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ABSTRACT 

A. Bachem and W. Kern have recently extended the notion of polarity (relatively 
to an R-bilinear form) to oriented matroids [l]. We prove that the usual polarity 
properties of the face lattices of convex polytopes can be extended to the class of 
oriented matroids admitting an (oriented) polar. We give also a short proof of the 
principal result of [l] showing that there is a natural embedding of the poset of signed 
span of the cocircuits of a polar of an oriented matroid into the extension poset of this 
matroid. We remark that if M is a matroid admitting a polar, then every hyperplane 
can be intersected by every line. Oriented matroids satisfying this condition have an 
important role in oriented-matroid programming. 

1. NOTATION 

We assume the reader is familiar with the basic results of oriented 
matroid theory [3, 8, 10, 111. We specify some of the notation used in this 
paper. 

A signed set X =(X’, X-) is a finite set & = X+ U X- partitioned into 
two distinguished subsets: the set X+ of positive elements and the set X- of 
negative elements. The opposite - X of a signed set X is defined by 
( - X)’ = X- and ( - X)- = X+. For the sake of simplicity we use also the 
notation +X=X,andif Aisasubsetof& X-A=(X+-A,X--A)and 
XnA=(X+nA,X- nA), ,X=((X+-A)u(X-nA), (X- -A)u 
(X' n A)). If 3 is a family of signed sets, we denote by x .!T the set 
{ x Y: Y E % }. If X and Y are two signed sets, we say X is orthogonal to Y 
andwewriteXIYifJJnY=0 or(X+nY+)u(X-nY+)#0 and(X’n 
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Y-)U(X- nYi)#O.AnorientedmatroidM=M(E,O)onafiniteset E is 
defined by its collection 0 of signed circuits, i.e. a set B of signed subsets of 
E satisfying 

(01) X E 0 implies 3 #0 and - X E 8; if Xi, X, E 0 and 8, c 3, then 
X,=X, or X,= -X,; 

(02) (Elimination property) for all Xi, X, E 8, x E X: n Xi, y E XT - 
X; there is X,EO such that y~sa, X; c(X: UX,‘)- {x}, and X, c 
(X, UX,)- {x}. 

As usual, if M is an oriented matroid, we denote by E(M) and U(M) 
respectively the underlying set of M and the set of signed circuits of M. By 
forgetting the orientation of M we obtain a (nonoriented) matroid &_I [16]. 
The cocircuits of M (circuits of the orthogonal matroid M 1 ) can be oriented 
in a unique way such that for all signed circuits X E c” and signed cocircuits 
YEOl we have X I Y. A positive circuit X is a signed set such that 
XP = 0. If M( E, U) is an oriented matroid, we denote by ,X( Cn) the signed 
span of 0: i.e., if X is a signed set having support contained in E, then 
X E .X(U) if and only if there are oriented circuits Xi,. . . , X,, such that 
x+=x;u . . . ux;, X- =X; U ... UX,, and (XT nX;)=(X, n 
XT ) = 0, 1~ i < j < n. By the definitions, .X( 0) is the family of the signed 
sets X of support contained in E such that X I Y for all Y E U I. In this 
paper we suppose ,X( 0) ordered with the relation X < Y if X’ C Y + and 
x- c Y-. 

Let E be a finite subset of R n. The minimal linear dependencies of E 
over R constitute the signed circuits of an oriented matroid on E, denoted 
kin(E) and called the oriented matroid on E determined by linear dependen- 
cies over R. More precisely, if C_ = { e,,, . . , , eil } is a circuit of IL&(E) and 
Z:=rX je, = 0, then C = (C’, C-) with C+={ei,:hj>O}, C ={ei :Xj< 
0} is a signed circuit of kin(E) (see [3, Example 3.11). Similarly the minimal 
affine dependencies of E over R constitute the signed circuits of an oriented 
matroid on E, denoted Aff( E) is called the oriented matroid on E determined 
by uffine dependencies over R (see [3, Example 3.51). 

2. SINGLE-ELEMENT EXTENSIONS 

A single-element oriented extension of an oriented matroid M( E, 0) is an 
oriented matroid N( E U { p }, U’) of the same rank as M and such that 
N \ p = M. We start by looking at the work of Las Vergnas and refer the 
reader to [lo] for details and proofs. However, for convenience, we also use a 
terminology introduced by A. Mandel [12]. 
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DEFINITION 2.1. Let M(E, 0) be an oriented matroid. A pair (Y, 9“) of 
collections of cocircuits of M is said to be a localization in M if there is an 
oriented matroid N( E U { p }, 0’) that is a point extension of M and of the 
same rank as M such that for every signed cocircuit X of N such that 
X - { p } is also a cocircuit of M, 

(2.1.1) p 4 8 if and only if X E 9; 
(2.1.2) p E X+ if and only if X - {p} E Y. 

The theorem quoted below is an easy consequence of a remarkable 
characterization of localization due to Las Vergnas [lo]. It appears in [ 121 in 
a similar form. A variety of alternative characterizations is also given in [lo]. 

THEOREM 2.2 [lo]. A pair (Y, 9“) of collections of cocircuits of M is a 
localization of M if and only if 

(2.2.1) Y u { - X : X E Y } U 2’ is a partition of the cocircuits of M; 
(2.2.2) Y U %” satisfies the elimination property fm all modular pairs of 

cocircuits. 

REMARK 2.3. Let Aff(E) be the oriented matroid of the affine depen- 
dencies of a finite set E in R” (see [3, Example 3.51). The hyperplanes 
spanned by the elements of E divide 88” into regions bounded by the 
hyperplanes. Thus when we extend Aff(E) by adding another point p of Iw ” 

to the set E, this point p must lie on one of the existing regions of Iw” or on a 
boundary. If p’ is another point of Iw” different from p but lying in the same 
region (or boundary) as p, then the corresponding point extensions of Aff( E) 
are isomorphic, i.e., the regions and their boundaries determined by the set E 
are in bijection with the set of nonisomorphic (acyclic) point extensions, 
Aff( E U { p )), of Aff(E). Thus the fact that a point extension N of an 
oriented matroid M depends on a localization in M is an abstraction (and a 
generalization) of the requirement that the point p of Aff(E U { p}) must lie 
in a region or boundary of W n determined by E. 

Let M( E, 0) be an oriented matroid, and 3 be a collection of cocircuits 
ofMsuchthat~U{-X:XE~}isapartitionofOI.SupposeX,,X,,X, 
are three cocircuits of C% such that (E-TC,)n(E-JC,)n(E- X,) is a 
hyperplane of M (i.e. for all i, j, 1~ i < j < 3, Xi,Xj is a modular pair of 
cocircuits). Hence it is easy to derive from the definitions that one and only 
one of the two following conditions arises (we leave the proof to the reader): 
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FIG. 2 

(2.4.1) there is one (and only one) cocircuit X E {Xi, X,, X,} such that 
if Xi, and Xip are the remaining cocircuits, then X+ c Xc U X1: and 
Xi, U Xi, (see Figure 1); 

(2.4.2) For every X E {Xi, X,, X,}, if Xi,, Xip are the remaining 
cocircuits, then XP c XI: U X,: and X+ C Xi, U Xi, (see Figure 2). 

NOTATION 2.5. Let X be a collection of cocircuits of an oriented 
matroid M(E, 0) such that .T U { - X : X E J!iF } is a partition of 6’ l. Let 
P’(Z) denote the collection of signed sets on 9” satisfying the two conditions 
below: 

(2.5.1) If Y E Z(T), then Y supports three cocircuits Xi, X,, X, of ST 
and (E-?i,)n(E- &)n(E-II,) is ahyperline of M; 
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(2.5.2) Y+ = {Xi,, Xi,}, Y- = {X} if Y satisfies the assumptions of 

(2.4.1) and X is the distinguished cocircuit of I= {X,, X,, X,}, and Y+ = 
{ X,, X,, X,} in the opposite case [condition (2.4.2)]. 

Theorem 2.6 below is a variant of Theorem 2.2, which we have found 
more useful for our purpose in this work. We leave its proof to the reader. 

THEOREM 2.6. Let M(E, 0) be an oriented mutroid and 9(T) be a 
collection of signed sets satisfying the conditions (2.5.1) and (2.5.2). Let 
Y u { - X : X E Y } U 22“ be a partition of the cocircuits of M. Then the pair 
(Y, 9’) is a localization of M if and only if the signed set z& = (Sp’, A@- ), 
where .&=Y/%and J&-={-X:XE(Y-T)}, is orthogonal to all 
the signed sets of 9(T). 

As an application of Theorem 2.6, we prove a result that can be useful if 
we intend to determine all the localizations of an oriented matroid. 

For any independent set Z = { e,, , . . , e,}ofM(E,B)andpartitionZ+~Z- 
of I, the localization determined by the partition I+ u I- is the localization 
(Y,%“)of Msuchthat XEY ifandonlyif&nZ#O andif i(l,<i<n)is 
the smallest index such that e, E & then e, E X+ [e, E X- ] if ei E I+ 
[e, E ZP 1. These localizations are a slight variation of the localizations corre- 
sponding to the principal extensions described by Las Vergnas [lo]. 

Let M( E, 0) be an oriented matroid, and let 95 U { - X: X E 95 } be a 
partition of B I. Then it is clear that every localization (Y, 9) of M is 
determined by the signed vector v on 9 with components indexed by the 
elements of .S? and entries in (1, - 1,0} such that the entry of v indexed by 
X, ox, is 1, - 1, or 0 respectively if X E Y, - X E Y, or X E 9”. 

COROLLARY 2.7. Let M(E, 8) be an oriented mutroid and X U { - X: X 
E X} be a partition of 0 I. Then all the localimtions of M are determined 
canonically by two collections: 

(2.7.1) the set of the signed vectors on X corresponding to the localiza- 
tion-s of M determined by the partitions of the bases of M; 

(2.7.2) the subset of X X 9” X X, {y: Y E P’(X)}. 

The following lemma is a necessary tool in the proof of Corollary 2.7. 

LEMMA 2.8. Let M(E, 0) be an oriented mutroid, and X be a collection 
of cocircuits of M such that .F U { - X: X E X } is a partition of 0 I. 
Szqpose Y E 3’(X) and Y+ = {X,, X,, X,}. Then for every i = 1,2,3 there 
is a locakation (Yi, 0) of M such that - Xi E Yi and Yi - {Xi} c Yi. 
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ProofofLemmu2.8. Notethatif AcEand ~.?.?:={;X:XE%}, 

then Y, E Z( i X) if and only if there is Y E P(T) such that Y,f = 

{ ; X: X E Y+ } and Y{ = { ; X: X E Y- }. Otherwise (g, 9) is a localiza- 

tion of M(E, 0) if and only if ( ; ?V, ; 9) is a localization of - M. 

Consequently we can suppose that M( E, 0) is acyclic and that L = (E :‘z,) 
n (E - 3,) n (E - &) and E - 3, are faces of M( E, U). As Y is a positive 
signed set, for appropriate reorientations of M, one of two cases of Figures 3, 
4 holds. 

We treat the case of Figure 3. (The case of Figure 4 is similar.) Let 

{b r,. . . , b,._ 1} be a base of the hyperplane E - &, and b be a point in 

L 

-A + +- -+ 
x 1 X3 X2 

FIG. 4 
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(E - 8s) - L. Let (Y’, 0) [(g”, 0)] be the localization of M determined by 
Bf= {b,,...,b,_,, b, = b} [B+ = {b}, BP = {b, ,..., b,_,}]. It is clear that 
Xi, X,, - X, E g’ [Xi, X,, - X, E ,“I. By taking X, or X, instead of X, 
we can obtain the localizations in the conditions of the lemma. n 

Proof of Corollay 2.7. Suppose Y E y(a), and let YP = {Xi}, Y+ = 
{X,, X,}. Consider the family %‘= { 35 - { X,})U { - Xi}. The positive 
signed set Y,, Y: = { - Xi, X,, X3}, is a signed set of 2(X’). By Lemma 
2.8 there are three localizations (gi,, 0), (gs, la), and (gs, 0) of M such that 
{Xi, X,, X3> c gi, { - Xi, - X,, X3} c %,, and { - Xi, X,, - X3> c %. 
But then if Ya is a signed set such that lo = {Xi, X,, X,} and if Y. I Yi, Ya 
I Ys, and also Y, I Ys, then we must have either Yi = { X, }, Yz = 
{X,, X,} or Y,+ = (Xi}, Y,- = {X,, X3>. 

The case where Y E .3(F) and Y is a positive signed set is similar. Hence 
Corollary 2.7 is a clear consequence of Theorem 2.6 and Lemma 2.8. n 

COROLLARY 2.9. Let M(E, 0) be an oriented matroid. Suppose that 
(Yl, 22“,) and (Y2, T2) are Zocalizutions of M. Then (Yl u (Y2 n ZTl), 2Tl n 
T2) is also a localization of M. 

Proof. Let ZZ be a collection of cocircuits of M such that X U { - Y: Y 
EX}isapa1?itionof8~. Let &‘i=(&‘:,.$)[&s=(&~,&~)]besuch 
that .a?~=9~nX, d;=2’l-X [.Jz?~=~~~X, d;=2’-X]. The 
signed sets ~4, and &‘s are orthogonal to P(X) by Theorem 2.6. Then the 
composition of the signed sets .&, and SQZ [i.e. the signed set &,, such that 
,pp:2 = s?: u (s/z - gfl) and ~2912 = ~4; u (d; - &)I is also orthogonal to 
A?( a), and Corollary 2.9 follows. n 

REMARK 2.10. Corollary 2.9 has an interesting geometrical interpretation 
when the oriented point extensions M,(E U { p, }, O,), M,(E U { pz}, 0,) 
determined respectively by the two different localizations (Yi, 3”-,) and 
(Ya, 3s) are compatible: i.e., when there is an oriented matroid M&E U 
{p,,p,},012) such that M,,\p,=M, and M,,\p,=M,. Let I= 
{ p,, p, }, and let (Y, %“) be the localization of M,, determined by the 
partition Z = Ii u I-, Zi = 1. Let M’(E U { p,, p,, p3}, 0’) be the single- 
element extension of M,, determined by the localization (Y, 3): i.e., the 
new point p, is placed in the segment [ p 1, p,] in the neighborhood of p 1. 
The restriction of Mi2 to the set E U { p3} is a point extension of M. The 
localization (Yi U ( Y2 n %“1), 2T2”, n 2JT2) is exactly the localization determined 
by this point extension. 
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3. POLARITY AND ORIENTED MATROIDS 

The notion of adjoint of a geometric lattice presented in Definition 3.1 
above is only apparently more general then that of Crap0 [7]. Indeed, the 
function ‘p here defined-can be extended to a one-to-one order-reversing 
function betwen L and L (see [l, Proposition 2.11 or [2, Lemma 5.11). For 
additional information concerning the notion of adjoint, see [4] and [14, 
Proposition 3.51. 

DEFINITION 3.1. Let L and J? be two geometric lattices of same rank. 
We say .6 is an adjoint of L if there is an injective function ‘p mapping the 
points (atoms) of L on the copoints of t and the copoints of L onto the 
points of L in such a way that if p is a point and H a copoint of L, then 
p < H if and only if ‘p(H) < cp( p). Similarly, given two matroids M and hi of 
the same rank, we call A an adjoint of M if the lattice of flats of hi is an 
adjoint of the lattice of flats of M. 

EXAMPLE 3.2. Let V be a real vector space of finite dimension, E a 
finite set of V, and ILin( E) the (oriented) matroid of linear dependencies of E 
over Iw . We suppose that E spans V. Let Q : V X V + Iw be a nondegenerate 
R-bilinear form. For every hyperplane Hi (1~ i < m) of V spanned by 
elements of E, let hi be a nonnull vector such that for every x E H,, 
~(hi,x)=O.ThenthematroidILin({h,,...,h,,})isanadjointofILin(E). 

First note that the matroids kin(E) and M = ILin({ h,, . . . , h,,, }) have the 
same rank. Indeed, let B = {e,, . . . , e,} be a base of kin(E), and R’= 

{ h;, . . . > hi } be the vectors of {h,, . . . , h,,, } such that for every 1 < i, j G r, 
@(ei, h;) # 0 if and only if i = j. Then it is clear that B’ is an independent 
set, and as E spans V, B’ is necessarily a base of M. On the other hand, for 
everyeEE, e*={h,:l<i<m, Q(e,hi)=O} isaflatof M because Cp is 
an R-bilinear form. We can suppose always that e E B. But then there are 
r - 1 vectors of B’ in the flat e I, and e 1 is a hyperplane of M. This proves 
what we wanted. 

The following extension of the notion of adjoint to oriented matroids is 
equivalent to the one introduced recently in [l]. These authors use the term 
“adjoint of an oriented matroid.” But definition 3.3 below is a clear general- 
ization of the notion of “polar relative to a positive definite R-bilinear form.” 
For this reason we prefer to use the term “polar” instead of “adjoint.” 

Let @:ExI?+{O,~, -l}, and for every Z E E” [e E E] let Qz [@(,I be 
the function Oz:E+{O,l, -l}, e-,@(e,g) [@~:_!+{O,l, -l}, Z--+ 



POLARITY IN ORIENTED MATROIDS 23 

@(e, e”)]. In the sequel we identify the support of Qz [@J, denoted supp(@;) 
[supp(Q,,)], with the signed set 

({e:eEE,@,-(e)=l}+,{e:eEE,Q&e)= -I}-) 

[({a-8, @,(z)=l}+, {a:&E, @&)= -I} -)I. 

DEFINITION 3.3. Let M(E, 0) and A@?,, 8) be two simple oriented 
matroids of the same rank. Suppose there is a function @ : E X _@ + { 0, 1, - l} 
satisfying the following two conditions: 

(3.3.1) for every Z E E the signed set supp(@,) is a signed cocircuit of M 
and for every signed cocircuit Y of M there is one and only one element 
e’ E J? such that supp(Q’,-) = Y or supp(@,,) = - Y; 

(3.3.2) for every e E E the signed set supp(cP,) is a signed cocircuit of A? 
and for every signed cocircuit y of A? there is at most one element e E E 
such that supp( Qe) = Y or supp( Qe) = - Y. 

We say that (a, Ca), or briefly A?, is a polar of M (relative to the function a). 

Suppose that (a, @) is a polar of M. Let ‘p be the function mapping set 
of points and hyperplanes of M on the set of points and hyperplanes of i@ 
such that if p [H] is a point of M [hyperplane] then ‘p(p) = p ’ = { Z: Z E i, 
‘D(p, ~5) = 0} [q(H) = H * = { 5: e” E E; for every e E H, @(e, Z) = O}]. It is 
clear that the function ‘p verifies the conditions of Definition 3.1 and hence 
fi is an adjoint of M. We observe that the function ‘p: L(M) + L&I), such 
that for every flat F of hJ, @(F)=Fl = {~?:a~l?, Q(Z,e)=O for every 
e E F }, is a one-to-one order-reversing function. The VQmos matroid is 
orientable (see [3, Example 3.10]), but it has no adjoint [4]. It follows that 
there are oriented matroids which do not admit a polar. 

EXAMPLE 3.4. Under the conditions of Example 3.2, suppose that @ is a 
positive definite R-bilinear form. Then I_in({ h,, . . . , h,, }) is a polar of ILin(E) 
relative to the function Q’:Ex{h,,...,h,} + {O,l, -l}, where @‘(e,h,) 
= 0 if O(e, hi) = 0 and @‘(e, hi) = 1 [@‘(e, hi) = - 11 if @(e, hi) > 0 

[Q(e, hi) < 01. To prove this, note that the vector space V endowed with the 
form @ is a Euclidean space. Hence by [3, Proposition 3.11, for every hi, 
16 i 6 m, the signed set X = (X’, X- ), where X+ = {e: e E E, Q(e, hi) > 0} 
and X- = {e: e E E, @(e, hi) < 0}, is equal to one of the two opposite 
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cocircuits Y, - Y of I-in(E) such that I= E - {e: e E E, @(e, hi) = O}. Thus 
the condition (3.3.1) is true. The proof of the condition (3.3.2) is similar. 

EXAMPLE 3.5. Every (simple) rank-three oriented matroid has a polar. 
This result has been proved, by means of an equivalent language, in [B, 
Theo&me 3.61. 

The transformations most naturally associated with polar sets (in [w “) are 
projective (see [15, 52.2, Theorem 141). As we have proved in [6], the 
projective transformations correspond in the oriented-matroid theory to the 
sign-reversal operations. A consequence of this remark is: 

PROPOSITION 3.6. Let M( E”, 2) he u polar of the oriented matroid 
M( E, 0). Then for every A c E' and B c E the oriented matroid - 6i is a 

‘1 
polar of ; M. 

Proof, Suppose that G is a polar of M relative to the function @. Then 
- h”l is a polar of - M relative to the function 
A R 

-iP:Exl?-t {OJ, -l}, 
RXA 

where 

and E( e, e’) is equal to -1ife”~Aore~Bandequaltolife”~CAand 
e @ B. w 

The following proposition was suggested to the author by A. Mandel [ 131. 
It is implicit in [l]. 

PROPOSITION 3.7. Let a be a polar of the oriented mutroid M. Suppose 
N is the simplification of a minor of M. Then there is a polar G of N such 
that I? is a restriction of a. 

The proposition is an immediate consequence of the two lemmas below. 

LEMMA 3.8. Suppose that (M( I?, <), Q) is a polar of M( E, S), and let e 
be a point of M. Define e i = { ~7: e” E: E, @(e, e”) = 0). Then the restriction of 
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M to the set e 1 is a polar of the simple oriented matroid M/e obtained from 
M/e by the identification of parallel elements. 

Proof. For every point fi of M/e (i.e. element of M/e), let p be an 
element of E - { e } such that PM’ = - 

-- 
p, where M’=M/e. Let Q’: E(M/e) x e ’ 

+ (0, 1, - l} be the map-such that for every (p, 5) E E X e I, @‘( j7, ~7) = 
@(p, g). We prove that (M(e ’ ), a’) is a polar of M/e. First note that the 
map a’ is well defined. Indeed, suppose that the elements e, and es are 
parallel elements of M/e. Then there is a circuit X of M such that 
5 = { e, e,, es}. For every Z E e ‘, if Y is the signed cocircuit supp(@& then 
ynz = {e,, es}, and by the orthogonality property sgr(er)sg,(ea) = 
- sgx(el)sgx(ez), i.e., there is EE { 1, - 1) such that @(e,, e’) = @es, a) 
for every ZE el. 

We prove (3.3.1). By the definitions, for every Z E e I, supp(ip,) is a 
signed cocircuit of M/e [i.e., is a cocircuit of M such that e @ supp(Qz)], and 
hence supp(@i) is a signed cocircuit of M/e. Conversely, let Y be a cocircuit 
of M such that e 4 y. Then as (i@, a) is a polar of M, there are e” E l? and 
eE{+, -> such that supp(ap,) = EY and cP(e, Z) = 0 (i.e. d E e 1 ). But in 
this case, if y is the corresponding signed cocircuit of M/e, we have also 
supp( qJ) = EY. 

Now we prove (3.3.2). For every p E E, p + e, supp( Qp) n e i is a signed 
cocircuit of M( e ’ ). Indeed, by the definitions, p ’ and e ’ are hyperplanes 
of 5, and as fi is an adjoint of M, p ’ n e * is a hyperline of a. Hence for 
every point p of M/e, supp( ai) is a cocircuit of M(e”’ ). Conversely, let Y 
be a signed cocircuit of G(e ’ ), and suppose there are two elements e, and 
es of E such that supp(@,,)n e 1 = EY and supp(@J n e 1 = E’Y, where 
E, E’ E { + , - }. Then erl n e I = es’ n e ’ is a hyperline of a. But in this 
case {e,, es, e} is a circuit of M, e,, es are parallel elements of M/e, and the 
lemma follows. n 

LEMMA 3.9. Suppose that (M(E”, on>, @) is a polar of M( E, Co), and let e 
be a point of M. Suppose that e is not an isthmus of M. Let X be the set of 
h yperplanes of M which do not vanish on deleting e. Define 6 1 = { e’ : e’ E E, 
@(e’, e’) = O}. Then the restriction of M to the set E = { c?: e’ E E^, d i E A?} 
is a polar of the oriented matroid M \ e. 

Proof. First note that the restriction @<E) has the same rank as Q. 
Indeed, let ‘p: L(M) + ,?&I) be the antiisomorphism of lattices determined 
by @. Suppose that M has rank r. As e is not an isthmus, there are T 
different hyperplanes H,, H,, . . . , H,E# such that O=ni=,Hi <fITIiHi 
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< . . . -c H,. Let {e”,, &-,, . . . , ET} be the subset of _Z? such that gi’ = Hi for 
i = 1,2,..., r. As (p is an antiisomorphism of the lattices L&I) and L(@), 

{e’,&..., e;} is a base of the matroid M and hence rank(A?(E)) = r. On the 
other hand, let e, be a point of M \ e. As rank( M \ e) = rank(M), then 
there are r - 1 hyperplanes H,, H,, . . . , H,_ 1 of M \ e such that gi = f-l;: :Hi 

< n;=fHi < . . . < H,. Let {c,, &,. . . , Zrrl } be the subset of E such that 
gil = Hi for i = 1,2,. . . , r - 1. Then {d,, Ea2-. . . , Zrrl} is a base of the hyper- 
plane er’ , and eil n E is a hyperplane of M(E). Hence it is clear that G( Z?) 
is a polar of M \ e relative to the restriction of the function @ to the domain 
(E\e)xE. W 

In the following, if (k, a) is a polar of the oriented matroid M, we 
suppose that for every positive cocircuit X = (X+, X = 0 ) of M there is an 
element g E Z?(G) such that supp(@,) = X, i.e., X+ = {e: e E E, @(e, a) = 

l}. (By Proposition 3.6, this is always possible without loss of generality.) 
A. L. Cheung has proved that the adjoint of a geometric lattice is 

embeddable in its lattice of extensions (see [4]). The next important theorem, 
due to A. Bachem and W. Kern [l], makes this result more transparent. We 
give a short proof of Theorem 3.10 using the results established in Section 2 
of this paper. If M( E, 0) is an oriented matroid, we denote by 8(M) the 
poset (i.e. the partial ordered set) of all localizations of M with the relation 
(g’, 9) < (S”, 9”) if and only if GY c ?Y’. In the following we denote the 
localization (S’, 9) by %’ for short. 

THEOREM 3.10_[1]. Let M(E, 6) be a polar of M( E, U) relative to the 

function a: EXE+ {O,l, -1). Then the map $:.%‘“(&‘)+b(M), X-, 

{ f supp( @?) : e’ E X * }, deftnes an embedding of the poset .X( ~6 1 ) into the 

poset 8(M). 

The following proposition completes the information given by Theorem 
3.10. 

PROPOSITION 3.10'. In the conditions of Theorem 3.10, the localizations 

determined by a partition of an ordered independent set of M (in particular 

the principal extensions) can be identified with elements of $(.X(&l )). 

Proof. Let ?V be the localization determined by a partition I+ U ZP of 
anorderedindependentset Z={e,,ez,...,e,} of M.Let .si=+ [Ed= -]if 
e, E I’ [ei E Z-1, 16 i < n. We claim that 

(3.IO.I) ~(EISUpp(~,,)o&,SUpp(~~~)o . . . o E,SUpp(@e,,))= g> 
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where X 0 Y denotes the composite of the signed sets X, Y: i.e. (X 0 Y) * = 
X * U (Y * - (X+ U X- )). We remark that, from the definitions, we have 

(WPPk.,b ... “E,SUPP($.,)) l “cw. 

Also from the definitions we have #(~~supp(@‘,,) 0 . . . 0 ~,supp(O’,,)) = 
{ (Y jsupp( (I$-): th ere is some ei E Z such that a(& e,) # 0, and if j is the 
smallest index such that Q(e”, ej) # 0 then (Y~@(E, ej) = E~~((Y~ = _t)} = g/, and 
the proposition follows. n 

LEMMA 3.11. _under the conditions of Theorem 3.7, for every Y E 

P( { supp( Qa) : Z E E }) the signed set 

({6:supp@,)EY+}+, {d:supp(~,)~Y~} -) 

is a signed circuit of g. 

Proof of Lemma 3.11. As @ is an adjoint of M, if F is a flat of M then 
F 1 = {Z: ~7 E @&I), @(e, e’) = 0 for every e E F } is a flat of a of rank equal 
to rank(&rank( F). 

Suppose that Y E 9( { supp_(@;) : &E.@}) and y={X,,X,,X,}. Let 
e”,, I& Es be the elements of E such that supp( aa,) = Xi, 1~ i < 3. By 
hypothesis L=(E-X,)n(E-X,)n(E-3,) is a hyperline of M. Then 
L 1 is a line of c, and c?~ E L for i = 1,2,3, i.e., 4 = { c?,, &, ~7~ } is a circuit of 
B. Suppose that Y is positive. (The proof of the other possible case is 
similar.) Let X be a cocircuit of I= {X,, X,, X,} and let Xi,, Xi2 be the 
remaining cocircuits. From condition (2.5.2) we have Xi1 n Xi2 - X c (Xt: n 

X;)u(X; n X,:) (see Figure 2). In this case, if e ~s~,ns~,-JJ then 
sg,,(e) = - sg,.(e). By the definitions, if supp(ip, ) = X, supp(QC,,) = Xi,, 
and”supp(@,,J L*Xie, then (a(e, &J = 0, @(e, Ei,) =I”- Q(e, &), i.e., e”,, and 
Ei, have opposite sig_ns in the cocircuit supp( aa,), and c!$, E supp( @J. If 2 is a 
signed circuit of M, then 2 J_ supp(ip,) and sgz(Ei,) = sgz(Ei,). As this 
equality is true for alI Ei,, ~7~~ E {e’,, Ez, E?~}, the signed set ({e’,, c?~, Es} +, 0) is 
a positive circuit of M and the lemma follows. n 

Proof of Theorem 3.10. It is well known that X E .X( 0” 1 ) if and only if 
X is orthogonal to the circuits of M. Then the result follows from Lemma 
3.11 and Theorem 2.6. n 
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REMARK 3.12. Let M(E, 0) be an oriented matroid, and assume the 
existence of a polar of M. Then it results from Theorem 3.10 that for every 
hyperplane H and every line L of M there is a single-element extension 
M’( E U { p }, 0’) of M such that p““’ n EM’ = p”‘. Oriented matroids satisfy- 
ing this condition have an important role in oriented-matroid programming 

(see PI>. 

Let M be a matroid polytope (i.e. an acyclic oriented matroid). We shall 
prove that if we assume the existence of a polar 2 of M, then the 
construction of the polar cone C*, of an n-dimensional cone C in [w n, can be 
generalized in an analogous fashion for the matroid polytope M. We call a 
matroid polytope N a polar reciprocal ofM if the lattice of the faces of M is 
antiisomorphic to the lattice of faces of N. 

THEOREM 3.13. Let M be an oriented matroid, and suppose there is a 
polar ti of M. Then, for every acyclic reorientation M’ of M, there is a polar 
reciprocal of M’ canonically determined by M. 

LEMMA 3.14. Let M be an acyclic oriented matroid and (k, @) be a 
polar of M. Let I?’ = { 5: t? E E”(a), supp(ip,) is a positive cocircuit of M }. 

Then the restriction A?’ of M to the set E”’ is an acyclic rnatroid, and the 
lattice of faces of 3’ is antiisomorphic to the lattice of faces of M. 

Proof of Lemma 3.14. We prove that X = (X’, 0) is a positive cocircuit 
of a’ if and only if there is one extreme point e of M such that supp( @‘,) n 

E”’ = X. Let e be an extreme point of M. It is well known that there are r - 1 
facets of M, H,,. .., H,_I, such that {e} = fll::Hi and for every j, 1~ j < 

r - 2, niSIHi C Hi+, (see [ll]). F rom condition (3.3.1) there is a subset 

{e-r,...,E;_,} of E’ such that, for every i, l<i<r-1, (~&)‘={e:eE 
E(M), @(e, gi) = 0} = H,. Otherwise, for every flat F of M the set F I = 
{E:EEI?, @(e,e”)=O for every eEF} would be a flat of &I’. Then 
HI1 = {Zl} s(H,n H2)l s ... $(flI::Hi)l =el. This proves that el is 
a hyperplane (of rank r - 1) of M’, and hence supp(Q,) n E"' is a positive 
cocircuit of 3’. Conversely let X = (X+, 0) be a positive cocircuit of a’. 
From the definition of restriction, there is a cocircuit Y of G such that 
X = Y n l?‘. We prove that there is one extreme point e of M such that 
Y = supp( Qe). From Theorem 3.10 we know that { supp( QF) : e” E Y+ } U 
{ - supp( a;) : e” E YP } = g is a localization of M. Since if e E n{ Z+ : Z E 
g} then Y * c supp(@‘,)‘, we have to consider two possible cases: 

(i) n{z+:ZEg}={e}; 
(ii) n{z+:zEq =0. 
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Case (i): From the definitions Y * c (supp(@J) *, i.e., Y = supp(@,,). If e 
is an interior point of M, then for every f? E E”‘, @(e, 5) = 1, i.e. E”’ C Y+, and 
Y n E’ cannot be a cocircuit of tit. Then there is a facet H of M such that 
e E H. Let F = f7{ H: H facet of M, e E H }. Let e’ be an extreme point of 
the face F, and suppose e # e’. Assuming that X’ is the positive cocircuit of 
2’ such that (X’)’ = { d: e” E l?(‘, @(e’, G) = l}, we obtain the contradiction 
X’ $ (X’)+. Hence F = e. 

Case (ii): We shall prove that this case is not possible. Let M'( E U { p ), 0') 
be the point extension of M determined by the localization Y. As M is 
acyclic, one at least of the two matroids M' or ; M’ is also an acyclic 

oriented matroid (see [ 11, Lemma 3.1.11). By reasoning similar to that in case 
(i) we may conclude that if M' [ ; M'] is acyclic, then necessarily p is an 

extreme point of M' [ ; M']. Assume that p is an extreme point of M' 

[ ; M']. Hence there are two cocircuits Y, and Ys such that Yip = { p }, 

Y; =0, and p E Y; (see [ll]). But in this case Y, - { p } and Ys - { p } are 
two positive cocircuits of M, and hence there are e”,, 6s E E' such that 

suPP(%,)=Y,- {PI and supp(Q6J = Y, - { p }. As by hypothesis X = Y n 
E”’ is a positive cocircuit, it turns out by the definition of the localization Y 
that supp( @,J, supp( QZ,) E Y, which is a contradiction with our hypothesis 
that M' is a point extension determined by this localization. 

We prove that hi’ is acyclic. a’ is acyclic if and only if (tit) 1 is totally 
cyclic. Hence it results from the preceding that n;/’ is acyclic if for every 
element e” E E’ there is an extreme point e of M such that Z is in the 
cocircuit supp(@,) n E”‘, i.e. @(e, Z) = 1. But for every e’ E E”‘, supp(@+.) is a 
positive cocircuit of M and hence there is an extreme point e of M such that 
e E (supp(%)) +, i.e. @(e, Z) = 1, as expected. 

Let F(M) [ %(A?‘)] be the lattice of faces of M [tit]. We prove that 
T(M) is antiisomorphic to S(Q’). From the definitions, for all gi, ~7~ E El’, 
there is an extreme point e of M in the set (~7~) 1 - (Zi) I, i.e., @(e, &) = 1 
but @(e, Zj) = 0. In this case e ’ = { k?: e” E E’, Q(e, Z) = 0) is a facet of ar 
such that gjEel but Zi4e’. Thus E”’ is the set of points of 3’. Let ‘p be 
the function such that for every point e of the lattice S(M), q(e) is the 
copoint { 5: f? E El’, @(e, a) = 0} of the lattice F(g’), and for every copoint 
I? of F( g’), ‘p(G) is the (unique) point of F(M) such that a’( e, e”) = 0 for 
every d E l?. From the definitions we conclude that ‘p is an injective function 
mapping the points of F(M) onto the copoints of F( kil) and the copoints 
of F( h?‘) onto the points of g(M) in such a way that if e is a point and H 
a copoint of g(M), then e < H if and only if q(H) < q(e). Otherwise the 
lattices F(M) and 4t(a’) are point lattices, and every element different 
from the top element is the meeting of copoints (see [ll]). In this case it is 



30 RAUL CORDOVIL 

known that ‘p can be extended to an antiisomorphism between 9(M) and 
F( ti’) (for a proof see for example [2, Lemma 5.11). n 

Proof of Theorem 3.13. Let G be the polar of M relative to a function 

Cp. Assume that ; M = M’ is an acyclic reorientation of M. From Proposition 

3.6, Q is the polar of M’ relative to the function a’ = - @. Then Theorem 
Ax0 

3.13 is a clear consequence of Lemma 3.14. n 

To conclude we present an open question. In [5] we have proved that any 
(simple) rank-three matroid has a polar. More precisely, it is not too hard to 
derive from [5, Theo&me 3.61 that if M is a rank-three oriented matroid and 

SY is a localization of M, then there is a polar (8, @) of M and a signed set 
X~Y((&(G))l)suchthat ~={(s~pp(@~):E~X’}.Ingeneral,if Mis 
an oriented matroid admitting a polar, is a similar result true? 
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