B) and Mut 2 (C) at a 2.5 mM

RNA concentration in 10 mM Tris, 0.1 mM EDTA,

and 5 mM K+. WT showed two distinct melting

points (X = 63.5 ± 1.7�C and Y = 90.0 ± 0.5�C),
whereas Mut 2 showed only a single melting point

(Y0 = 86.0 ± 0.9�C). The average melting tempera-

tures were calculated from three independent ex-

periments (± SEM, n = 3). See also Figure S4.
the Gs. The observation that Gs that are in the PQS (G2 to G28)

were protected even in the presence of K+ compared with the Gs

in the other regions implied the formation of GQ structure (Fig-

ure 2A; Figure S1). To further assess if the stem-loop unwinding

is due to the formation of the GQ, RNase T1 structure mapping

was performed in the presence of 100 mM of Li+. Lithium (I) is

known to disfavor the GQ formation, but it should not adversely

affect the stability of the stem-loop structure. The data showed

that most of the Gs were found to be protected in the presence

of 100 mM Li+ and the pattern of protection was identical to the

pattern observed in the absence of K+, which is due to lack of GQ

formation, which allowed the maintenance of the stem-loop

structure. Based upon the above observations, we can conclude

that the unwinding of the canonical stem-loop structure in the

presence of K+ is due to the formation of GQ.

To confirm further that the adoption of GQ conformation

causes the stem-loop unwinding of pre-miRNA 92b, two of its

mutant versions (Mut 1 and Mut 2) were designed (Figures 1B

and 1C). Both Mut 1 and Mut 2 were designed to completely

eliminate the intramolecular GQ formation, while maintaining

the stem-loop structure intact. However, Mut 2 was designed

in such a fashion as to produce a mature sequence that is very

similar to the wild-type (WT) pre-miRNA 92b. The mutations

were effected by swapping positions of selected Gs within the

PQS region with the corresponding cytosines (Cs) of the comple-

mentary strand to maintain the same base paring and the duplex

structure but disrupt the GQ formation. Overall, the stem-loop

structures of the Mut 1 and Mut 2 were confirmed to be similar

to the WT by the mfold structure prediction program (Figures

1B and 1C) (Zuker, 2003). RNase T1 structure mapping was

also performed on the mutants under identical conditions at

which the WT sequence was treated. All the Gs except those in-

side or close to the terminal loop (G56, G44, and G41) were pro-

tected from the enzymatic cleavage regardless of the salt condi-
Chemistry & Biology 22, 262–272, February 19, 2015
tion (Figure 2B). G23 was slightly cleaved,

as it is in the internal loop. These data indi-

cate that the canonical stem-loop struc-

ture remains intact even in the presence

of K+ if the PQS is altered in such a way
so as to eliminate the possibility of intramolecular GQ formation.

Collectively, these results establish that the formation of GQ can

unwind the entire canonical stem-loop structure of pre-miRNA

92b in the presence of physiologically relevant K+ concentration.

In the Presence of K+ Pre-miRNA 92b Coexists as the
Canonical Stem-loop and GQ Structures
The existence of the noncanonical pre-miRNA GQ structure was

further investigated using a gel mobility shift assay. The WT and

the two mutant RNAs were folded in the presence of K+, Li+, or

with no added salt, and the structures were analyzed by native

PAGE. In the absence of salt and in the presence of Li+, only a

faster migrating band was observed, which should correspond

to the canonical stem-loop structure (Figure 3A). In addition to

the species described above, a slower migrating band of WT

pre-miRNA was also observed in the presence of K+. This slower

migrating species, which was observed only in the presence of

K+, is expected to be less compact than the stem loop and it

most likely is the GQ structure, with the remainder of the

sequence being in an unfolded form. Although the GQs are typi-

cally compact structures, in this case, as a whole, the molecule

containing the GQ should be less compact than the stem loop,

due to its long unstructured flanking region (about 60–68 nt

long) toward the 30 end. Moreover, for the mutant RNAs that

lack the PQS, only the band corresponding to the stem-loop

structure was observed under all of the conditions that were

tested, including in the presence of K+, indicating that theGQ for-

mation is required to unwind the stem loop. These results reveal

the coexistence of GQ structure with the canonical stem loop in

the presence of physiologically relevant K+ concentration.

Furthermore, we confirmed that the cytoplasmic Mg2+ concen-

tration has no effect on structural coexistence of pre-miRNA

92b, which was observed in the gel mobility shift assay (Fig-

ure S2). Although Figure 3A indicates that the population of the
ª2015 Elsevier Ltd All rights reserved 265



stem-loop structure is higher than that of the GQ, when the RNA

was folded at 37�C for 20 min, we observed that the equilibrium

shifted more toward the GQ structure (Figure S3). However,

more detailed experiments are needed to evaluate the folding ki-

netics of the two structures in the presence of K+ ions. Collec-

tively, these results indicate that pre-miRNA 92b may exist as

an equilibrium between the GQ and the stem-loop structure in

the cytoplasm, and the elimination of the GQ forces the equilib-

rium toward the stem-loop structure, which led us to conclude

that the equilibrium may regulate the Dicer-mediated maturation

of miRNA 92b.

To further assess the coexistence of GQ and the stem-loop

structures of pre-miRNA 92b, WT and Mut 2 RNAs were folded

in the presence of 5 mM K+ and subjected to thermal melting,

which was monitored by circular dichroism (CD) spectroscopy

(Figure S4). Two distinct melting points were observed for the

WT, as shown in the first derivative of the melting curve (Fig-

ure 3B). However, only one melting point was observed when

the Mut 2 was melted in 5 mM K+ (Figure 3C). Therefore, the

additional melting point (labeled as X in Figure 3B) that was

observed for the WT most likely corresponds to the melting of

the GQ structure, as it was absent in the Mut 2 melting profile

(Figure 3C). Melting points observed in both WT and Mut 2

(Y and Y0, respectively [Figures 3B and 3C]) should correspond

to the melting of the stem loop, which also generated a positive

peak at 260 nm in the CD spectrum of the duplex (Kypr et al.,

2009). We also observed that both WT and Mut 2 generate

260 nm positive peaks in CD spectra (data not shown). Interest-

ingly, bothWT and theMut 2 showed closemelting temperatures

(Tm) for the stem loop (Y = 90.0 ± 0.5�C and Y0 = 86.0 ± 0.9�C),
indicating that the base swapping in Mut 2 essentially did not

change the stability of the stem-loop structure. The melting tem-

perature of the GQ (X) was found to be 63.5 ± 1.7�C, which

matches with the Tm values for three-tier GQs reported in the

literature (Kumari et al., 2007; Morris and Basu, 2009). At

100 mM K+, we did not observe any melting that could be

assigned to the GQ structure (data not shown). Based upon pre-

vious reports from our laboratory and others, this was not unex-

pected, as GQs of such stability failed to undergo thermal

melting in presence of 100mMK+ (Morris andBasu, 2009; Zhang

et al., 2011).

Chemical and Enzymatic Structure Mapping Confirmed
the Switch to a GQ Structure
To further confirm that the additional structure found in the gel

mobility shift assay is a GQ, dimethyl sulfate (DMS) structure

mapping was performed on the WT RNA. DMS methylates G if

the N7 position is not engaged with a bond and thus can be

used specifically to probe the GQ structure (Morris et al., 2010;

Neidle and Balasubramanian, 2006). If the molecule is in the

form of stem loop, the Gs can be modified by the DMS, as the

N7 position is not used inWatson-Crick base pairing. In contrast,

the Gs that are involved in theGQwill be protected from the DMS

modification, because the N7 positions are used in the Hoogs-

teen base paring in the context of a G tetrad. When the WT

RNA was folded in the presence of 100 mM K+, Gs that are in

the PQS region (G23 to G9) were protected from the cleavage

compared with the RNAs folded in the presence of 100 mM Li+

or without any added salt (Figure 4A). This salt-dependent pro-
266 Chemistry & Biology 22, 262–272, February 19, 2015 ª2015 Else
tection is direct evidence of the GQ formation over the duplex

structure by the pre-miRNA 92b in the presence of 100 mM K+.

The Gs that are not involved in the GQ formation (G33 to G65)

are not protected under any salt condition. Few of the Gs

(G26, G27, G28, and G31) are protected in all of the lanes, which

is obviously due to the lack of accessibility, but finding the

reasoning behind the observation will require high-resolution

structural data.

In a separate experiment, we subjected the pre-miRNA 92b

sequence to RNase T1 structure mapping with increased

(5-fold excess compared with the previous studies) enzyme con-

centration and observed that all the Gs were cleaved even in the

absence of K+. The data indicate that the stable stem-loop struc-

ture starts to undergo cleavage at high RNase T1 concentration

(Figure 4B). Interestingly, in the presence of K+ and the high

enzyme concentration, Gs that are in the PQS were still pro-

tected from the RNase T1 cleavage, which is in contrast to the

observation made in the absence of K+, where all Gs were

cleaved, suggesting that the duplex structure breathes more

compared with the GQ. The results discussed above further

confirm that the Gs in the PQS participate in GQ structure

formation.

GQ Structure Formation Inhibits Dicer-Mediated
Maturation of Pre-miRNA 92b In Vitro
The stem loop is required for miRNA maturation, as Dicer is

known to recognize only double-stranded RNAs and cleaves

them to form mature miRNA duplexes. Since a non-stem-loop

structure containing a GQ was observed for pre-miRNA 92b,

we rationalized that this noncanonical structure should impede

Dicer-mediated cleavage at the physiological K+ concentration.

To test this hypothesis, an in vitro Dicer assay was performed on

body labeled ([a-32P]CTP) pre-miRNA 92b using human recom-

binant Dicer enzyme. Analysis of the Dicer cleaved WT showed

more of the 22-nt-long matured product (labeled with *) in the

absence of K+ compared with the amount in the presence of

100 mM K+ (Figure 5A). This indicates that the Dicer-mediated

cleavage is most likely impaired by the formation of GQ struc-

ture. When the same concentration of Li+ was used to disfavor

the GQ formation, cleavage was determined to be at a level

similar to that observed in the absence of K+. Thus, the pre-

miRNA 92b undergoes the same amount of Dicer-mediated

cleavage at both 100 mM Li+ and in the absence of K+, leading

to the conclusion that the lower amount of cleavage in 100 mM

K+ was due to GQ formation and not an ancillary effect because

of the extra monovalent metal ions.

To further confirm that the GQ formation affects the Dicer-

mediated cleavage, Mut 2 (Figure 1C) was utilized because the

maturation of this sequence is expected to result in a similar

product to the mature miRNA-92b; however, it cannot adopt a

GQ. Both WT and Mut 2 versions of pre-miRNA 92b were sub-

jected to Dicer-mediated cleavage in the presence of 100 mM

K+ and in the absence of any added salt. Mut 2 showed a similar

amount of maturation of pre-miRNA92b in the absence and the

presence of K+, indicating that there is no difference in the action

of Dicer on the molecule because the stem-loop structure is

maintained regardless of the salt concentration, as was estab-

lished earlier in our study (Figure 5B). In contrast, a significant dif-

ference in band intensities was observed in the cleavage of the
vier Ltd All rights reserved



Figure 4. Chemical and Enzymatic Structure

Mappings Show the Formation of GQ by

the Pre-miRNA 92b in the Presence of

100 mM K+

(A) DMS structure mapping of pre-miRNA 92b after

the folding of RNA in the presence of 100 mM K+,

100 mM Li+, and without any added salt. Gs that

are in the PQS region (G9 to G23) are protected

from the DMS modification in the presence of

100 mM K+ but not in the 100 mM Li+ or in the no

added salt lanes.

(B) The bands were assigned using a radiolabeled

ladder. RNase T1 structure mapping of pre-miRNA

92b with increased enzyme concentration (1U)

shows the G tracts that are in the PQS region (G13

to G28) were still protected in the presence of

100 mM K+, indicating the formation of GQ struc-

ture. G31 toG41were less protected in the 100mM

K+ due to the unwinding of the stem-loop. The

bands were assigned according to a base hydro-

lysis ladder.

(C) The numbered G residues in the mfold pre-

dicted stem-loop structure of pre-miRNA 92b.

(A) and (B) follow the numbering shown in (C).
WT RNA in the presence and absence of K+ (Figure 5A). In

100 mM Li +, the Dicer cleavage pattern of Mut 2 was similar to

that observed in 100 mM K+ and no added salt lanes, indicating

that the Mut 2 maturation is independent of the concentration

and identity of the salt (Figure 5B). This also established that

the Dicer cleavage activity is similar under both 100 mM K+

and Li+. Because the pre-miRNA 92b was body labeled, the

band intensities did not directly represent the amount of RNA,

as their radiolabeled cytosine incorporation varied, but for a

given band, the intensity can be used to compare the amount

of RNA among different lanes.

Densitometric analysis showed that in case of the WT RNA,

mature miR-92b level was about 5-fold lower in the presence

of K+ compared with the level in the absence of K+ (no added

salt), confirming the impediment of Dicer activity by the GQ

structure (Figure 5C). However, no significant difference in

miR-92b level was observed in the presence or absence of K+

in the case of Mut 2 RNA cleavage. These results collectively

establish that the formation of GQ structure inhibits the Dicer-

mediated maturation of miRNA 92b in vitro. Using the Mut 2

molecule, we have already demonstrated that a designed

disruption of the GQ formation rescues the maturation even in

the presence of 100 mM K+. Thus, the equilibrium between

canonical hairpin structure and the noncanonical GQ structure

plays a regulatory role inmaturation ofmiRNA 92b at the intracel-

lular K+ concentration.
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Since pre-miRNAs were internally

labeled (body labeled), a small number of

bands besides the mature product were

observed in the Dicer cleavage assay.

The band just above the 22-nt-long

matured product can be a variant

(isomiR), which is commonly found in

miRNA maturation (Figure 5A) (Ameres

and Zamore, 2013; Neilsen et al., 2012).
These isomiRs are typically one or more nucleotides longer at

the 50 or 30 end of thematuremiRNA (Guo and Chen, 2014). Inter-

estingly, this isomiR was not clearly observed in case of Mut 2

RNA as the nucleotides adjacent to the cleavage site are

mutated and that may have abolished the potential isomiR cleav-

age site (Figure 5A). A more prominent band between 40 and

50 nt was observed with both WT and Mut 2, which is most likely

an intermediate that is often found due to incomplete digestion of

long pre-miRNAs, especially when the recombinant Dicer

enzyme is used in vitro (Figures 5A and 5B) (Koscianska et al.,

2011; Starega-Roslan et al., 2011). Other less intense bands

may be the remaining portions of the pre-miRNA cleavage as

most of the generated fragments were radioactive.

GQ Structure Formation Inhibits In Vivo Maturation of
Pre-miRNA 92b Resulting in Repression of Target Gene
Knockdown
Our in vitro data strongly suggest the presence of an equilibrium

between the GQ-containing structure and the canonical stem-

loop structure at the physiologically relevant K+ concentration.

Furthermore, we have established that in vitro the GQ structure

formation inhibits Dicer activity by a significant amount. Next,

we assessed the effect of GQ on pre-miRNA 92b maturation

in vivo by a Dual-Luciferase assay in HEK 293 cells. A 22 nt

sequence which is complementary to the predicted miR-92b

seed sequence (complementary to the miR-92b-3p mature
ª2015 Elsevier Ltd All rights reserved 267



Figure 5. GQ Formation Inhibits Dicer-Mediated Maturation of Pre-miRNA 92b In Vitro

(A) In vitro Dicer assay of WT. Mature product (marked with *) was significantly lower in the presence of 100 mMK+ but not with 100 mM Li+ compared with the no

salt lane. L, size ladder.

(B) In vitro Dicer assay of Mut 2, which does not have a PQS. No significant difference was obtained for the mature product (marked with *) between no salt,

100 mM K+, and 100 mM Li+. L, size ladder.

(C) The histogram showing the densitometric quantification ofmiR-92bmaturation. Band intensities represent the relative level of maturemiR-92b (markedwith *).

Five-fold higher inhibition of Dicer-mediated maturation was observed for WT in the presence of K+ compared with the absence of K+. Data represent mean

values ± SEM, n = 3, **p < 0.001.
sequence) was cloned within the 30 UTR of the Renilla luciferase

gene in psiCHECK-2 vector (Figure 6A). The firefly luciferase

gene present in the same vector was used as a transfection con-

trol. Since mature miR-92b can knock down Renilla luciferase

gene expression by binding to the incorporated seed sequence

within its mRNA, relative luciferase activity (Renilla to firefly)

would be inversely proportional to the amount of matured miR-

92b present inside the cells. To control for the effect of any

nonspecific knockdown of the reporter genes, an unmodified
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psiCHECK-2 vector without the seed sequence was utilized. In

order to assess the effect of GQ formation, HEK 293 cells were

cotransfected in separate wells with the in vitro transcribed WT

or Mut 2 RNA and the psiCHECK-2 vector containing the seed

sequence, respectively. In a control experiment, the WT RNA

was cotransfected with the WT psiCHECK-2 vector instead of

the one containing the seed sequence. Twenty-four hours post

cotransfection, relative luciferase activities were measured and

normalized to the control (Figure 6B). Relative luciferase activity
vier Ltd All rights reserved



Figure 6. GQ Formation Inhibits Target

Gene Knockdown by miR-92b In Vivo

(A) Plasmid map of psiCHECK-2 vector with the

inserted seed sequence of miR-92b. A 22 nt

complementary sequence to 3p-miR-92b mature

sequence was inserted into the 30 UTR of Renilla

luciferase gene.

(B) The histogram representing the relative lucif-

erase activities (Renilla to firefly) after the co-

transfection of pre-miRNA 92b or Mut 2 with the

plasmid vector in HEK 293 cells (n = 9 experiments,

mean ± SEM, **p < 0.001 by two-tail t test).

(C)RenillamRNA level relative to fireflymRNA 24 hr

after the cotransfection was validated by RT-qPCR

(n = 3 experiments, mean ± SEM, **p < 0.05 by

two-tail t test).

(D) Relative luciferase activity 24 hr after the co-

transfection of WT or Mut prefolded stem loops

with the target vector (n = 4 experiments, mean ±

SEM, **p < 0.05 by two-tail t test).
with the Mut 2 was measured to be 2-fold lower than for the WT,

suggesting that in the absence of GQ structure, there is

increased pre-miRNA 92b maturation. It must be noted that

both WT andMut 2 pre-miRNA 92b will produce a similar mature

sequence and any difference in target gene knockdown would

reflect a difference in the level of maturation. Because the WT

can form GQ structure, it would produce a smaller amount of

mature miRNA 92b compared with the Mut 2. In order to assess

that the knockdown is taking place at the mRNA level, luciferase

mRNA levels were quantified 24 hr after the transfection by real-

time qPCR (RT-qPCR). The normalized Renilla luciferase mRNA

level was 2-fold lower when the cells were transfected with Mut

2 compared with the WT, indicating the GQ structure formation

leads to reduced miRNA maturation, which in turn impedes the

target gene knockdown at the mRNA level (Figure 6C). The re-

porter enzyme activity of the Mut 2 treated cells indicates that

the target gene knockdown can be enhanced by abolishing the

GQ structure of the pre-miRNA, as we established earlier that

because of the lack of PQS, the Mut 2 should not form any GQ

structure regardless of the intracellular K+ concentration. The re-

sults discussed above strongly indicate that in vivo the pre-

miRNA92bmaturation is inhibited by theGQstructure formation,

which is a new mechanism for control of pre-miRNA maturation.

The Stem-Loop Structure Can Switch to the GQ
Structure under Cellular Salt Conditions
Next, we intended to determine whether a prefolded stem-loop

structure can be switched to the GQ-containing structural form

under the cellular conditions. To investigate this, pre-miRNA

was folded in the absence of K+ to favor the stem-loop structure

and the Dual-Luciferase assay was performed, as described in
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the previous section. Thus, before the

transfection, both WT and Mut 2 RNAs

were in the canonical stem-loop confor-

mation. In vivo, if there is a stem-loop to

GQ structural switch, then the level of

target gene knockdown will be similar to

what was reported in the previous sec-

tion. Indeed, relative luciferase activity in
the cells treated with Mut 2 was still 2-fold lower in comparison

with the cells treated with WT, indicating the formation of GQ

structure inside the cells (Figure 6D). This implies that the canon-

ical stem-loop structure of pre-miRNA 92b switches to the GQ-

containing form, which is resistant to Dicer cleavage activity in

the cytosol, where average K+ concentration is known to be at

least 100 mM. Thus, it can be proposed that irrespective of the

initial structure of pre-miRNA-92b, after the Drosha cleavage of

the pri-miRNA, it would most likely resort to equilibrium with

GQ structure once it is exported to the cytoplasm.

DISCUSSION

In this study, we have identified GQ as an alternative secondary

structure to the canonical stem loop of the human pre-miRNA

92b, which directly affects its maturation. Our findings not only

unravel a new mechanism that controls pre-miRNA maturation

but also add a hitherto unknown layer of regulation to miRNA

biogenesis. The existence of the PQS region among approxi-

mately 16%of the total number of human pre-miRNA stem loops

suggests the importance of GQ structures in miRNA biogenesis.

The list includes some of the most well-studied and biologically

important pre-miRNAs.

The PQS in pre-miRNA 92bwas found to be conserved among

a wide range of species, validating the critical role of GQ struc-

ture. However, the challenge is formation of the GQ superseding

the canonical stem-loop structure under the physiological condi-

tions. The presence of monovalent and divalent cations can

result in a reversible hairpin-GQ structural equilibrium within an

RNAmolecule, with GQ being the major conformer at physiolog-

ically relevant K+ and Mg2+ concentrations (Bugaut et al., 2012).
ª2015 Elsevier Ltd All rights reserved 269



Therefore, it was logical to test the feasibility of formation of the

GQ structure over the pre-miRNA 92b canonical stem loop that is

not a fully base-paired hairpin. Our data clearly showed (1) that

the formation of GQ can unwind the entire stem-loop structure

in the presence of physiologically relevant K+ concentration

and (2) the coexistence of a GQ-containing structure with the ca-

nonical stem loop. Pre-miRNA 92b can adopt three-tier GQs

containing very short length loops (less than 2), which are char-

acteristic of very stable GQ structures (Morris and Basu, 2009;

Zhang et al., 2011). The pre-miRNA 92b stem-loop structure,

which contains internal loops, mismatches, and bulges, unwinds

due to the formation of a strong GQ structure in the presence of

K+ as was evident from the structure mapping results. The struc-

tural equilibrium between GQ and the stem loop is an entirely

new phenomenon for pre-miRNA structures that can modulate

the miRNA-mediated regulation of gene expression.

The structural equilibrium mentioned above can regulate the

Dicer-mediated maturation of pre-miRNA 92b both in vitro and

in vivo. Since the enzyme Dicer binds to a double-strand struc-

ture, an unwound stem loop containing the GQ should not be

an efficient substrate for Dicer-mediated cleavage. In fact, the

in vitro Dicer assay encountered a significant inhibition of dicing

activity from the GQ structure formation. Since the coexistence

was observed between the GQ and the stem-loop structure,

one can speculate that the equilibrium would switch toward the

stem-loop structure as it is being cleaved by theDicer and should

eventually reach 100%cleavage even in the presence of 100mM

K+. However, such an equilibrium shift toward the stem loop and

the consequent cleavage was not observed in the in vitro Dicer

assay, suggesting the higher stability and the very low off rate

of the GQ structure, which is consistent with the literature (Kim

et al., 1991). Nevertheless, detailed kinetic analysis will be neces-

sary to fully delineate the folding kinetics of the two structures.

The pre-miRNA may originate as a stem-loop structure after

the Drosha-mediated maturation of long pri-miRNA hairpin, but

our findings suggest that cytoplasmic K+ concentration is suffi-

cient to alter the stem-loop structure to theGQ form,which results

in inhibition of the Dicer-mediatedmaturation. Thus, the inhibition

of Dicer-mediated cleavage in vitro is physiologically relevant,

a conclusion corroborated by the in cellulo reporter gene inhi-

bition data. Although we showed that the pre-miRNA 92b matu-

ration inhibition is most likely due to the GQ formation in concur-

rence with our in vitro data, more detailed experimentation will

be needed to confirm the in vivo GQ formation of pre-miRNAs.

Several mechanisms of the regulation of Dicer-mediated

maturation have been either shown or proposed, such as nuclear

retention of pre-miRNA, binding of Lin-28 protein to pre-miRNA,

and regulation of Dicer partner proteins (Ding et al., 2009; Ha and

Kim, 2014). Here, we report the discovery of a newmechanism of

regulation of Dicer-mediatedmaturation at the pre-miRNA struc-

tural level. In addition, our finding that the GQ structure regulates

pre-miRNA maturation adds to the list of roles played by this

noncanonical RNA structure.

Further studies are required to unravel the detailed mecha-

nism of GQ-mediated regulation of miRNA maturation. It will be

interesting to investigate the role of G-rich PQSs in other pre-

miRNAs, which will help to establish the generality of the mech-

anism. Moreover, structural details of Dicer binding to the GQ

structure need to be elucidated to generate information about
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why the GQ-containing pre-miRNAs are resistant to Dicer-medi-

ated cleavage. Several proteins have been found to bind with

RNAGQs andmodulate the role of GQ structure in RNA process-

ing and translation (Bugaut and Balasubramanian, 2012; Millevoi

et al., 2012). Therefore, it is plausible that under certain circum-

stances, some proteins may bind to the GQ structure and desta-

bilize it to increase the pre-miRNA 92b maturation. Another

explanation might be that the equilibrium is fast enough and

thus the GQ structure may control the rate of Dicer cleavage,

rather than completely inhibit it, under the in vivo conditions.

However, additional in vivo experiments are required to under-

stand the detailed mechanism of how the pre-miRNAmaturation

is regulated by the equilibrium between the GQ and stem-loop

structures inside the cells under different conditions.

Although our in vitro data, especially the native gel electropho-

resis, showed that the stem-loop coexists with the GQ structure

even in the presence of K+ ions, we observed a significant

decrease in reporter gene expression in the presence of WT

pre-miRNA 92b in vivo where the K+ is presumably present at

a level sufficient for GQ formation. Since the intracellular K+ con-

centration is known to be maintained more or less constant, the

upregulation of GQ-containing pre-miRNAs under certain dis-

ease conditions may involve a GQ unwinding protein, as dis-

cussed above. However, further investigations are needed in

order to unravel such regulation in vivo.

SIGNIFICANCE

We showed the presence of GQ structure in pre-miRNA 92b,

which exists in equilibrium with the canonical stem-loop

structure in vitro and most likely in the cytosol. This equilib-

rium regulates the maturation of pre-miRNA 92b, as the GQ-

containing structure was shown to impede the Dicer-medi-

ated maturation both in vivo and in vitro. Therefore, the GQ

structure can play a pivotal role to keep the mature miR-

92b cellular concentration at the basal level. This is essential

for normal cellular functions as miR-92b knocks downmany

important genes, including tumor suppressor genes. The

findings in the report expand our current understanding of

the regulation of pre-miRNAmaturation in general and begin

to delineate modulation of the maturation process at the

RNA structure level.

EXPERIMENTAL PROCEDURES

General Methods

Diethyl dicarbonate-treated autoclaved nanopure water was used to prepare

all the solutions and buffers. All DNA oligonucleotides were purchased from In-

tegrated DNA Technologies (IDT) and were purified by running on a denaturing

polyacrylamide gel. Concentrations of all RNAs and DNAs were determined

based on their UV absorbance values at 260 nm by using a NanoDrop ND-

1000 spectrophotometer.

Plasmids, Restriction Digestion, and Site-Directed Mutagenesis

Details of plasmid generation, procedures for restriction digestion, and site-

directed mutagenesis are described in the Supplemental Experimental

Procedures.

RNA Preparation and 50 End Labeling of the Purified RNA

Details for RNA preparation are given in the Supplemental Experimental

Procedures.
vier Ltd All rights reserved



RNase T1 Structure Mapping

The 50 end radiolabeled RNA was folded by heating to 95�C for 5 min and

cooled to room temperature in the presence of 100 mM K+, 100 mM Li+, or

in the absence of any salt. Folded RNAs were subjected to RNase T1 (0.2 or

1 units, Ambion) digestion for 2 min at 37�C. The reactions were terminated

by heating to 95�C for 2 min with an equal volume of 23 urea loading buffer

that contained 7Murea. Details on further analysis of the samples are provided

in the Supplemental Experimental Procedures.

Dimethyl Sulfate Structure Mapping

Previously published protocols (Peattie, 1979) with minor changes were fol-

lowed (details are provided in the Supplemental Experimental Procedures).

Gel Mobility Shift Assay

End-labeled (50) RNAs were folded as described above and run on a 12%

native polyacrylamide gel for 7 hr, 20W, 4�C, and the running buffer was circu-

lated frequently. The gel was dried onWhatman filter paper and the image was

obtained as described above.

CD Melting Studies

RNAs were folded as described above and the CD melting curves were ob-

tained using a Jasco J-810 spectropolarimeter. Melting curves were recorded

by monitoring the ellipticity at 263.5 nm at 0.5�C intervals from 25�C to 95�C
with 20�C/hr melting rate and 2.5 mMRNA. The minimum points in the first de-

rivative curves of CD melting were recorded and average temperatures of

three repeated experiments were reported as the melting temperatures.

Internal Labeling of RNA and In Vitro Dicer Assay

RNAs were transcribed by in vitro transcription as described above except a

6 mM final concentration of radioactive [a-32P]CTP (PerkinElmer) was added

to the transcription mixture for the body labeling. Radioactive transcripts

were purified and precipitated as described previously. Purified pre-miRNAs

were folded as described above and incubated with 10 mM Tris-HCl, 2 mM

MgCl2, 100 mM KCl or LiCl, 10 mM NaCl and 0.5 units of Turbo Dicer enzyme

(Genlantis). The assay was performed by incubating the mixture at 37�C for

40 min, and the reaction was stopped by adding Dicer stop buffer (Genlantis).

An equal volume of 23 urea loading buffer was added to the reaction mixtures

and the products were run on a 10% denaturing PAGE for 70 min. The gel was

dried onWhatman paper and exposed to a phosphorimager screen overnight.

The gel images were visualized as described above.

Cell Culture and Cotransfection

Details of the cell culture are given in the Supplemental Experimental Proce-

dures. Prefolded stem-loop structures or GQ structures of pre-miRNA

(50 ng) were cotransfected with inserted or control psiCHECK-2 vectors

(100 ng) and 0.5 ml of Lipofectamine 2000 (Life Technologies) to HEK 293 cells

grown in 200 ml of medium.

Dual-Glo Luciferase Assay

After 24 hr from the cotransfection, Renilla and firefly luciferase activity were

measured by Dual-Glo Luciferase Assay according to the manufacturer’s pro-

tocol. Relative luciferase activity (Renilla to firefly) was calculated and normal-

ized to the control.

Quantitative RT-PCR Assay

Details for the quantitative RT-PCR assay are given in the Supplemental

Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.chembiol.2014.12.013.
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Rådmark, O., and Kim, S. (2003). The nuclear RNase III Drosha initiates

microRNA processing. Nature 425, 415–419.

Lee, Y., Kim,M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004).

MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–

4060.

Li, Y., Li, L., Guan, Y., Liu, X., Meng, Q., and Guo, Q. (2013). MiR-92b regulates

the cell growth, cisplatin chemosensitivity of A549 non small cell lung cancer

cell line and target PTEN. Biochem. Biophys. Res. Commun. 440, 604–610.

Ma, E., Zhou, K., Kidwell, M.A., and Doudna, J.A. (2012). Coordinated activities

of human Dicer domains in regulatory RNA processing. J. Mol. Biol. 422,

466–476.

MacRae, I.J., Zhou, K.H., Li, F., Repic, A., Brooks, A.N., Cande, W.Z., Adams,

P.D., and Doudna, J.A. (2006). Structural basis for double-stranded RNA pro-

cessing by Dicer. Science 311, 195–198.

MacRae, I.J., Zhou, K., and Doudna, J.A. (2007). Structural determinants of

RNA recognition and cleavage by Dicer. Nat. Struct. Mol. Biol. 14, 934–940.
272 Chemistry & Biology 22, 262–272, February 19, 2015 ª2015 Else
Martadinata, H., and Phan, A.T. (2013). Structure of human telomeric RNA

(TERRA): stacking of two G-quadruplex blocks in K+ solution. Biochemistry

52, 2176–2183.

Millevoi, S., Moine, H., and Vagner, S. (2012). G-quadruplexes in RNA biology.

Wiley Interdiscip. Rev. RNA 3, 495–507.

Morris, M.J., and Basu, S. (2009). An unusually stable G-quadruplex within the

50-UTR of theMT3matrixmetalloproteinasemRNA represses translation in eu-

karyotic cells. Biochemistry 48, 5313–5319.

Morris, M.J., Negishi, Y., Pazsint, C., Schonhoft, J.D., and Basu, S. (2010). An

RNA G-quadruplex is essential for cap-independent translation initiation in

human VEGF IRES. J. Am. Chem. Soc. 132, 17831–17839.

Nass, D., Rosenwald, S., Meiri, E., Gilad, S., Tabibian-Keissar, H., Schlosberg,

A., Kuker, H., Sion-Vardy, N., Tobar, A., Kharenko, O., et al. (2009). MiR-92b

and miR-9/9*are specifically expressed in brain primary tumors and can be

used to differentiate primary from metastatic brain tumors. Brain Pathol. 19,

375–383.

Neidle, S., and Balasubramanian, S. (2006). Quadruplex Nucleic Acids.

(Cambridge: Royal Society of Chemistry).

Neilsen, C.T., Goodall, G.J., and Bracken, C.P. (2012). IsomiRs–the over-

looked repertoire in the dynamic microRNAome. Trends Genet. 28, 544–549.

Park, J.E., Heo, I., Tian, Y., Simanshu, D.K., Chang, H., Jee, D., Patel, D.J., and

Kim, V.N. (2011). Dicer recognizes the 50 end of RNA for efficient and accurate

processing. Nature 475, 201–205.

Peattie, D.A. (1979). Direct chemical method for sequencing RNA. Proc. Natl.

Acad. Sci. USA 76, 1760–1764.

Ruby, J.G., Jan, C.H., and Bartel, D.P. (2007). Intronic microRNA precursors

that bypass Drosha processing. Nature 448, 83–86.

Sand, M. (2014). The pathway of miRNA maturation. In miRNA Maturation, C.

Arenz, ed. (New York: Springer), pp. 3–10.

Sengupta, S., Nie, J., Wagner, R.J., Yang, C., Stewart, R., and Thomson, J.A.

(2009). MicroRNA 92b controls the G1/S checkpoint gene p57 in human em-

bryonic stem cells. Stem Cells 27, 1524–1528.

Starega-Roslan, J., Krol, J., Koscianska, E., Kozlowski, P., Szlachcic, W.J.,

Sobczak, K., and Krzyzosiak, W.J. (2011). Structural basis of microRNA length

variety. Nucleic Acids Res. 39, 257–268.

Sundquist, W.I., and Heaphy, S. (1993). Evidence for interstrand quadruplex

formation in the dimerization of human immunodeficiency virus-1 genomic

RNA. Proc. Natl. Acad. Sci. USA 90, 3393–3397.

Winter, J., and Diederichs, S. (2011). MicroRNA biogenesis and cancer. In

MicroRNA and Cancer, W. Wu, ed. (New York: Springer), pp. 3–22.

Winter, J., Jung, S., Keller, S., Gregory, R.I., and Diederichs, S. (2009). Many

roads to maturity: microRNA biogenesis pathways and their regulation. Nat.

Cell Biol. 11, 228–234.

Wu, Z.B., Cai, L., Lin, S.J., Lu, J.L., Yao, Y., and Zhou, L.F. (2013). ThemiR-92b

functions as a potential oncogene by targeting on Smad3 in glioblastomas.

Brain Res. 1529, 16–25.

Zhang, A.Y., Bugaut, A., and Balasubramanian, S. (2011). A sequence-inde-

pendent analysis of the loop length dependence of intramolecular RNA

G-quadruplex stability and topology. Biochemistry 50, 7251–7258.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization

prediction. Nucleic Acids Res. 31, 3406–3415.
vier Ltd All rights reserved


	A Potassium Ion-Dependent RNA Structural Switch Regulates Human Pre-miRNA 92b Maturation
	Introduction
	Results
	In Silico Analysis Identified a Large Number of Putative GQ Sequences in Pre-miRNAs
	Human Pre-miRNA 92b Contains a Conserved Putative GQ Forming Region
	Formation of GQ Structure Unwinds the Canonical miRNA 92b Stem Loop
	In the Presence of K+ Pre-miRNA 92b Coexists as the Canonical Stem-loop and GQ Structures
	Chemical and Enzymatic Structure Mapping Confirmed the Switch to a GQ Structure
	GQ Structure Formation Inhibits Dicer-Mediated Maturation of Pre-miRNA 92b In Vitro
	GQ Structure Formation Inhibits In Vivo Maturation of Pre-miRNA 92b Resulting in Repression of Target Gene Knockdown
	The Stem-Loop Structure Can Switch to the GQ Structure under Cellular Salt Conditions

	Discussion
	Significance
	Experimental Procedures
	General Methods
	Plasmids, Restriction Digestion, and Site-Directed Mutagenesis
	RNA Preparation and 5′ End Labeling of the Purified RNA
	RNase T1 Structure Mapping
	Dimethyl Sulfate Structure Mapping
	Gel Mobility Shift Assay
	CD Melting Studies
	Internal Labeling of RNA and In Vitro Dicer Assay
	Cell Culture and Cotransfection
	Dual-Glo Luciferase Assay
	Quantitative RT-PCR Assay

	Supplemental Information
	Acknowledgments
	References




