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We compute the weak∗-dentability index of the spaces C(K ) where K is a countable
compact space. Namely Dz(C([0,ωωα ])) = ω1+α+1, whenever 0 � α < ω1. More generally,
Dz(C(K )) = ω1+α+1 if K is a scattered compact whose height η(K ) satisfies ωα <

η(K ) � ωα+1 with an α countable.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The Szlenk index has been introduced in [20] in order to show that there is no universal space for the class of separable
reflexive Banach spaces. The general idea of assigning an isomorphically invariant ordinal index to a class of Banach spaces
proved to be extremely fruitful in many situations. We refer to [16] for a survey with references. In the present note we
will give an alternative geometrical description of the Szlenk index (equivalent to the original definition whenever X is
a separable Banach space not containing any isomorphic copy of �1 [12]), which stresses its close relation to the weak∗-
dentability index. The later index proved to be very useful in renorming theory [12–14].

Let us proceed by giving the precise definitions. Consider a real Banach space X and K a weak∗-compact subset of X∗ .
For ε > 0 we let V be the set of all relatively weak∗-open subsets V of K such that the norm diameter of V is less than ε

and sε K = K \ ⋃{V : V ∈ V }. Then we define inductively sαε K for any ordinal α by sα+1
ε K = sε(sαε K ) and sαε K = ⋂

β<αsβ
ε K

if α is a limit ordinal. We denote by B X∗ the closed unit ball of X∗ . We then define Sz(X, ε) to be the least ordinal α
so that sαε B X∗ = ∅, if such an ordinal exists. Otherwise we write Sz(X, ε) = ∞. The Szlenk index of X is finally defined
by Sz(X) = supε>0 Sz(X, ε). Next, we introduce the notion of weak∗-dentability index. Denote H(x, t) = {x∗ ∈ K , x∗(x) > t},
where x ∈ X and t ∈ R. Let K be again a weak∗-compact. We introduce a weak∗-slice of K to be any non-empty set of
the form H(x, t) ∩ K where x ∈ X and t ∈ R. Then we denote by S the set of all weak∗-slices of K of norm diameter less
than ε and dε K = K \ ⋃{S: S ∈ S}. From this derivation, we define inductively dα

ε K for any ordinal α by dα+1
ε K = sε(dα

ε K )

and dα
ε K = ⋂

β<αsβ
ε K if α is a limit ordinal. We then define Dz(X, ε) to be the least ordinal α so that dα

ε B X∗ = ∅, if such
an ordinal exists. Otherwise we write Dz(X, ε) = ∞. The weak∗-dentability index is defined by Dz(X) = supε>0 Dz(X, ε).

Let us now recall that it follows from the classical theory of Asplund spaces (see for instance [10,9,6] and references
therein) that for a Banach space X , each of the following conditions: Dz(X) �= ∞ and Sz(X) �= ∞ is equivalent to X being
an Asplund space. In particular, if X is a separable Banach space, each of the conditions Dz(X) < ω1 and Sz(X) < ω1 is

✩ Supported by grants: Institutional Research Plan AV0Z10190503, A100190801, GA ČR 201/07/0394.
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equivalent to the separability of X∗ . In other words, both of these indices measure “quantitatively” the “Asplundness” of the
space in question. Moreover, these indices are invariant under isomorphism.

It is immediate from the definition, that Dz(X) � Sz(X) for every Banach space X . Relying on tools from descriptive set
theory, Bossard (for the separable case, see [4,5]) and the second named author [14], proved non-constructively that there
exists a universal function ψ :ω1 → ω1, such that if X is an Asplund space with Sz(X) < ω1, then Dz(X) � ψ(Sz(X)).

Recently, Raja [17] has obtained a concrete example of such a ψ , by showing that Dz(X) � ωSz(X) for every Asplund
space. This is a very satisfactory result, but it is not optimal, as we know from [8] that the optimal value ψ(ω) = ω2.
Further progress in this area depends on the exact knowledge of indices for concrete spaces. The Szlenk index has been
precisely calculated for several classes of spaces, most notably for the class of C([0,α]), α countable (Samuel [19], see
also [8]). We have Sz(C([0,ωωα ])) = ωα+1, so it follows from the Bessaga–Pełczyński [3] Theorem 1 below, that the value
of the Szlenk index characterizes the isomorphism class [10]. Computations of the Szlenk index for other spaces may be
found e.g. in [2,1,11]. On the other hand, the precise value of the weak∗-dentability index is known only for superreflexive
Banach spaces, where Dz(X) = ω [13,10], and for spaces with an equivalent UKK∗ renorming [8]. For a detailed background
information on the Szlenk and dentability indices we refer the reader to [10,15,16,18] and references therein.

The main result of our note, Theorem 2, is a precise evaluation of the w∗-dentability index for the class of C([0,α]),
α countable. These spaces have been classified isomorphically by C. Bessaga and A. Pełczyński [3] in the following way.

Theorem 1 (Bessaga–Pełczyński). Let ω � α � β < ω1 . Then C([0,α]) is isomorphic to C([0, β]) if and only if β < αω . Moreover, for
every countable compact space K there exists a unique α < ω1 such that C(K ) is isomorphic to C([0,ωωα ]).

It is also well known and easy to show that for α � ω, C([0,α]) is isomorphic to C0([0,α]) where C0([0,α]) = { f ∈
C([0,α]): f (α) = 0}. The aim of this note is to prove the next theorem. Note, as a particular consequence, that the weak∗-
dentability index gives a complete isomorphic characterization of a C(K ) space, when K is a metrizable compact space
(similarly to the case of the Szlenk index).

Theorem 2. Let 0 � α < ω1 . Then Dz(C([0,ωωα ])) = ω1+α+1 .

Proof. We start by proving the upper estimate

Dz
(
C
([

0,ωωα ]))
� ω1+α+1. (1)

The method of the proof is similar to [8], where a short and direct computation of the Szlenk index of the spaces
C([0,α]) is presented. The next lemma is a variant of Lemma 2.2 from [8]. We omit the proof which requires only minor
notational changes.

Lemma 3. Let X be a Banach space and α an ordinal. Assume that

∀ε > 0 ∃δ(ε) > 0 dα
ε (B X∗ ) ⊂ (

1 − δ(ε)
)

B X∗ .

Then

Dz(X) � α · ω.

We shall also use the following lemma that can be found in [15].

Lemma 4. Let X be a Banach space and L2(X) be the Bochner space L2([0,1], X). Then

Dz(X) � Sz
(
L2(X)

)
.

Thus, in order to obtain the desired upper bound we only need to prove the following.

Proposition 5. Let 0 � α < ω1 . Then Sz(L2(C([0,ωωα ]))) � ω1+α+1 .

Proof. For a fixed α < ω1 and γ < ωωα
, let us put Z = L2(�1([0,ωωα

))), together with the weak∗-topology induced by
L2(C0([0,ωωα ])) and Zγ = L2(�1([0, γ ])) with the weak∗-topology induced by L2(C([0, γ ])). We recall that for a Banach
space X with separable dual, L2(X∗) is canonically isometric to (L2(X))∗ .

Let Pγ be the canonical projection from �1([0,ωωα
)) onto �1([0, γ ]). Then, for f ∈ Z and t ∈ [0,1], we define (Πγ f )(t) =

Pγ ( f (t)). Clearly, Πγ is a norm one projection from Z onto Zγ (viewed as a subspace of Z ). We also have that for any
f ∈ Z , ‖Πγ f − f ‖ tends to 0 as γ tends to ωωα

.
The next lemma is a variant of Lemma 3.3 in [8].

Lemma 6. Let α < ω1 , γ < ωωα
, β < ω1 and ε > 0. If z ∈ sβ

(B Z ) and ‖Πγ z‖2 > 1 − ε2 , then Πγ z ∈ sβ
ε (B Zγ ).
3ε
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Proof. We will proceed by transfinite induction in β . The cases β = 0 and β a limit ordinal are clear. Next, we assume that
β = μ+1 and the statement has been proved for all ordinals less than or equal to μ. Consider f ∈ B Z with ‖Πγ f ‖2 > 1−ε2

and Πγ f /∈ sβ
ε (B Zγ ). Assuming f /∈ sμ3ε(B Z ) ⊃ sβ

3ε(B Z ) finishes the proof, so we may suppose that f ∈ sμ3ε(B Z ). By the

inductive hypothesis, Πγ f ∈ sμε (B Zγ ). Thus there exists a weak∗-neighborhood V of f such that the diameter of V ∩sμε (B Zγ )

is less than ε. We may assume that V can be written V = ⋂k
i=1 H(ϕi,ai), where ai ∈ R and ϕi ∈ L2(C([0, γ ])). We may also

assume, using Hahn–Banach theorem, that V ∩ (1 − ε2)1/2 B Zγ = ∅.

Define Φi ∈ L2(C0([0,ωωα ])) by Φi(t)(σ ) = ϕi(t)(σ ) if σ � γ and Φi(t)(σ ) = 0 otherwise. Then define W =⋂k
i=1 H(Φi,ai). Note that for f in Z , f ∈ W if and only if Πγ f ∈ V . In particular W is a weak∗-neighborhood of f . Con-

sider now g, g′ ∈ W ∩ sμ3ε(B Z ). Then Πγ g and Πγ g′ belong to V and therefore they have norms greater than (1 − ε2)1/2.
It follows from the induction hypothesis that Πγ g,Πγ g′ ∈ sμε (B Zγ ) thus ‖Πγ g − Πγ g′‖ � ε. Since ‖Πγ g‖2 > 1 − ε2 and
‖g‖ � 1, we also have ‖g − Πγ g‖ < ε. The same is true for g′ and therefore ‖g − g′‖ < 3ε. This finishes the proof of the
lemma. �

We are now in position to prove Proposition 5. For that purpose it is enough to show that for all α < ω1:

∀γ < ωωα ∀ε > 0 sω
1+α

ε (B Zγ ) = ∅. (2)

We will prove this by transfinite induction on α < ω1.
For α = 0, γ is finite and the space Zγ is isomorphic to L2 and therefore sωε (B Zγ ) is empty. So (2) is true for α = 0.

Assume that (2) holds for α < ω1. Let Z = L2(C0([0,ωωα ])). It follows from Lemma 6 and the fact that for all f ∈ Z
‖Πγ f − f ‖ tends to 0 as γ tends to ωωα

, that

∀ε > 0 sω
1+α

ε (B Z ) ⊂ (
1 − ε2)1/2

B Z .

From this and Lemma 3 it follows that

∀ε > 0 sω
1+α+1

ε (B Z ) = ∅.

By Theorem 1 we know that the spaces C([0, γ ]), C([0,ωωα ]), and also C0([0,ωωα ]) are isomorphic, whenever ωωα �
γ < ωωα+1

. Thus sω
1+α+1

ε (B Zγ ) = ∅ for any ε > 0 and γ < ωωα+1
, i.e. (2) holds for α + 1.

Finally, the induction is clear for limit ordinals. �
In the rest of the note, we will focus on proving the converse inequality. Note that it suffices to deal with the spaces

C([0,ωωα ]) where α < ω. Indeed, in case α � ω, our inequality (1) implies that

Dz
(
C
([

0,ωωα ])) = Sz
(
C
([

0,ωωα ])) = ωα+1.

Proposition 7. Let X, Z be Banach spaces and let Y ⊂ X∗ be a closed subspace. Let there be T ∈ B(X, Z) such that T ∗ is an isometric
isomorphism from Z∗ onto Y . Let ε > 0, α be an ordinal such that B X∗ ∩ Y ⊂ dα

ε (B X∗), and z ∈ Z∗ . If z ∈ dβ
ε (B Z∗ ), then T ∗z ∈

dα+β
ε (B X∗).

Proof. By induction with respect to β . The cases when β = 0 or β is a limit ordinal are clear. Let β = μ + 1 and suppose
that T ∗z /∈ dα+β

ε (B X∗ ). If z /∈ dμ
ε (B Z∗ ), then the proof is finished. So we proceed assuming that z ∈ dμ

ε (B Z∗), which by the
inductive hypothesis implies that T ∗z ∈ dα+μ

ε (B X∗). There exist x ∈ X , t > 0, such that T ∗z ∈ H(x, t) ∩ dα+μ
ε (B X∗) = S and

diam S < ε. Consider the slice S ′ = H(T x, t) ∩ dμ
ε (B Z∗ ). We have 〈T x, z〉 = 〈x, T ∗z〉, so z ∈ S ′ . Also, diam S ′ � diam S < ε as

T ∗ is an isometry. We conclude that z /∈ dβ
ε (B Z∗ ), which finishes the argument. �

Let us introduce a shift operator τm : �1([0,ω]) → �1([0,ω]), m ∈ N, by letting τmh(n) = h(n − m) for n � m, τmh(n) = 0
for n < m and τmh(ω) = h(ω).

Corollary 8. Let h ∈ dα
ε (B�1([0,ω])). Then τmh ∈ dα

ε (B�1([0,ω])) for every m ∈ N.

Proof. Indeed, consider the mapping T : C([0,ω]) → C([0,ω]) defined as T ((x(0), x(1), . . . , x(ω))) = (x(1), x(2), . . . , x(ω)).
Clearly, T ∗ = τ1 and the assertion for m = 1 follows by the previous proposition. For m > 1 one may use induction. �
Definition 9. Let α be an ordinal and ε > 0. We will say that a subset M of X∗ is an ε-α-obstacle for f ∈ B X∗ if

(i) dist( f , M) � ε,
(ii) for every β < α and every w∗-slice S of dβ

ε (B X∗) with f ∈ S we have S ∩ M �= ∅.
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It follows by transfinite induction that if f has an ε-α-obstacle, then f ∈ dα
ε (B X∗).

An (n, ε)-tree in a Banach space X is a finite sequence (xi)
2n+1−1
i=0 ⊂ X such that

xi = x2i + x2i+1

2
and ‖x2i − x2i+1‖ � ε

for i = 0, . . . ,2n − 1. The element x0 is called the root of the tree (xi)
2n+1−1
i=0 . Note that if (hi)

2n+1−1
i=0 ⊂ B X∗ is an (n, ε)-tree

in X∗ , then h0 ∈ dn
ε(B X∗).

Define fβ ∈ �1([0,α]), for α � β , by fβ(ξ) = 1 if ξ = β and fβ(ξ) = 0 otherwise.

Lemma 10.

fω ∈ dω
1/2(B�1([0,ω])).

Proof. In [7, Exercise 9.20] a sequence is constructed of (n,1)-trees in B�1([0,ω]) with roots

rn =
(

1

2n
, . . . ,

1

2n︸ ︷︷ ︸
2n-times

,0, . . .

)

whose elements belong to P = {h ∈ B�1([0,ω]): ‖h‖1 = 1, h(n) � 0, h(ω) = 0}. We have rn ∈ d2n
1/2(B�1([0,ω])), and

dist( fω, P ) = 2. Finally, for every h ∈ P , every x ∈ C([0,ω]) and every t ∈ R such that fω ∈ H(x, t), there exists m ∈ N

such that τmh ∈ H(x, t). Therefore the set {τmrn: (m,n) ∈ N
2} is a 1

2 -ω-obstacle for fω . Thus fω ∈ dω
1/2(B�1([0,ω])). �

Proposition 11. For every α < ω,

fωωα ∈ dω1+α

1/2 (B�1([0,ωωα ])). (3)

Proof. The case α = 0 is contained in Lemma 10. Let us suppose that we have proved the assertion (3) for all ordinals
(natural numbers, in fact) less than or equal to α. It is enough to show, for every n ∈ N, that

f(ωωα
)n ∈ dω1+αn

1/2 (B�1([0,(ωωα
)n])). (4)

Indeed, (4) implies

f(ωωα
)n ∈ dω1+αn

1/2 (B
�1([0,ωωα+1 ])).

Since f(ωωα
)n

w∗−→ f
ωωα+1 and ‖ f(ωωα

)n − f
ωωα+1 ‖ = 2, we see that { f(ωωα

)n : n ∈ N} is a 1
2 -ω1+α+1-obstacle for f

ωωα+1 . That
implies (3) for α + 1.

In order to prove (4) we will proceed by induction. The case n = 1 follows from the inductive hypothesis as indicated
above, so let us suppose that n = m + 1 and (4) holds for m.

Define the mapping T : C([0, (ωωα
)n]) → C([0,ωωα ]) by

(T x)(γ ) = x
((

ωωα )m
(1 + γ )

)
, γ � ωωα

.

A simple computation shows that the dual map T ∗ is given by

(
T ∗ g

)
(γ ) =

{
g(ξ) if γ = (ωωα

)m(1 + ξ), ξ � ωωα
,

0 otherwise.

Clearly, T ∗ is an isometric isomorphism of �1([0,ωωα ]) onto rng T ∗ . We claim that

B�1([0,(ωωα
)n]) ∩ rng T ∗ ⊂ dω1+αm

1/2 (B�1([0,(ωωα
)n])). (5)

Note that the set of extremal points of B�1([0,(ωωα
)n]) ∩ rng T ∗ satisfies

ext
(

B�1([0,(ωωα
)n]) ∩ rng T ∗) ⊂ {

fγ ,− fγ : γ = (
ωωα )m

(1 + ξ), ξ � ωωα}
.

By the inductive assumption and by symmetry, f(ωωα
)m and − f(ωωα

)m belong to dω1+αm
1/2 (B�1([0,(ωωα

)n])). It is easy to see that

more generally, fγ and − fγ belong to dω1+αm
1/2 (B�1([0,(ωωα

)n])), whenever γ = (ωωα
)m(1+ξ), ξ � ωωα

. Thus we have verified
that

ext
(

B�1([0,(ωωα
)n]) ∩ rng T ∗) ⊂ dω1+αm

1/2 (B�1([0,(ωωα
)n])),

and the claim (5) follows using the Krein–Milman theorem.
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This together with the inductive assumption (3) allows us to apply Proposition 7 (with �1([0, (ωωα
)n]) as X∗ , C([0,ωωα ])

as Z , and rng T ∗ as Y ) to get

f(ωωα
)n = T ∗ fωωα ∈ dω1+αn

1/2 (B�1([0,(ωωα
)n])). �

To finish the proof of Theorem 2, we use that for every Asplund space X , Dz(X) = ωξ for some ordinal ξ (see [15,
Proposition 3.3], [10]). Combining Proposition 11 with (1) we obtain

Dz
(
C
([

0,ωωα ])) = ω1+α+1

for α < ω. For ω � α < ω1, we use that ω1+α+1 = ωα+1 = Sz(C([0,ωωα ])) = Dz(C([0,ωωα ])), which finishes the proof. �
Our next proposition is a direct consequence of Theorem 2, Lemma 4 and Proposition 5.

Proposition 12. Let 0 � α < ω1 . Then Sz(L2(C([0,ωωα ]))) = ω1+α+1 .

Our main result can be extended to the non-separable case as follows.

Theorem 13. Let 0 � α < ω1 . Let K be a compact space whose Cantor derived sets satisfy K ωα �= ∅ and K ωα+1 = ∅. Then Dz(C(K )) =
ω1+α+1 .

Proof. The upper estimate follows from the separable determination of the weak∗-dentability index when it is countable
and from Theorem 2 (the argument is identical to the one given for the computation of Sz(C(K )) in [14]).

On the other hand, since K ωα �= ∅, we have that Sz(C(K )) � ωα+1 (see [14] or [15, Proposition 7]). Therefore there is a
separable subspace X of C(K ) such that Sz(X) � ωα+1. By considering the closed subalgebra of C(K ) generated by X , we
may as well assume that X is isometric to C(L), where L is a compact metrizable space. Since Sz(C(L)) � ωα+1, it follows
from Theorem 2 that Dz(C(L)) � ω1+α+1 and finally that Dz(C(K )) � ω1+α+1. �
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