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Abstract

Given thatB, Co, ..., C; are positive semidefinite (PSD)}by-n real matrices and is
entrywise nonnegative, we characterize (fully fioe 2 and partially fom > 3) whenB may
be written asB = Zf'(:z B; so thatB; andB; — C; are PSD and; is entrywise nonnegative,
i =2, ..., k. These characterizations are used to give conditions under which an entrywise
nonnegative, PSD matri& with a special block form can be written 4s= BBT, in whichB
is entrywise nonnegative. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

An n-by-n matrix A is called completely positive (CP) if it may be written as
A = BBT, in which B is n-by-m and entrywise nonnegative. Equivalently,=
" 1 bib], in which eachb; € R" is nonnegative.
More generallyA is calleddoubly nonnegative (DN) if Ais positive semidefinite
and entrywise nonnegative. Of course CP matrices are DN, but the containment is
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proper forn > 5. Double nonnegativity is easily checked, but, thus far, there is no
definitive test for a matrix to be CP. The two classes coincide far4 and also for
certain sparsity patterns whens larger.

The graphG = G(A) of then-by-n symmetric matrixA = [q;;] is the undirected
graph onn vertices in which is the edgg, j}, i # j, if and only if a;; # 0. All
doubly nonnegative matrices whose grapiare completely positive if and only if
G contains no odd length cycle of lengttb [2—4,6,9]. We refer to such graphs as
NLOC.

For some further graphs, complete positivity may be checked. For example, if the
graph of a doubly nonnegative matris triangle free, the\ is CP if and only
if the comparison matrix/ (A) is an M-matrix (possibly singular) [5] and tests are
given for certain other graphs in [1], which overlaps prior work.

Our purpose here is to extend conditions for complete positivity by considering
doubly nonnegative matrices of the special block form

[A11 A1z A1z -+ Axp
A21 A2

A=|43 Az3 , 1)
LAk1 Ak

which generalizes the special case (up to permutation similarity)

[A11 A1z O

A=|Axn A Axs|. (2)
| 0 Az Ass

In this process, we extend the graphs for which complete positivity may be checked,
in a simple and unified way. In the case th#af is 2-by-2, a parallel result can be
foundin [1].

We begin with a general discussion. Letdenote the positive semidefinite par-
tial order of symmetric matrices and IeX| denote the entrywise absolute value
of a matrix X. Using Schur complements [7], a symmetric ma#iof form (1)
is positive semidefinite (PSD) if and only #;; is PSD,i =2,...,k, andA11 >
ZizzAliAi‘ilA,-l. Here, we assume thdt; is invertible,i = 2, ..., k, but, if not,
A may be replaced by the Moore—Penrose generalized invé[se

FurtherAis CP if and only ifA11 may be decomposed dg1 = Zfzz B; insuch
a way that

B; Aq;
A=\ ! 3
' |:Ai1 An} 3
is CP,i =2,...,k. (This may be seen by using the rank 1 decomposition already

mentionedA = > ; bibiT, noting that each vect@t can have nonzero entries only
in those positions corresponding to the rowsAadccupied byA;1 and some other
single blockA;1, then considering the sums of thpbjT. corresponding to each;;.)
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In order that a symmetric matrix of form (3) be CP, it must be DN, and, for
this it is necessary and sufficient th&t be entrywise nonnegativd,; be PSD and
B; = A1;A;;*A;1. Again A1 may be replaced by .. In case the graph of each
is NLOC, these conditions become necessary and sufficient for £ath be CP
and thus forA to be CP. We conclude that the existence of a decomposition of the
doubly nonnegative matriA 1 into a sum of doubly nonnegative matricgjs’(=2 B;
in such a way thaB; > All-Alfl.lAil, each of which is PSD, is a central question in
CP theory. We next formalize and study this question and then apply the results to
matrices of form (1).

Suppose thaB andCy, . .., C, are symmetric matrices. We say tiais decom-
posable relative toCap, ..., Cy if B may be written a8 = Zf:z B; so thatB; >
Ci,i=2,...,k; whenCa, ..., C; are naturally understood from the context, we

just say thaB is decomposable. It is an easy exercise Bt decomposable if and
only if

k
B > Z Ci. (4)
i—2

A more stringent condition that is relevant to our inquiry is the following. We say that
B is DN-decomposable relative toCa, . . ., Ci if B may be written a3 = Zf;z B;
sothatB; = C; andB; is DN,i = 2, ..., k. Condition (4) remains necessary, but is
no longer generally sufficient. NowB must be DN (by virtue of being a sum of DN
matrices), but, even together with (4), this is not sufficient beyond thexast (as

we shall see). We are able to characterize DN-decomposabilityfoP. Forn > 3,

we give conditions and characterizations only in certain circumstances.

2. DN-decomposition in the 2-by-2 case

Theorem 1. Supposethat B, Co, ..., Cy are 2-by-2 PSD matrices with B DN and
B > Zfzz C;. Then B is DN-decomposable relative to Co, ..., Cy if and only if
B> Y ,|Cil.

Proof. (=): We assume thd@ may be written a3 = Zf;z B;, inwhich B; = C;

andB; isDN,i = 2, ..., k. Itis easy to verify that, for 2-by-2 matrices, sinBgis
DN andC; is PSD,B; > C; impliesB; > |C;|. Thus,

k k
B=) Bi =) |Cil.
i—2 i—2
(«<): We assume thak = Y*_, |C;| and let

o a; Ci .
C'_|:ci bi]’ i=2 ...,k
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We may assume that the are nonzero since otherwise we could redefinby
subtracting it from eachi; that is diagonal. By diagonal congruence, we may assume
that

{1 ¢ .
B_|:¢ 1] with ¢ >0

We consider several cases.
Casel. If ¢ = 0, for eachi let p; = |ci|/Z';=2 |c;| and let

Di (1— lezzaj) + a; 0
0 i (1—2’]‘.:219,-) + b

For each, B; = C; sinceB; — C; has nonnegative diagonal entries and

B; =

2

k k k
detB; — Coy=p? { | 1= a; | [1=D_b; | = | D lcjl
j=2 j=2 j=2

k
= pi2 det Z

SinceZ’;:2 B; = B andB; > 0, matrixB is DN-decomposable relative @y, .. .,
Ck.

Case 2. If at least one of the; (saycy) is such that; > ¢, then defineB and
Co by subtractings from the off-diagonal entries & andC. From case 1 it follows
that B has a DN- -decomposition relative (Q Cs3, ..., Cy and hence thaB has a
DN-decomposition relative tG, . . ., Ck.

Case 3. If ¢; < Oforeachi, let

" k

Pi=<—k_1_ci)/ ¢_ZC1 s l=2,,k

j=2
ThenY"%_, p; = 1 and, for each, p; > 0 and
Zc] +cl=L/O. (5)
k—1

For each, let

B, =C;+ pi B—ZC./'

EachB; is entrywise nonnegative, by (5), ald= Zf:z B;. Moreover, for each,
B; = C; sinceB; — C; has nonnegative diagonal entries and
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k
dei(B; — C;) = p? det(B - Z c,~> > 0.
i=2

ThusB; is DN for eachi and hencd is DN-decomposable relative oy, . . ., Ck.
Case4. If atleast one; (saycy) is suchthat O< ¢; < ¢, then defingt = B — C,
yieldingB > Y%, C; andB > Y°¥_,|C;|. If B has a DN-decomposition relative to
Cs, ..., Ct, thenB has a DN-decomposition relative €, . . ., Cx. Thus, since the
theorem is trivially true whe# = 2, induction ork shows that it is true in this final

case. O

Theorem 1 cannot be extended to include 3-by-3 matrices, as shown by the fol-
lowing example.

7 0 O 2 -1 -1 3 -1 -2
B=|0 7 0], Cr=|-1 2 -1|, C3=|-1 2 -1,
0 0 12 -1 -1 2 -2 -1 4

3 0 O 4 0 O
Bo=|0 3 0|, Bs=|0 4 0
0 0 3 0 0 9

Matrix B is DN-decomposable with respect& andC3 since B = B, + B3 with
By = Co and B3 = C3, but B # |C2| + |C3|. ThusB > Zf;z |C;| is not a neces-
sary condition for DN-decomposability when= 3. It will be shown below that the
condition is sufficient wheB is diagonal.

3. DN-decomposition in the n-by-n case

If B, C>,...,Cy aren-by-n symmetric matrices anft > Zf;z C;,itis easy to
show thatB is decomposable relative @, . . ., Cx sinceB may be written a3 =
S*_, B;, in which

k
1 Z .
Blzcl—l—m(B—ZCl) fOI’l=2,...,k.
i=

Although DN-decomposability is a more stringent condition, it can be demonstrated
under certain circumstances by using the s&@tnas above (or a slight generaliza-
tion).

Theorem 2. Supposethat B, Co, ..., Cy are n-by-n PSD matrices with B DN and
B > Y¥_, C;. If there exist nonnegative numbersay, . . ., ax suchthat 5 ,a; = 1
and B; = C; +«a; (B — Zf:z C;) is entrywise nonnegative for i = 2, ..., k, then
B = Y_*_, B; isa DN-decomposition of B relativeto Cs, . . ., Cy.
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Proof. Since bothC; andB — Zf:z C; are PSD for each so isB; and henceb; is
DN for eachi. ClearlyB = Zf:z B; andB; > C; foreachi. O

Theorem 2 also follows from a more general observation: a DN mBtisxDN-
decomposable relative to the PSD matri€gs. . ., Cy if and only if B — Zf:z C;
can be partitioned into PSD matric&s, ..., X, such thatC; + X; is DN fori =
2, ..., k. Moreover, because eadh is nonnegative, such a partitidfp, . .., Xy has
the property that if any; has a negative entiyC; ) ,q, then(X;) ,q = 1(Ci) pg .

In the following theorem, we denote &/the set ofn-by-n matrices whose off-
diagonal entries are a{{0.

Theorem 3. Supposethat B, Co, ..., Cy aren-by-n DN matriceswith B > Zf;z G
and B — Y"%_, C; € Z. Then Bis DN-decomposablerelativeto Cs, . . ., Cy.

Proof. We may assume that — Zf:z C; is irreducible since otherwise DN-de-
compositions for each of its irreducible diagonal blocks could be combined to form
a DN-decomposition foB, forming each matrixs; from C; by replacing each diag-
onal block ofC; by a larger £) DN matrix, generated from a DN-decomposition of
the corresponding diagonal block Bfrelative to the corresponding diagonal blocks
of Co, ..., Cy.

We also may assume that— Zf:z C; is singular since otherwise it could be
made singular by decreasing the diagonal elemerislbthis newB, which satisfies
the hypotheses of the theorem, is DN-decomposable relatige,ta ., Cy, then it
follows easily that the origind is also.

SinceB — Zf:z C; € Zis PSD, itis an (irreducible and singular) M-matrix [8].
Hence there is a vectar= (x1, ..., x,)" > 0 such that

k
(B—ZC,’)X:O. (6)
i=2

We now construct matriceBy, ..., By that satisfy(B; — C;)x =0 andB; — C; €
Z, implying thatB; — C; is a singular M-matrix and thus is PSD. LBt= [b;;] and
let the off-diagonal entry in row and columrt of eachB; be given by

Ci)s
(Bi)stzbstk(¢ fors,t=1,...,n.

ijz(cj)st
In this way, the ratiq B;),:/(C;)s: remains fixed (anel1) asi varies and, ¢ remain
fixed. On the diagonal of eadh, let
n
X
(Bi)ss = (Cdss + Y ZL(C)sj— (B)sjh, s=1,....n

j=Lj#s
sothat(B; — C;)x = 0fori =2, ..., k. Straightforward calculation shows th&t —
CieZfori=2,...,k. ThusB; — C; is a singular M-matrix and hence is PSD.
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Since eaclB; is entrywise nonnegative and eachis PSD, eaclB; is DN. The fact
thatB = Y°*_, B; follows from Eq. (6). [

4. DN-decomposition in the diagonal case

In the case thaB is a diagonal matrix and>, . .., Cy are nonnegative symmetric
matrices, Theorem 3 provides a characterization of exactly vhisnDN-decom-
posable relative t@y, . . ., Ck.

Corollary 4. Suppose B, Ca, ..., Ci are n-by-n entrywise nonnegative symmetric
matrices, with B diagonal. Then B > Zfzz C; if and only if there exist diagonal
matrices B; suchthat B = Y%, B; and B; = C;, fori =2, ..., k.

Proof. (<):B=Y,B; =Y+ ,C;.

(=): As in the proof of Theorem 3, since — Zf:z C; is PSD and in ZB can
be written aszfzz B;, in which B; is entrywise nonnegative and diagonal, with
B =C;,fori=2,...,k. O

If the hypothesis in Corollary 4 is relaxed so that the symmetric matéges. .,
Cy are not required to be entrywise nonnegative, a sufficient condition can be found
for DN-decomposability, but first the following lemma is required.

Lemma5. SupposeD isan n-by-n nonnegative diagonal matrix and C isan n-by-n
real symmetric matrix. If D > |C|, then D > C.

Proof. We may assumB is a positive diagonal matrix since any zero diagonal entry
would imply that the corresponding row and columrCdfiave all zero entries. Since
D —|C|isPSD, soiD~Y2(D — |C|)D~Y2 and thud, = D~Y2|C|D~Y/2, which
equals D~Y2¢D~1/2|. Since

p (D72CD™Y2) < p (|DM2CD™V|) < o) =1,

the eigenvalues ob~1/2C D~%? lie on the interval -1, 1], implying that the ei-
genvalues off — D~Y/2CcD~Y2 Jie on [0, 2], as do the eigenvalues @& ~/2(J,
—-pYVecpYpl2=p-c. O

Theorem 6. Suppose B is an n-by-n nonnegative diagonal matrix and matrices
Coy, ..., Cy are n-by-n symmetric. If B > Zf:z |C;|, then there exist nonnegative
diagonal matrices B; suchthat B = Zf-‘zz B;andB; = C;,fori =2,...,k.
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Proof. By Corollary 4, sinceB, |C2|, ..., |Ck| are entrywise nonnegative symmet-
ric matrices, withB diagonal, there are nonnegative diagonal matrigesuch that
B = Zf:z B; and B; — |C;| is PSD, for each. Applying Lemma 5,B; > C; for
i=2,...,k. O

Theorem 6 gives a sufficient condition for a diagonal mag&ito be DN-decom-
posable relative to the symmetric matriaés ..., Ci. However, this condition is
not necessary, as shown by the example given after Theorem 1.

A necessary condition for a diagonal matrix to be DN-decomposable follows, in
which asignature matrix is a diagonal matrix with each diagonal entry eithelr or
-1

Theorem 7. Suppose the diagonal matrix B is DN-decomposable relative to the
symmetric matrices Co, ..., Cx. Then B > Zf;z S; C; S; for any signature matrices
So, ..., Sk.

Proof. There are diagonal matrices, ..., By suchthatB = Zf:z B; andB; > C;
for eachi. SinceB; = S;B; S; > S;C;S; for eachi, thenB > Zf-‘zz S;C;S;. O

Note that ifn = 2, B is diagonal andC, ..., C; are PSD, then the necessary
condition of Theorem 7 is also a sufficient condition for DN-decomposability, by
Theorem 1. However, for 3-by-3 diagonal matrices the condition is not sufficient for
DN-decomposability, as will be shown immediately after the following required (and
well-known) lemma is introduced.

Lemma8. If A1 and A, aren-by-n PSD matrices, then nullspac€A1 + A2) C null-
SpaceéAy).

Consider the following PSD matrices:

2 -14 -11 32 -08 1
Cr=|-14 31 -1 ]|, C3=|-08 17 12
-11 -1 21 1 12 18

Let r denote the largest eigenvalue 6f + C», with corresponding eigenvector
X, and letB = rI3. It is easy to verify thatB > S2C2S> + S3C3S3 for any signa-
ture matricesS; and S3. We now show thaB is not DN-decomposable relative
to C2 and C3. Suppose there are nonnegative diagonal matrBeand B3 such
that B = B> + B3 with Bo = Co and B3 = C3. Since(B1+ B2)x =rx = (C2 +
C3)x, x € nullspace{B, — C2) + (B3 — C3)] and hence, by Lemma &, € null-
spaceB; — C2) andx € nullspaceBs — C3). The diagonal matriceB, and B3 are
uniquely determined by the equatioBsx = C2x andBzx = Cax.
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338 O 0 385 O 0
Bo~| 0O 454 0 |, B3~| 0O 269 O
0 0 427 0 0 295

However,B3 % C3 since the eigenvalues 8 — C3 are (approximately).00, —0.19
and 227. Thus, in the 3-by-3 case, the necessary condition of Theorem 7 is not
sufficient.

5. Applicationsto complete positivity

We now apply the above DN-decomposition theorems to the question of complete
positivity for DN matrices of form (1). Let

A1 Ag .
Ml_|:Ail An’] fori =2,...,k.

Theorem 9. Suppose A isa DN matrix of form (1), with A1; 2-by-2, and G(M;) is
NLOCfori =2,...,k. Then AisCPif and only if

k
A1 > Z ‘AliA,T,'Ail
i=2

Proof. By Theorem1Aj1hasa DN-decompositioEf-‘=2 B; relative toAleZZAZL
., AiAl Ay if and only if Agg = Y, ‘AliAlTl.Ail‘. If A11 has such a decom-
position, then, withA; defined as in (3), sinc€(A;) is NLOC andA; is DN, A; is
CP for each and hence\ is CP. If A1; has no such decompositiohcannot be CP.
U

Theorem 10. Suppose A is a DN matrix of form (1) and G(M;) isNLOC for i =
2, ..., k. If there exist nonnegative numbers ay, . . ., o such that Zfzz o; =1and
AliA,T,.Ail 4+ ai(A11 — Zf:z AliAlTl.Ail) isentrywise nonnegativefori = 2, ..., k,
then Ais CP.

Proof. A1; has a DN-decomposition relative t@le;zAz]_, el AlkA,IkAkl by
Theorem 2. For each A;, as defined in (3), is CP sind&@(4;) is NLOC andA;
is DN. HenceAis CP. O

In the same way that Theorem 10 follows directly from Theorem 2, Theorems 11
and 13 below follow directly from Theorems 3 and 6, respectively.
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Theorem 11. Suppose A |sa DN matrix of form (1) and G(M;) is NLOC for i =
2,..., k. 1fthe matncesAlezzAZL e AlkAZkAkl areentrywise nonnegatweand

All — 3% ,A;Al A € Z, then AisCP.

If A11is adiagonal matrix, the condition involviiZgn the hypothesis of Theorem
11 is automatically satisfied.

Corollary 12. SupposeAisa DN matrix of form (1), with A11 diagonal, and G (M;)
isSNLOCfori =2,... k. IfthemtricesA12A£2A21, e AlkA,IkAkl areentrywise
nonnegative, then A is CP.

Theorem 13. SupposeAisaDN matnxofform(l) with A11 diagonal, and G (M;)
iSNLOCfori =2,...,k. IfA11>Z 2|A11A .Aj1], then AisCP.

We note that Corollary 12 follows directly from Theorem 13, as well as from
Theorem 11.

Theorem 14. Suppose Aisa DN matrix of form(l) with A1 dlagonal If there are
signature matrices So, ..., S; such that A11 # Z ) SlAllA Ai1S;, then Ais not
CP.

Proof. If Awere CP, them1; would be DN-decomposable reIativequAngZL
, AlkAZkAkl but, by Theorem 7, such a decomposition cannot exisil
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