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Let G be a group with a BN-pair and r its Dynkin diagram. Let P be a partially ordered set 

and L : P-r 2rbe a map from Pinto the induced subgraphs off. We say that the map I is transitive 

if for any a,b,ceP with a< b<c, each component of I(b) is contained in either L(a) or I(c). 

Transitive maps characterize the systems of idempotents of certain monoids having G as the 

group of units. In this paper we construct a universal transitive map, which is then used to 

describe all transitive maps. 

1. Introduction 

The discrete problem being considered in this paper, has its origins in the classifi- 

cation of the system of idempotents of certain monoids [3,4]. In [4], it is shown that 

the system of idempotents of a connected regular monoid M with zero is completely 

determined by a ‘type map’ from the finite lattice P of principal ideals of A4 into 

the power set of the Dynkin diagram of the group of units of M. In [3], the more 

general situation of monoids on groups with BN-pairs is considered. Again there is 

a type map A : P-t 2r characterizing the system of idempotents. Moreover, it is 

shown in [3] that an abstract type map I : P -+ 2r arises if and only if it is ‘transi- 

tive’. This means by definition that if a, b, c E P with a< b < c, then each connected 

component of A(b) is either contained in A(a) or contained in J(c). 

In this paper we introduce the concept of an irreducible transitive map and show 

that any transitive map is derived from an irreducible transitive map. Then we show 

that for any finite graph r, there is a universal irreducible transitive map u : U + 2r 

with IUI = lU(T)/ ~31~1 and any irreducible transitive map J. : P-t 2r can be em- 

bedded in U(T). If P is linearly ordered and 1: P-, 2r is an irreducible transitive 

map, we show that IPI ITI + 1. When r is one of the connected simply laced 

Dynkin diagrams, we determine I U(T) I. Finally we discuss some concrete examples. 

2. Main results 

Let r be any finite undirected graph. Let Irl denote the number of points in ZY 
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In general, if X is any set, then /XI denotes the cardinality of X. Let 2r denote the 

set of all induced subgraphs of r. Let P be a partially ordered set with a maximum 

element 1. A map 1 : P+ 2r with n(l) = r is transitive if a, b, c E P such that 

a < b < c, then each connected component of k(6) is either contained in A (a) or con- 

tained in A(c). Let I,Y: PI -+ 2r be another transitive map. Then we consider A and 

I,V to be the same (or isomorphic) if there is an isomorphism of partially ordered sets 

6’ : P + P, such that the diagram 

A 
P-2 l- 

8 I/ Y 

Pl 

commutes. 

Let J. : P-+ 2r be a transitive map. If Q is any partially ordered set with a maxi- 

mum element 1 and 6’ : Q + P an order preserving map with O(l) = 1, then we observe 

that A 0 8 : Q + 2r is also transitive. Keeping this observation in mind, we define the 

transitive map A : P+ 2r to be irreducible if whenever we have a commuting 

diagram 

/I 
P-2 I 

with 0 being an order preserving surjection and I+V: P, + 2r a transitive map, 

6: P-, P, is an isomorphism of partially ordered sets. It is clear that any transitive 

map on a finite partially ordered set P comes from an irreducible transitive map. 

We will show this to be true even for infinite P. 
We wish to begin by constructing a universal irreducible transitive map. For a 

fixed finite undirected graph r let 

U = U(T) = {(A, B) / A, B E 2r, A fl B = 0 and each connected 

component of A U B is either contained 

in A or contained in B}. 

For (A, B), (A', B') E U we define (A, B) I (A', B') if A c A’ and B'c B, i.e. A is 

an induced subgraph of A' and B' is an induced subgraph of B. Define the map 

u:U-+2r as 

u(A,B)=AUB forall (A,B)EU. 

Note that a finite linearly ordered set P is a chain with length 1 PI - 1. When P 
is a chain we say the map A : P--f 2r is linear. 
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Theorem 2.1. For a fixed finite undirected graph I-, the poset U = U(T) is a finite 
distributive lattice with maximum element (T, 0) E U and maximal chains of length 
2 Irl. Furthermore, the map u : U -+ 2r is an irreducible transitive map. 

Proof. Let (A, B), (A’,B’), (A”,B”) E U. It is easy to check that 

and 

(A,B)A(A:B’) = (A nA:aw), 

(A,B)V(A’,B’) = (A uA’,snB’). 

so 

and 

(A,B) A ((A’, B’) v (A”, B”)) = ((A,B) A (A’,B’)) v ((A,B) A (A”,B”)), 

(A, B) V ((A’, B’) A (A”, B”)) = ((A, B) V (A’, B’)) A ((A, B) V (A”, El”)). 

Hence U is a distributive lattice. Clearly (K 0) E U is the maximum element. 

It follows from [l, Corollary 7.141 that every maximal chain in U has the same 

length. Let {s,,s~, . . . . s,} be the set points in ZY Then clearly U contains the fol- 

lowing maximal chain of length 2 /r / : 

(0, r) 

(Here {si, . . . , Si} denotes the corresponding induced subgraph of r.) Therefore, 

every maximal chain in U must have length 2 Irl. 

Let (A’, B’) < (A, B) < (A”, B”). Then A’ c A c A” and B” c B c B’. Let C be any 

connected component of u(A, B) =A U B. Then by definition either 

CcA~A”~A”UB”=u(A:B”) or CcBcB’cA’UB’=u(A’,B’). 

Hence u : U + 2r is a transitive map. Now consider the commuting diagram 
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u 
u-2 r 

I /” 
0 I/ Y 

1/ 

P 

where P is a poset, 8 is an order preserving surjection 

Let (A,@, (A,,B,)EU, with ~(A,B)IB(A,,B,). 

(0,B)l (A,B) and 8 is order preserving, so 

8(0,~) I B(A,B) I e(A,,B,) I e(A,,o). 

and w is a transitive map. 

Since (A,,B,)I(A,,O), 

Since A n B = 0 (resp. A, fl B, = 0) and any connected component of A U B 
(resp. A, U B,) is either contained in A (resp. A,) or in B (resp. B,), and since 

w o /3 = u is transitive it follows that A c A, and B, c B. Hence (A, B) I (A ,, B,) in U. 
Therefore, 8 is an isomorphism, which proves the theorem. 0 

Theorem 2.2. Let r be a fixed finite undirected graph, P a partially ordered set and 
A : P + 2r a transitive map. For a E P, let a(a) denote the union of all connected 
components of ,l (a) contained in A (6) for all b E P with b I a. Let P(a) = I (a) \ a(a). 
Define t9 : P+ U(T) as e(a) = (a(a), P(a)). Then O is an orderpreserving map and the 
diagram 

k 
P-2 r 

commutes. In particular, if 2 is irreducible, then 8 is an isomorphism onto B(P). 

Proof. It suffices to show that B is order preserving. Let al, a2 E P, and a, 5 a2. Let 

c be any connected component of A (a,) such that CC A(b) for all b 2 al. In particu- 

lar, cCl,(a2) and ccl(b) for all bza2. Hence a(al) C_ a(az). Now let c be any con- 

nected component of ,l(a,) such that CSC a(a2). Then cg n(a,) for some a3 I a,. 
Since a3 2azzal by transitivity of A, it follows that CC n(a,). But c$Z a(al) since 

a3 L al and cg A(a,). Hence c c /l(al). Thus /3(a2) c /?(al). So (a(a,), P(al)) I 

@(a2),P(a2)) in U. q 

For a finite undirected graph r we denote the cardinality of U = U(T) by m(r). 

Our main interest is in the Dynkin diagrams E For our purposes we will restrict our- 

selves to the simply laced Dynkin diagrams. The connected simply laced Dynkin 

diagrams are: 
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0,: ~-~_..-.-~- . . . 

Es: 

Theorem 2.3. Let r be a finite undirected graph with Irl = n. 

(1) If r,,r,, . . . . r, are the connected components of r, then m(r) = m(r’,) . . . 

m(C). 
(2) m(r) 5 3”, with equality occurring when r is totally disconnected. 
(3) If T=A,, then m(r)= CkzO Kn+1)/21 p(n2’1)* 

(4) If r=D,, then m(r) = Cr$/ 2k+l(&) + 3 CE;2)‘21 2k(“G2). 
(5) If T=E,, then m(r) = 209. 
(6) If T=E,, then m(r)=499. 
(7) IfT=E*, then m(r)= 1339. 

Proof. (1) Follows from the definitions. (2) Follows from (1) by observing that if 

Iri = 1, then m(r)= 3. The rest of the theorem follows by observing from the 

definition of U(T) that 

m(r) = i 2kf(k), 
k=O 

where f (k) is the number of k-tuples of disjoint connected subgraphs of r such that 

the union of subgraphs in any k-tuple has exactly k connected components. 0 

Finally we consider the case of a linearly ordered set P. 

Theorem 2.4. Let r be a fixed finite undirected graph, P = { 1 = e. > el > .a. > ek} be 
a linearly ordered set and 2 : P -+ 2r be a transitive map. 

(1) The map I is irreducible if and only ifn(ej)#A(ej+,), i=O, l,...,k-1. 

(2) If d is irreducible, then J. extends to an irreducible transitive map 1: P, + 2r, 
where P, is a linearly ordered set containing P and /P, j = 2 IT) + 1. 

(3) If A is irreducible and I (ei) = 0 for some i = 1,2, . . . , k, then A (ej) z 0 for j z i 
and also 

A(ei)SA(ei+dS*.* $ A(+) and A(ei) 5 A(ei_i) 5 ... 5 A(eo). 

(4) If/PI =21rl+l, then thereare(lrl!)” number of irreducible transitive maps 
A:P-t2rsuch that n(e;)=O forsome iE{1,2,...,k=2lrl}. 

Proof. (1) Suppose A(ei)=L(ei+,) for some i=O, 1, . . ..k-1. Take 
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PI = {l=e,>e,>...>ei_,>ei+,>...>e,} 

and O:P-+P, as B(ei)=ei+, and e(ej)=ej for j#i. Take t+v:P,+2’as I,//=&,. 

Then B is an order preserving surjection, but not one-to-one and A. = v/ o t?. Hence 

A is not irreducible. Conversely, suppose I # A(ei+ r), i = 0, 1, . . . , k - 1. Let 

8 : P + P, be an order preserving surjection and I,V : PI + 2’ a transitive map such 

that A =I,VO 8. Suppose t9(ei)=e(ej). Then since B is order preserving we have 

e(ei) = 8(ej+ i) = *** = 8(ej_ i) = Q(ej). This implies that ei = ej. Hence 19 is one-to-one. 

So A is irreducible. 

(2) By Theorems 2.1 and 2.2 it suffices to show that for any maximal chain A 

in U the map u restricted to A is irreducible. Let (A, B), (A’, B’) E A, (A, B) z (A’, B’) 

such that (A, B) covers (A’, B’). Then A’ c A and B c B’. So (A’, B) E U and (A, B) L 

(/I’, B) L (A’, B’). Since A is a maximal chain in U, A =A’ or B = B’. Since A fl B = 0, 

A’ fl B’ = 0 (by definition) and (A, B) # (A’, B’), so u(A, B) = A U B #A’ U B’ = 

u(A’, B’). Hence by (l), u restricted to /1 is irreducible. 

(3) Suppose A.(ei) = 0 for some i = 1,2, . . . . k. Since A is irreducible, by (1) 

A(ei+i)#O and A(ei_t)#O. Hence since 1 is transitive A(ei+i) cA(ei+z) C ... c A(e,) 

and A(ei_1) c A(ei_2) c ... cA(e,). SO A(ej)#O forjfi. 

(4) This follows from (1) and (3) by observing that since A is irreducible, 

A(e;)fO unless i= Irl. 0 

3. Examples 

In this section we will restrict to the situation where I- is one of the following: 

These correspond to monoids on GL(3,F) and GL(4,F), respectively [3]. One 

monoid on GL(4, F) is M,(F), the monoid of all 4 x 4 matrices over the field F. In 

this situation 

and ei and 6, are joined by an edge if and only if 6, f3j # 6, Si. 

The standard idempotent representatives for matrices in M,(F) of different 

ranks are given by the linearly ordered set 

P=[,e,=[iiii], e*=[iiii 1 , e3= 

1000 

0000 I Ii 0000 
70. 

0000 
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The corresponding transitive map A: P-, 2r is given by 

A(e) = {BED 1 eO=Oe}, for all eEP. 

Thus 

A(Z) = r, Wt) = (0~ es>, k(e2) = {et, WY 

A(e,) = {et, O,> and A(0) = r. 
(3.1) 

Note that by Theorem 2.4, A is irreducible. The graph structure for r is 

e1 - e2 -e 3. 

The universal partially ordered set U = U(T) is 

(ub e21, 0) wll e,m w,, e,h 0) 

cva 0) (i e,h 0) (te,>, 0) 

(0, v3>) (0, uw 

(0, ie,, e3>) (0, v4, e3>) (0, u4, e2)) 

By Theorem 2.4(4) there are 36 maximal linear irreducible transitive maps 1 with 

some element mapping to the empty subgraph. The remaining ones are given by the 

following: 



202 K. C. Misra et al. 

I 
e2 + U93> 

I 
e3 ++ {h~31 

I 
e6 I--t r 

I 
e6 b+ r 

A,: i k+r &: 

I I 
el t--+ CW3> el t--+ VW21 

I I 

I 
e3 t--+ {be31 

I 
e4 t--+ (031 

I 
e5 + {e2903) 

I 
e6 b+ r 

I 
e3 ++ {hQ3) 

I 
e4 ++ U93) 

I 
e5 ++ {be3> 

I 
e6 I---+ r 
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Note that the linear irreducible transitive map A in (3.1) is not maximal. However, 

it comes from the maximal linear irreducible transitive map At. 

Next we consider the graph r= { f3,, @J corresponding to GL(3,F). The graph 
structure is given by 

4 92. 

The universal partially ordered set U = U(T) is given by 

(r, 0) 

The linear irreducible transitive maps of length 13 are: 

A,: it--r I,: 1 br 
I I 

el t- W el ++ U4> 
I I 

e2 t+ 0 e2 I--t 0 

I I 
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e2 t-+ 0 

I 
e3 F-+ r 

e2 k-+ 0 

I 
e3 + W 

A,,: 1 t--+ r 
I 

e1 I---+ (02) 

I 
e2 t--+ {@J 

11,: 1 I---+ r 
I 

el t--+ (821 

I 
e2 t--+ 0 

Note that the first 4 maps (A,, . . . . 2,) are of Iength 4 and the last 10 maps (A,, . . ..A.,) 
are of length 3 and are contained in the maximal maps A,, . . . ,A4. Also observe that 
any nonmaxima irreducible transitive map may be contained in more than one 
maximal irreducible transitive map. For example, the map ils is contained in Al 
and 2,. 

Finally consider the extended Dynkin diagram (see [2]) 

I-: /e’\ 
The universal partially ordered set U = U(T) in this case is given by: 
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Note that in this case there are exactly 36 maximal linear irreducible transitive 

maps. 
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