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Abstract

Given thatB,C2, . . . , Ck are positive semidefinite (PSD)n-by-n real matrices andB is
entrywise nonnegative, we characterize (fully forn = 2 and partially forn � 3) whenB may
be written asB = ∑k

i=2 Bi so thatBi andBi − Ci are PSD andBi is entrywise nonnegative,
i = 2, . . . , k. These characterizations are used to give conditions under which an entrywise
nonnegative, PSD matrixA with a special block form can be written asA = BBT, in whichB
is entrywise nonnegative. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

An n-by-n matrix A is calledcompletely positive (CP) if it may be written as
A = BBT, in which B is n-by-m and entrywise nonnegative. Equivalently,A =∑m

i=1 bib
T
i , in which eachbi ∈ Rn is nonnegative.

More generally,A is calleddoubly nonnegative (DN) if A is positive semidefinite
and entrywise nonnegative. Of course CP matrices are DN, but the containment is
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proper forn � 5. Double nonnegativity is easily checked, but, thus far, there is no
definitive test for a matrix to be CP. The two classes coincide forn � 4 and also for
certain sparsity patterns whenn is larger.

The graphG = G(A) of then-by-n symmetric matrixA = [aij ] is the undirected
graph onn vertices in which is the edge{i, j }, i /= j , if and only if aij /= 0. All
doubly nonnegative matrices whose graph isG are completely positive if and only if
G contains no odd length cycle of length�5 [2–4,6,9]. We refer to such graphs as
NLOC.

For some further graphs, complete positivity may be checked. For example, if the
graph of a doubly nonnegative matrixA is triangle free, thenA is CP if and only
if the comparison matrixM(A) is an M-matrix (possibly singular) [5] and tests are
given for certain other graphs in [1], which overlaps prior work.

Our purpose here is to extend conditions for complete positivity by considering
doubly nonnegative matrices of the special block form

A =


A11 A12 A13 · · · A1k

A21 A22 0
A31 A33
... 0 ...

Ak1 Akk

 , (1)

which generalizes the special case (up to permutation similarity)

A =
A11 A12 0
A21 A22 A23
0 A32 A33

 . (2)

In this process, we extend the graphs for which complete positivity may be checked,
in a simple and unified way. In the case thatA11 is 2-by-2, a parallel result can be
found in [1].

We begin with a general discussion. Let
 denote the positive semidefinite par-
tial order of symmetric matrices and let|X| denote the entrywise absolute value
of a matrix X. Using Schur complements [7], a symmetric matrixA of form (1)
is positive semidefinite (PSD) if and only ifAii is PSD,i = 2, . . . , k, andA11 
∑k

i=2 A1iA
−1
ii Ai1. Here, we assume thatAii is invertible,i = 2, . . . , k, but, if not,

A−1
ii may be replaced by the Moore–Penrose generalized inverseA

†
ii .

Further,A is CP if and only ifA11 may be decomposed asA11 = ∑k
i=2 Bi in such

a way that

Ai =
[
Bi A1i
Ai1 Aii

]
(3)

is CP,i = 2, . . . , k. (This may be seen by using the rank 1 decomposition already
mentioned,A = ∑m

i=1 bib
T
i , noting that each vectorbi can have nonzero entries only

in those positions corresponding to the rows ofA occupied byA11 and some other
single blockAi1, then considering the sums of thebjb

T
j corresponding to eachAi1.)
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In order that a symmetric matrix of form (3) be CP, it must be DN, and, for
this it is necessary and sufficient thatAi be entrywise nonnegative,Aii be PSD and
Bi 
 A1iA

−1
ii Ai1. AgainA−1

ii may be replaced byA†
ii . In case the graph of eachAi

is NLOC, these conditions become necessary and sufficient for eachAi to be CP
and thus forA to be CP. We conclude that the existence of a decomposition of the
doubly nonnegative matrixA11 into a sum of doubly nonnegative matrices

∑k
i=2 Bi

in such a way thatBi 
 A1iA
−1
ii Ai1, each of which is PSD, is a central question in

CP theory. We next formalize and study this question and then apply the results to
matrices of form (1).

Suppose thatB andC2, . . . , Ck are symmetric matrices. We say thatB is decom-
posable relative toC2, . . . , Ck if B may be written asB = ∑k

i=2 Bi so thatBi 

Ci, i = 2, . . . , k; whenC2, . . . , Ck are naturally understood from the context, we
just say thatB is decomposable. It is an easy exercise thatB is decomposable if and
only if

B 

k∑

i=2

Ci. (4)

A more stringent condition that is relevant to our inquiry is the following. We say that
B is DN-decomposable relative toC2, . . . , Ck if B may be written asB = ∑k

i=2 Bi

so thatBi 
 Ci andBi is DN, i = 2, . . . , k. Condition (4) remains necessary, but is
no longer generally sufficient. Now,B must be DN (by virtue of being a sum of DN
matrices), but, even together with (4), this is not sufficient beyond the casen = 1 (as
we shall see). We are able to characterize DN-decomposability forn = 2. Forn � 3,
we give conditions and characterizations only in certain circumstances.

2. DN-decomposition in the 2-by-2 case

Theorem 1. Suppose that B,C2, . . . , Ck are 2-by-2 PSD matrices with B DN and
B 
 ∑k

i=2 Ci . Then B is DN-decomposable relative to C2, . . . , Ck if and only if
B 
 ∑k

i=2 |Ci |.

Proof. (⇒): We assume thatB may be written asB = ∑k
i=2 Bi , in whichBi 
 Ci

andBi is DN, i = 2, . . . , k. It is easy to verify that, for 2-by-2 matrices, sinceBi is
DN andCi is PSD,Bi 
 Ci impliesBi 
 |Ci |. Thus,

B =
k∑

i=2

Bi 

k∑

i=2

|Ci |.

(⇐): We assume thatB 
 ∑k
i=2 |Ci | and let

Ci =
[
ai ci
ci bi

]
, i = 2, . . . , k.
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We may assume that theci are nonzero since otherwise we could redefineB by
subtracting it from eachCi that is diagonal. By diagonal congruence, we may assume
that

B =
[

1 φ

φ 1

]
with φ � 0.

We consider several cases.
Case 1. If φ = 0, for eachi let pi = |ci | /∑k

j=2 |cj | and let

Bi =
pi

(
1 −∑k

j=2 aj

)
+ ai 0

0 pi

(
1 −∑k

j=2 bj

)
+ bi

 .

For eachi, Bi 
 Ci sinceBi − Ci has nonnegative diagonal entries and

det(Bi − Ci)=p2
i


1 −

k∑
j=2

aj

1 −
k∑

j=2

bj

−
 k∑

j=2

|cj |
2


=p2
i det

B −
k∑

j=2

|Cj |
 � 0.

Since
∑k

j=2 Bj = B andBi 
 0, matrixB is DN-decomposable relative toC2, . . . ,

Ck.

Case 2. If at least one of theci (sayc2) is such thatci � φ, then definẽB and
C̃2 by subtractingφ from the off-diagonal entries ofB andC. From case 1 it follows
that B̃ has a DN-decomposition relative tõC2, C3, . . . , Ck and hence thatB has a
DN-decomposition relative toC2, . . . , Ck.

Case 3. If ci < 0 for each i, let

pi =
(

φ

k − 1
− ci

)/φ −
k∑

j=2

cj

 , i = 2, . . . , k.

Then
∑k

i=2 pi = 1 and, for eachi, pi > 0 and

pi

φ −
k∑

j=2

cj

+ ci = φ

k − 1
� 0. (5)

For eachi, let

Bi = Ci + pi

B −
k∑

j=2

Cj

 .

EachBi is entrywise nonnegative, by (5), andB = ∑k
i=2 Bi . Moreover, for eachi,

Bi 
 Ci sinceBi − Ci has nonnegative diagonal entries and
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det(Bi − Ci) = p2
i det

(
B −

k∑
i=2

Ci

)
� 0.

ThusBi is DN for eachi and henceB is DN-decomposable relative toC2, . . . , Ck .
Case 4. If at least oneci (sayc2) is such that 0< ci < φ, then definẽB = B − C2,

yieldingB̃ 
 ∑k
i=3 Ci andB̃ 
 ∑k

i=3 |Ci |. If B̃ has a DN-decomposition relative to
C3, . . . , Ck , thenB has a DN-decomposition relative toC2, . . . , Ck . Thus, since the
theorem is trivially true whenk = 2, induction onk shows that it is true in this final
case. �

Theorem 1 cannot be extended to include 3-by-3 matrices, as shown by the fol-
lowing example.

B =
7 0 0

0 7 0
0 0 12

 , C2 =
 2 −1 −1

−1 2 −1
−1 −1 2

 , C3 =
 3 −1 −2

−1 2 −1
−2 −1 4

 ,

B2 =
3 0 0

0 3 0
0 0 3

 , B3 =
4 0 0

0 4 0
0 0 9

 .

Matrix B is DN-decomposable with respect toC2 andC3 sinceB = B2 + B3 with
B2 
 C2 andB3 
 C3, but B �
 |C2| + |C3|. ThusB 
 ∑k

i=2 |Ci | is not a neces-
sary condition for DN-decomposability whenn = 3. It will be shown below that the
condition is sufficient whenB is diagonal.

3. DN-decomposition in the n-by-n case

If B,C2, . . . , Ck aren-by-n symmetric matrices andB 
 ∑k
i=2 Ci , it is easy to

show thatB is decomposable relative toC2, . . . , Ck sinceB may be written asB =∑k
i=2 Bi , in which

Bi = Ci + 1

k − 1

(
B −

k∑
i=2

Ci

)
for i = 2, . . . , k.

Although DN-decomposability is a more stringent condition, it can be demonstrated
under certain circumstances by using the sameBi as above (or a slight generaliza-
tion).

Theorem 2. Suppose that B,C2, . . . , Ck are n-by-n PSD matrices with B DN and
B 
 ∑k

i=2 Ci . If there exist nonnegative numbers α2, . . . , αk such that
∑k

i=2 αi = 1
and Bi = Ci + αi(B −∑k

i=2 Ci) is entrywise nonnegative for i = 2, . . . , k, then
B = ∑k

i=2 Bi is a DN-decomposition of B relative to C2, . . . , Ck .
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Proof. Since bothCi andB −∑k
i=2 Ci are PSD for eachi, so isBi and henceBi is

DN for eachi. ClearlyB = ∑k
i=2 Bi andBi 
 Ci for eachi. �

Theorem 2 also follows from a more general observation: a DN matrixB is DN-
decomposable relative to the PSD matricesC2, . . . , Ck if and only if B −∑k

i=2 Ci

can be partitioned into PSD matricesX2, . . . , Xk such thatCi + Xi is DN for i =
2, . . . , k. Moreover, because eachBi is nonnegative, such a partitionX2, . . . , Xk has
the property that if anyCi has a negative entry(Ci)pq , then(Xi)pq � |(Ci)pq |.

In the following theorem, we denote byZ the set ofn-by-n matrices whose off-
diagonal entries are all�0.

Theorem 3. Suppose that B,C2, . . . , Ck are n-by-n DN matrices with B 
 ∑k
i=2 Ci

and B −∑k
i=2 Ci ∈ Z. Then B is DN-decomposable relative to C2, . . . , Ck .

Proof. We may assume thatB −∑k
i=2 Ci is irreducible since otherwise DN-de-

compositions for each of its irreducible diagonal blocks could be combined to form
a DN-decomposition forB, forming each matrixBi from Ci by replacing each diag-
onal block ofCi by a larger (
) DN matrix, generated from a DN-decomposition of
the corresponding diagonal block ofB relative to the corresponding diagonal blocks
of C2, . . . , Ck.

We also may assume thatB −∑k
i=2 Ci is singular since otherwise it could be

made singular by decreasing the diagonal elements ofB. If this newB, which satisfies
the hypotheses of the theorem, is DN-decomposable relative toC2, . . . , Ck , then it
follows easily that the originalB is also.

SinceB −∑k
i=2 Ci ∈ Z is PSD, it is an (irreducible and singular) M-matrix [8].

Hence there is a vectorx = (x1, . . . , xn)
T > 0 such that(

B −
k∑

i=2

Ci

)
x = 0. (6)

We now construct matricesB2, . . . , Bk that satisfy(Bi − Ci)x = 0 andBi − Ci ∈
Z, implying thatBi − Ci is a singular M-matrix and thus is PSD. LetB = [bij ] and
let the off-diagonal entry in rows and columnt of eachBi be given by

(Bi)st = bst
(Ci)st∑k
j=2(Cj )st

for s, t = 1, . . . , n.

In this way, the ratio(Bi)st /(Ci)st remains fixed (and�1) asi varies ands, t remain
fixed. On the diagonal of eachBi , let

(Bi)ss = (Ci)ss +
n∑

j=1,j /=s

xj

xs

{(Ci)sj − (Bi)sj }, s = 1, . . . , n

so that(Bi − Ci)x = 0 for i = 2, . . . , k. Straightforward calculation shows thatBi −
Ci ∈ Z for i = 2, . . . , k. ThusBi − Ci is a singular M-matrix and hence is PSD.
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Since eachBi is entrywise nonnegative and eachCi is PSD, eachBi is DN. The fact
thatB = ∑k

i=2 Bi follows from Eq. (6). �

4. DN-decomposition in the diagonal case

In the case thatB is a diagonal matrix andC2, . . . , Ck are nonnegative symmetric
matrices, Theorem 3 provides a characterization of exactly whenB is DN-decom-
posable relative toC2, . . . , Ck .

Corollary 4. Suppose B,C2, . . . , Ck are n-by-n entrywise nonnegative symmetric
matrices, with B diagonal. Then B 
 ∑k

i=2 Ci if and only if there exist diagonal
matrices Bi such that B = ∑k

i=2 Bi and Bi 
 Ci, for i = 2, . . . , k.

Proof. (⇐): B = ∑k
i=2 Bi 
 ∑k

i=2 Ci .
(⇒): As in the proof of Theorem 3, sinceB −∑k

i=2 Ci is PSD and in Z,B can
be written as

∑k
i=2 Bi , in which Bi is entrywise nonnegative and diagonal, with

Bi 
 Ci , for i = 2, . . . , k. �

If the hypothesis in Corollary 4 is relaxed so that the symmetric matricesC2, . . . ,

Ck are not required to be entrywise nonnegative, a sufficient condition can be found
for DN-decomposability, but first the following lemma is required.

Lemma 5. Suppose D is an n-by-n nonnegative diagonal matrix and C is an n-by-n
real symmetric matrix. If D 
 |C|, then D 
 C.

Proof. We may assumeD is a positive diagonal matrix since any zero diagonal entry
would imply that the corresponding row and column ofC have all zero entries. Since
D − |C| is PSD, so isD−1/2(D − |C|)D−1/2 and thusIn 
 D−1/2|C|D−1/2, which
equals|D−1/2CD−1/2|. Since

ρ
(
D−1/2CD−1/2

)
� ρ

(∣∣∣D−1/2CD−1/2
∣∣∣) � ρ(In) = 1,

the eigenvalues ofD−1/2CD−1/2 lie on the interval [−1,1], implying that the ei-
genvalues ofI − D−1/2CD−1/2 lie on [0,2], as do the eigenvalues ofD−1/2(In
− D−1/2CD−1/2)D1/2 = D − C. �

Theorem 6. Suppose B is an n-by-n nonnegative diagonal matrix and matrices
C2, . . . , Ck are n-by-n symmetric. If B 
 ∑k

i=2 |Ci |, then there exist nonnegative
diagonal matrices Bi such that B = ∑k

i=2 Bi and Bi 
 Ci, for i = 2, . . . , k.
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Proof. By Corollary 4, sinceB, |C2|, . . . , |Ck| are entrywise nonnegative symmet-
ric matrices, withB diagonal, there are nonnegative diagonal matricesBi such that
B = ∑k

i=2 Bi andBi − |Ci | is PSD, for eachi. Applying Lemma 5,Bi 
 Ci for
i = 2, . . . , k. �

Theorem 6 gives a sufficient condition for a diagonal matrixB to be DN-decom-
posable relative to the symmetric matricesC2, . . . , Ck. However, this condition is
not necessary, as shown by the example given after Theorem 1.

A necessary condition for a diagonal matrix to be DN-decomposable follows, in
which asignature matrix is a diagonal matrix with each diagonal entry either+1 or
−1.

Theorem 7. Suppose the diagonal matrix B is DN-decomposable relative to the
symmetric matrices C2, . . . , Ck . Then B 
 ∑k

i=2 SiCiSi for any signature matrices
S2, . . . , Sk .

Proof. There are diagonal matricesB2, . . . , Bk such thatB = ∑k
i=2 Bi andBi 
 Ci

for eachi. SinceBi = SiBiSi 
 SiCiSi for eachi, thenB 
 ∑k
i=2 SiCiSi . �

Note that ifn = 2, B is diagonal andC2, . . . , Ck are PSD, then the necessary
condition of Theorem 7 is also a sufficient condition for DN-decomposability, by
Theorem 1. However, for 3-by-3 diagonal matrices the condition is not sufficient for
DN-decomposability, as will be shown immediately after the following required (and
well-known) lemma is introduced.

Lemma 8. If A1 and A2 are n-by-n PSD matrices, then nullspace(A1 + A2) ⊂ null-
space(A1).

Consider the following PSD matrices:

C2 =
 2 −1.4 −1.1

−1.4 3.1 −1
−1.1 −1 2.1

 , C3 =
 3.2 −0.8 1

−0.8 1.7 1.2
1 1.2 1.8

 .

Let r denote the largest eigenvalue ofC1 + C2, with corresponding eigenvector
x, and letB = rI3. It is easy to verify thatB 
 S2C2S2 + S3C3S3 for any signa-
ture matricesS2 and S3. We now show thatB is not DN-decomposable relative
to C2 andC3. Suppose there are nonnegative diagonal matricesB2 andB3 such
that B = B2 + B3 with B2 
 C2 andB3 
 C3. Since(B1 + B2)x = rx = (C2 +
C3)x, x ∈ nullspace[(B2 − C2) + (B3 − C3)] and hence, by Lemma 8,x ∈ null-
space(B2 − C2) andx ∈ nullspace(B3 − C3). The diagonal matricesB2 andB3 are
uniquely determined by the equationsB2x = C2x andB3x = C3x.
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B2 ≈
3.38 0 0

0 4.54 0
0 0 4.27

 , B3 ≈
3.85 0 0

0 2.69 0
0 0 2.95

 .

However,B3 �
C3 since the eigenvalues ofB3 −C3 are (approximately) 0.00,−0.19
and 2.27. Thus, in the 3-by-3 case, the necessary condition of Theorem 7 is not
sufficient.

5. Applications to complete positivity

We now apply the above DN-decomposition theorems to the question of complete
positivity for DN matrices of form (1). Let

Mi =
[
A11 A1i
Ai1 Aii

]
for i = 2, . . . , k.

Theorem 9. Suppose A is a DN matrix of form (1), with A11 2-by-2, and G(Mi) is
NLOC for i = 2, . . . , k. Then A is CP if and only if

A11 

k∑

i=2

∣∣∣A1iA
†
iiAi1

∣∣∣ .
Proof. By Theorem 1,A11 has a DN-decomposition

∑k
i=2 Bi relative toA12A

†
22A21,

. . . , A1kA
†
kkAk1 if and only if A11 
 ∑k

i=2

∣∣∣A1iA
†
iiAi1

∣∣∣. If A11 has such a decom-

position, then, withAi defined as in (3), sinceG(Ai) is NLOC andAi is DN, Ai is
CP for eachi and henceA is CP. IfA11 has no such decomposition,A cannot be CP.

�

Theorem 10. Suppose A is a DN matrix of form (1) and G(Mi) is NLOC for i =
2, . . . , k. If there exist nonnegative numbers α2, . . . , αk such that

∑k
i=2 αi = 1 and

A1iA
†
iiAi1 + αi(A11 −∑k

i=2 A1iA
†
iiAi1) is entrywise nonnegative for i = 2, . . . , k,

then A is CP.

Proof. A11 has a DN-decomposition relative toA12A
†
22A21, . . . , A1kA

†
kkAk1 by

Theorem 2. For eachi, Ai , as defined in (3), is CP sinceG(Ai) is NLOC andAi

is DN. HenceA is CP. �

In the same way that Theorem 10 follows directly from Theorem 2, Theorems 11
and 13 below follow directly from Theorems 3 and 6, respectively.



130 J.H. Drew et al. / Linear Algebra and its Applications 327 (2001) 121–130

Theorem 11. Suppose A is a DN matrix of form (1) and G(Mi) is NLOC for i =
2, . . . , k. If the matrices A12A

†
22A21, . . . , A1kA

†
kkAk1 are entrywise nonnegative and

A11 −∑k
i=2 A1iA

†
iiAi1 ∈ Z, then A is CP.

If A11 is a diagonal matrix, the condition involvingZ in the hypothesis of Theorem
11 is automatically satisfied.

Corollary 12. Suppose A is a DN matrix of form (1),with A11 diagonal, and G(Mi)

is NLOC for i = 2, . . . , k. If the matrices A12A
†
22A21, . . . , A1kA

†
kkAk1 are entrywise

nonnegative, then A is CP.

Theorem 13. Suppose A is a DN matrix of form (1), with A11 diagonal, and G(Mi)

is NLOC for i = 2, . . . , k. If A11 
 ∑k
i=2 |A1iA

†
iiAi1|, then A is CP.

We note that Corollary 12 follows directly from Theorem 13, as well as from
Theorem 11.

Theorem 14. Suppose A is a DN matrix of form (1), with A11 diagonal. If there are
signature matrices S2, . . . , Sk such that A11 �
 ∑k

i=2 SiA1iA
†
iiAi1Si, then A is not

CP.

Proof. If A were CP, thenA11 would be DN-decomposable relative toA12A
†
22A21,

. . . , A1kA
†
kkAk1 but, by Theorem 7, such a decomposition cannot exist.�
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