Complete positivity of matrices of special form

John H. Drew ${ }^{\mathrm{a}, *, 1}$, Charles R. Johnson ${ }^{\text {a }}$, Fumei Lam ${ }^{\text {c, } 2}$
${ }^{\text {a }}$ Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
${ }^{\mathrm{b}}$ Department of Mathematics, University of California, Berkeley, CA 94720, USA
${ }^{\mathrm{c}}$ Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 23 March 2000; accepted 4 October 2000
Submitted by R.A. Brualdi

Abstract

Given that B, C_{2}, \ldots, C_{k} are positive semidefinite (PSD) n-by- n real matrices and B is entrywise nonnegative, we characterize (fully for $n=2$ and partially for $n \geqslant 3$) when B may be written as $B=\sum_{i=2}^{k} B_{i}$ so that B_{i} and $B_{i}-C_{i}$ are PSD and B_{i} is entrywise nonnegative, $i=2, \ldots, k$. These characterizations are used to give conditions under which an entrywise nonnegative, PSD matrix A with a special block form can be written as $A=B B^{\mathrm{T}}$, in which B is entrywise nonnegative. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Completely positive; Doubly nonnegative

1. Introduction

An n-by- n matrix A is called completely positive (CP) if it may be written as $A=B B^{\mathrm{T}}$, in which B is n-by- m and entrywise nonnegative. Equivalently, $A=$ $\sum_{i=1}^{m} b_{i} b_{i}^{\mathrm{T}}$, in which each $b_{i} \in R^{n}$ is nonnegative.

More generally, A is called doubly nonnegative (DN) if A is positive semidefinite and entrywise nonnegative. Of course CP matrices are DN, but the containment is

[^0]proper for $n \geqslant 5$. Double nonnegativity is easily checked, but, thus far, there is no definitive test for a matrix to be CP. The two classes coincide for $n \leqslant 4$ and also for certain sparsity patterns when n is larger.

The graph $G=G(A)$ of the n-by- n symmetric matrix $A=\left[a_{i j}\right]$ is the undirected graph on n vertices in which is the edge $\{i, j\}, i \neq j$, if and only if $a_{i j} \neq 0$. All doubly nonnegative matrices whose graph is G are completely positive if and only if G contains no odd length cycle of length $\geqslant 5[2-4,6,9]$. We refer to such graphs as NLOC.

For some further graphs, complete positivity may be checked. For example, if the graph of a doubly nonnegative matrix A is triangle free, then A is CP if and only if the comparison matrix $M(A)$ is an M-matrix (possibly singular) [5] and tests are given for certain other graphs in [1], which overlaps prior work.

Our purpose here is to extend conditions for complete positivity by considering doubly nonnegative matrices of the special block form

$$
A=\left[\begin{array}{ccccc}
A_{11} & A_{12} & A_{13} & \cdots & A_{1 k} \tag{1}\\
A_{21} & A_{22} & & 0 & \\
A_{31} & & A_{33} & & \\
\vdots & 0 & & \ddots & \\
A_{k 1} & & & & A_{k k}
\end{array}\right]
$$

which generalizes the special case (up to permutation similarity)

$$
A=\left[\begin{array}{ccc}
A_{11} & A_{12} & 0 \tag{2}\\
A_{21} & A_{22} & A_{23} \\
0 & A_{32} & A_{33}
\end{array}\right]
$$

In this process, we extend the graphs for which complete positivity may be checked, in a simple and unified way. In the case that A_{11} is 2 -by-2, a parallel result can be found in [1].

We begin with a general discussion. Let \succeq denote the positive semidefinite partial order of symmetric matrices and let $|X|$ denote the entrywise absolute value of a matrix X. Using Schur complements [7], a symmetric matrix A of form (1) is positive semidefinite (PSD) if and only if $A_{i i}$ is PSD, $i=2, \ldots, k$, and $A_{11} \succeq$ $\sum_{i=2}^{k} A_{1 i} A_{i i}^{-1} A_{i 1}$. Here, we assume that $A_{i i}$ is invertible, $i=2, \ldots, k$, but, if not, $A_{i i}^{-1}$ may be replaced by the Moore-Penrose generalized inverse $A_{i i}^{\dagger}$.

Further, A is CP if and only if A_{11} may be decomposed as $A_{11}=\sum_{i=2}^{k} B_{i}$ in such a way that

$$
A_{i}=\left[\begin{array}{cc}
B_{i} & A_{1 i} \tag{3}\\
A_{i 1} & A_{i i}
\end{array}\right]
$$

is $\mathrm{CP}, i=2, \ldots, k$. (This may be seen by using the rank 1 decomposition already mentioned, $A=\sum_{i=1}^{m} b_{i} b_{i}^{\mathrm{T}}$, noting that each vector b_{i} can have nonzero entries only in those positions corresponding to the rows of A occupied by A_{11} and some other single block $A_{i 1}$, then considering the sums of the $b_{j} b_{j}^{\mathrm{T}}$ corresponding to each $A_{i 1}$.)

In order that a symmetric matrix of form (3) be CP, it must be DN, and, for this it is necessary and sufficient that A_{i} be entrywise nonnegative, $A_{i i}$ be PSD and $B_{i} \succeq A_{1 i} A_{i i}^{-1} A_{i 1}$. Again $A_{i i}^{-1}$ may be replaced by $A_{i i}^{\dagger}$. In case the graph of each A_{i} is NLOC, these conditions become necessary and sufficient for each A_{i} to be CP and thus for A to be CP. We conclude that the existence of a decomposition of the doubly nonnegative matrix A_{11} into a sum of doubly nonnegative matrices $\sum_{i=2}^{k} B_{i}$ in such a way that $B_{i} \succeq A_{1 i} A_{i i}^{-1} A_{i 1}$, each of which is PSD, is a central question in CP theory. We next formalize and study this question and then apply the results to matrices of form (1).

Suppose that B and C_{2}, \ldots, C_{k} are symmetric matrices. We say that B is decomposable relative to C_{2}, \ldots, C_{k} if B may be written as $B=\sum_{i=2}^{k} B_{i}$ so that $B_{i} \succeq$ $C_{i}, i=2, \ldots, k$; when C_{2}, \ldots, C_{k} are naturally understood from the context, we just say that B is decomposable. It is an easy exercise that B is decomposable if and only if

$$
\begin{equation*}
B \succeq \sum_{i=2}^{k} C_{i} \tag{4}
\end{equation*}
$$

A more stringent condition that is relevant to our inquiry is the following. We say that B is $D N$-decomposable relative to C_{2}, \ldots, C_{k} if B may be written as $B=\sum_{i=2}^{k} B_{i}$ so that $B_{i} \succeq C_{i}$ and B_{i} is $\mathrm{DN}, i=2, \ldots, k$. Condition (4) remains necessary, but is no longer generally sufficient. Now, B must be DN (by virtue of being a sum of DN matrices), but, even together with (4), this is not sufficient beyond the case $n=1$ (as we shall see). We are able to characterize DN-decomposability for $n=2$. For $n \geqslant 3$, we give conditions and characterizations only in certain circumstances.

2. DN-decomposition in the 2-by-2 case

Theorem 1. Suppose that B, C_{2}, \ldots, C_{k} are 2-by-2 PSD matrices with $B D N$ and $B \succeq \sum_{i=2}^{k} C_{i}$. Then B is $D N$-decomposable relative to C_{2}, \ldots, C_{k} if and only if $B \succeq \sum_{i=2}^{k}\left|C_{i}\right|$.

Proof. (\Rightarrow) : We assume that B may be written as $B=\sum_{i=2}^{k} B_{i}$, in which $B_{i} \succeq C_{i}$ and B_{i} is DN, $i=2, \ldots, k$. It is easy to verify that, for 2-by-2 matrices, since B_{i} is DN and C_{i} is PSD, $B_{i} \succeq C_{i}$ implies $B_{i} \succeq\left|C_{i}\right|$. Thus,

$$
B=\sum_{i=2}^{k} B_{i} \succeq \sum_{i=2}^{k}\left|C_{i}\right|
$$

(\Leftarrow) : We assume that $B \succeq \sum_{i=2}^{k}\left|C_{i}\right|$ and let

$$
C_{i}=\left[\begin{array}{cc}
a_{i} & c_{i} \\
c_{i} & b_{i}
\end{array}\right], \quad i=2, \ldots, k
$$

We may assume that the c_{i} are nonzero since otherwise we could redefine B by subtracting it from each C_{i} that is diagonal. By diagonal congruence, we may assume that

$$
B=\left[\begin{array}{cc}
1 & \phi \\
\phi & 1
\end{array}\right] \quad \text { with } \phi \geqslant 0
$$

We consider several cases.
Case 1. If $\phi=0$, for each i let $p_{i}=\left|c_{i}\right| / \sum_{j=2}^{k}\left|c_{j}\right|$ and let

$$
B_{i}=\left[\begin{array}{cc}
p_{i}\left(1-\sum_{j=2}^{k} a_{j}\right)+a_{i} & 0 \\
0 & p_{i}\left(1-\sum_{j=2}^{k} b_{j}\right)+b_{i}
\end{array}\right] .
$$

For each $i, B_{i} \succeq C_{i}$ since $B_{i}-C_{i}$ has nonnegative diagonal entries and

$$
\begin{aligned}
\operatorname{det}\left(B_{i}-C_{i}\right) & =p_{i}^{2}\left\{\left(1-\sum_{j=2}^{k} a_{j}\right)\left(1-\sum_{j=2}^{k} b_{j}\right)-\left(\sum_{j=2}^{k}\left|c_{j}\right|\right)^{2}\right\} \\
& =p_{i}^{2} \operatorname{det}\left(B-\sum_{j=2}^{k}\left|C_{j}\right|\right) \geqslant 0
\end{aligned}
$$

Since $\sum_{j=2}^{k} B_{j}=B$ and $B_{i} \succeq 0$, matrix B is DN-decomposable relative to C_{2}, \ldots, C_{k}.

Case 2. If at least one of the c_{i} (say c_{2}) is such that $c_{i} \geqslant \phi$, then define \widetilde{B} and $\widetilde{C_{2}}$ by subtracting ϕ from the off-diagonal entries of B and C. From case 1 it follows that \widetilde{B} has a DN-decomposition relative to $\widetilde{C_{2}}, C_{3}, \ldots, C_{k}$ and hence that B has a DN-decomposition relative to C_{2}, \ldots, C_{k}.

Case 3. If $c_{i}<0$ for each i , let

$$
p_{i}=\left(\frac{\phi}{k-1}-c_{i}\right) /\left(\phi-\sum_{j=2}^{k} c_{j}\right), \quad i=2, \ldots, k
$$

Then $\sum_{i=2}^{k} p_{i}=1$ and, for each $i, p_{i}>0$ and

$$
\begin{equation*}
p_{i}\left(\phi-\sum_{j=2}^{k} c_{j}\right)+c_{i}=\frac{\phi}{k-1} \geqslant 0 . \tag{5}
\end{equation*}
$$

For each i, let

$$
B_{i}=C_{i}+p_{i}\left(B-\sum_{j=2}^{k} C_{j}\right)
$$

Each B_{i} is entrywise nonnegative, by (5), and $B=\sum_{i=2}^{k} B_{i}$. Moreover, for each i, $B_{i} \succeq C_{i}$ since $B_{i}-C_{i}$ has nonnegative diagonal entries and

$$
\operatorname{det}\left(B_{i}-C_{i}\right)=p_{i}^{2} \operatorname{det}\left(B-\sum_{i=2}^{k} C_{i}\right) \geqslant 0
$$

Thus B_{i} is DN for each i and hence B is DN-decomposable relative to C_{2}, \ldots, C_{k}.
 yielding $\widetilde{B} \succeq \sum_{i=3}^{k} C_{i}$ and $\widetilde{B} \succeq \sum_{i=3}^{k}\left|C_{i}\right|$. If \widetilde{B} has a DN-decomposition relative to C_{3}, \ldots, C_{k}, then B has a DN-decomposition relative to C_{2}, \ldots, C_{k}. Thus, since the theorem is trivially true when $k=2$, induction on k shows that it is true in this final case.

Theorem 1 cannot be extended to include 3-by-3 matrices, as shown by the following example.

$$
\begin{array}{ll}
B=\left[\begin{array}{lll}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 12
\end{array}\right], \quad C_{2}=\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right], \quad C_{3}=\left[\begin{array}{rrr}
3 & -1 & -2 \\
-1 & 2 & -1 \\
-2 & -1 & 4
\end{array}\right], \\
B_{2}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B_{3}=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 9
\end{array}\right] .
\end{array}
$$

Matrix B is DN -decomposable with respect to C_{2} and C_{3} since $B=B_{2}+B_{3}$ with $B_{2} \succeq C_{2}$ and $B_{3} \succeq C_{3}$, but $B \succeq\left|C_{2}\right|+\left|C_{3}\right|$. Thus $B \succeq \sum_{i=2}^{k}\left|C_{i}\right|$ is not a necessary condition for DN-decomposability when $n=3$. It will be shown below that the condition is sufficient when B is diagonal.

3. DN-decomposition in the \boldsymbol{n}-by- \boldsymbol{n} case

If B, C_{2}, \ldots, C_{k} are n-by- n symmetric matrices and $B \succeq \sum_{i=2}^{k} C_{i}$, it is easy to show that B is decomposable relative to C_{2}, \ldots, C_{k} since B may be written as $B=$ $\sum_{i=2}^{k} B_{i}$, in which

$$
B_{i}=C_{i}+\frac{1}{k-1}\left(B-\sum_{i=2}^{k} C_{i}\right) \quad \text { for } i=2, \ldots, k
$$

Although DN-decomposability is a more stringent condition, it can be demonstrated under certain circumstances by using the same B_{i} as above (or a slight generalization).

Theorem 2. Suppose that B, C_{2}, \ldots, C_{k} are n-by-n PSD matrices with $B D N$ and $B \succeq \sum_{i=2}^{k} C_{i}$. If there exist nonnegative numbers $\alpha_{2}, \ldots, \alpha_{k}$ such that $\sum_{i=2}^{k} \alpha_{i}=1$ and $B_{i}=C_{i}+\alpha_{i}\left(B-\sum_{i=2}^{k} C_{i}\right)$ is entrywise nonnegative for $i=2, \ldots, k$, then $B=\sum_{i=2}^{k} B_{i}$ is a DN-decomposition of B relative to C_{2}, \ldots, C_{k}.

Proof. Since both C_{i} and $B-\sum_{i=2}^{k} C_{i}$ are PSD for each i, so is B_{i} and hence B_{i} is DN for each i. Clearly $B=\sum_{i=2}^{k} B_{i}$ and $B_{i} \succeq C_{i}$ for each i.

Theorem 2 also follows from a more general observation: a DN matrix B is DN decomposable relative to the PSD matrices C_{2}, \ldots, C_{k} if and only if $B-\sum_{i=2}^{k} C_{i}$ can be partitioned into PSD matrices X_{2}, \ldots, X_{k} such that $C_{i}+X_{i}$ is DN for $i=$ $2, \ldots, k$. Moreover, because each B_{i} is nonnegative, such a partition X_{2}, \ldots, X_{k} has the property that if any C_{i} has a negative entry $\left(C_{i}\right)_{p q}$, then $\left(X_{i}\right)_{p q} \geqslant\left|\left(C_{i}\right)_{p q}\right|$.

In the following theorem, we denote by Z the set of n-by- n matrices whose offdiagonal entries are all $\leqslant 0$.

Theorem 3. Suppose that B, C_{2}, \ldots, C_{k} are n-by-n DN matrices with $B \succeq \sum_{i=2}^{k} C_{i}$ and $B-\sum_{i=2}^{k} C_{i} \in Z$. Then B is $D N$-decomposable relative to C_{2}, \ldots, C_{k}.

Proof. We may assume that $B-\sum_{i=2}^{k} C_{i}$ is irreducible since otherwise DN-decompositions for each of its irreducible diagonal blocks could be combined to form a DN-decomposition for B, forming each matrix B_{i} from C_{i} by replacing each diagonal block of C_{i} by a larger (\succeq) DN matrix, generated from a DN-decomposition of the corresponding diagonal block of B relative to the corresponding diagonal blocks of C_{2}, \ldots, C_{k}.

We also may assume that $B-\sum_{i=2}^{k} C_{i}$ is singular since otherwise it could be made singular by decreasing the diagonal elements of B. If this new B, which satisfies the hypotheses of the theorem, is DN -decomposable relative to C_{2}, \ldots, C_{k}, then it follows easily that the original B is also.

Since $B-\sum_{i=2}^{k} C_{i} \in Z$ is PSD, it is an (irreducible and singular) M-matrix [8]. Hence there is a vector $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}>0$ such that

$$
\begin{equation*}
\left(B-\sum_{i=2}^{k} C_{i}\right) x=0 . \tag{6}
\end{equation*}
$$

We now construct matrices B_{2}, \ldots, B_{k} that satisfy $\left(B_{i}-C_{i}\right) x=0$ and $B_{i}-C_{i} \in$ Z, implying that $B_{i}-C_{i}$ is a singular M-matrix and thus is PSD. Let $B=\left[b_{i j}\right]$ and let the off-diagonal entry in row s and column t of each B_{i} be given by

$$
\left(B_{i}\right)_{s t}=b_{s t} \frac{\left(C_{i}\right)_{s t}}{\sum_{j=2}^{k}\left(C_{j}\right)_{s t}} \quad \text { for } s, t=1, \ldots, n
$$

In this way, the ratio $\left(B_{i}\right)_{s t} /\left(C_{i}\right)_{s t}$ remains fixed (and $\left.\leqslant 1\right)$ as i varies and s, t remain fixed. On the diagonal of each B_{i}, let

$$
\left(B_{i}\right)_{s s}=\left(C_{i}\right)_{s s}+\sum_{j=1, j \neq s}^{n} \frac{x_{j}}{x_{s}}\left\{\left(C_{i}\right)_{s j}-\left(B_{i}\right)_{s j}\right\}, \quad s=1, \ldots, n
$$

so that $\left(B_{i}-C_{i}\right) x=0$ for $i=2, \ldots, k$. Straightforward calculation shows that $B_{i}-$ $C_{i} \in Z$ for $i=2, \ldots, k$. Thus $B_{i}-C_{i}$ is a singular M-matrix and hence is PSD.

Since each B_{i} is entrywise nonnegative and each C_{i} is PSD, each B_{i} is DN. The fact that $B=\sum_{i=2}^{k} B_{i}$ follows from Eq. (6).

4. DN-decomposition in the diagonal case

In the case that B is a diagonal matrix and C_{2}, \ldots, C_{k} are nonnegative symmetric matrices, Theorem 3 provides a characterization of exactly when B is DN-decomposable relative to C_{2}, \ldots, C_{k}.

Corollary 4. Suppose B, C_{2}, \ldots, C_{k} are n-by-n entrywise nonnegative symmetric matrices, with B diagonal. Then $B \succeq \sum_{i=2}^{k} C_{i}$ if and only if there exist diagonal matrices B_{i} such that $B=\sum_{i=2}^{k} B_{i}$ and $B_{i} \succeq C_{i}$, for $i=2, \ldots, k$.

Proof. $(\Leftarrow): B=\sum_{i=2}^{k} B_{i} \succeq \sum_{i=2}^{k} C_{i}$.
(\Rightarrow) : As in the proof of Theorem 3, since $B-\sum_{i=2}^{k} C_{i}$ is PSD and in Z, B can be written as $\sum_{i=2}^{k} B_{i}$, in which B_{i} is entrywise nonnegative and diagonal, with $B_{i} \succeq C_{i}$, for $i=2, \ldots, k$.

If the hypothesis in Corollary 4 is relaxed so that the symmetric matrices C_{2}, \ldots, C_{k} are not required to be entrywise nonnegative, a sufficient condition can be found for DN-decomposability, but first the following lemma is required.

Lemma 5. Suppose D is an n-by-n nonnegative diagonal matrix and C is an $n-b y-n$ real symmetric matrix. If $D \succeq|C|$, then $D \succeq C$.

Proof. We may assume D is a positive diagonal matrix since any zero diagonal entry would imply that the corresponding row and column of C have all zero entries. Since $D-|C|$ is PSD, so is $D^{-1 / 2}(D-|C|) D^{-1 / 2}$ and thus $I_{n} \succeq D^{-1 / 2}|C| D^{-1 / 2}$, which equals $\left|D^{-1 / 2} C D^{-1 / 2}\right|$. Since

$$
\rho\left(D^{-1 / 2} C D^{-1 / 2}\right) \leqslant \rho\left(\left|D^{-1 / 2} C D^{-1 / 2}\right|\right) \leqslant \rho\left(I_{n}\right)=1,
$$

the eigenvalues of $D^{-1 / 2} C D^{-1 / 2}$ lie on the interval $[-1,1]$, implying that the eigenvalues of $I-D^{-1 / 2} C D^{-1 / 2}$ lie on [0,2], as do the eigenvalues of $D^{-1 / 2}\left(I_{n}\right.$ $\left.-D^{-1 / 2} C D^{-1 / 2}\right) D^{1 / 2}=D-C$.

Theorem 6. Suppose B is an n-by-n nonnegative diagonal matrix and matrices C_{2}, \ldots, C_{k} are n-by-n symmetric. If $B \succeq \sum_{i=2}^{k}\left|C_{i}\right|$, then there exist nonnegative diagonal matrices B_{i} such that $B=\sum_{i=2}^{k} B_{i}$ and $B_{i} \succeq C_{i}$, for $i=2, \ldots, k$.

Proof. By Corollary 4 , since $B,\left|C_{2}\right|, \ldots,\left|C_{k}\right|$ are entrywise nonnegative symmetric matrices, with B diagonal, there are nonnegative diagonal matrices B_{i} such that $B=\sum_{i=2}^{k} B_{i}$ and $B_{i}-\left|C_{i}\right|$ is PSD, for each i. Applying Lemma 5, $B_{i} \succeq C_{i}$ for $i=2, \ldots, k$.

Theorem 6 gives a sufficient condition for a diagonal matrix B to be DN-decomposable relative to the symmetric matrices C_{2}, \ldots, C_{k}. However, this condition is not necessary, as shown by the example given after Theorem 1 .

A necessary condition for a diagonal matrix to be DN-decomposable follows, in which a signature matrix is a diagonal matrix with each diagonal entry either +1 or -1 .

Theorem 7. Suppose the diagonal matrix B is $D N$-decomposable relative to the symmetric matrices C_{2}, \ldots, C_{k}. Then $B \succeq \sum_{i=2}^{k} S_{i} C_{i} S_{i}$ for any signature matrices S_{2}, \ldots, S_{k}.

Proof. There are diagonal matrices B_{2}, \ldots, B_{k} such that $B=\sum_{i=2}^{k} B_{i}$ and $B_{i} \succeq C_{i}$ for each i. Since $B_{i}=S_{i} B_{i} S_{i} \succeq S_{i} C_{i} S_{i}$ for each i, then $B \succeq \sum_{i=2}^{k} S_{i} C_{i} S_{i}$.

Note that if $n=2, B$ is diagonal and C_{2}, \ldots, C_{k} are PSD, then the necessary condition of Theorem 7 is also a sufficient condition for DN-decomposability, by Theorem 1. However, for 3-by-3 diagonal matrices the condition is not sufficient for DN-decomposability, as will be shown immediately after the following required (and well-known) lemma is introduced.

Lemma 8. If A_{1} and A_{2} are n-by-n PSD matrices, then nullspace $\left(A_{1}+A_{2}\right) \subset$ null$\operatorname{space}\left(A_{1}\right)$.

Consider the following PSD matrices:

$$
C_{2}=\left[\begin{array}{ccc}
2 & -1.4 & -1.1 \\
-1.4 & 3.1 & -1 \\
-1.1 & -1 & 2.1
\end{array}\right], \quad C_{3}=\left[\begin{array}{ccc}
3.2 & -0.8 & 1 \\
-0.8 & 1.7 & 1.2 \\
1 & 1.2 & 1.8
\end{array}\right]
$$

Let r denote the largest eigenvalue of $C_{1}+C_{2}$, with corresponding eigenvector x, and let $B=r I_{3}$. It is easy to verify that $B \succeq S_{2} C_{2} S_{2}+S_{3} C_{3} S_{3}$ for any signature matrices S_{2} and S_{3}. We now show that B is not DN-decomposable relative to C_{2} and C_{3}. Suppose there are nonnegative diagonal matrices B_{2} and B_{3} such that $B=B_{2}+B_{3}$ with $B_{2} \succeq C_{2}$ and $B_{3} \succeq C_{3}$. Since $\left(B_{1}+B_{2}\right) x=r x=\left(C_{2}+\right.$ $\left.C_{3}\right) x, x \in$ nullspace $\left[\left(B_{2}-C_{2}\right)+\left(B_{3}-C_{3}\right)\right]$ and hence, by Lemma $8, x \in$ nullspace ($B_{2}-C_{2}$) and $x \in$ nullspace $\left(B_{3}-C_{3}\right)$. The diagonal matrices B_{2} and B_{3} are uniquely determined by the equations $B_{2} x=C_{2} x$ and $B_{3} x=C_{3} x$.

$$
B_{2} \approx\left[\begin{array}{ccc}
3.38 & 0 & 0 \\
0 & 4.54 & 0 \\
0 & 0 & 4.27
\end{array}\right], \quad B_{3} \approx\left[\begin{array}{ccc}
3.85 & 0 & 0 \\
0 & 2.69 & 0 \\
0 & 0 & 2.95
\end{array}\right]
$$

However, $B_{3} \nsucceq C_{3}$ since the eigenvalues of $B_{3}-C_{3}$ are (approximately) $0.00,-0.19$ and 2.27. Thus, in the 3-by-3 case, the necessary condition of Theorem 7 is not sufficient.

5. Applications to complete positivity

We now apply the above DN -decomposition theorems to the question of complete positivity for DN matrices of form (1). Let

$$
M_{i}=\left[\begin{array}{ll}
A_{11} & A_{1 i} \\
A_{i 1} & A_{i i}
\end{array}\right] \quad \text { for } i=2, \ldots, k
$$

Theorem 9. Suppose A is a DN matrix of form (1), with $A_{11} 2$-by-2, and $G\left(M_{i}\right)$ is NLOC for $i=2, \ldots, k$. Then A is $C P$ if and only if

$$
A_{11} \succeq \sum_{i=2}^{k}\left|A_{1 i} A_{i i}^{\dagger} A_{i 1}\right|
$$

Proof. By Theorem 1, A_{11} has a DN-decomposition $\sum_{i=2}^{k} B_{i}$ relative to $A_{12} A_{22}^{\dagger} A_{21}$, $\ldots, A_{1 k} A_{k k}^{\dagger} A_{k 1}$ if and only if $A_{11} \succeq \sum_{i=2}^{k}\left|A_{1 i} A_{i i}^{\dagger} A_{i 1}\right|$. If A_{11} has such a decomposition, then, with A_{i} defined as in (3), since $G\left(A_{i}\right)$ is NLOC and A_{i} is DN, A_{i} is CP for each i and hence A is CP. If A_{11} has no such decomposition, A cannot be CP.

Theorem 10. Suppose A is a DN matrix of form (1) and $G\left(M_{i}\right)$ is NLOC for $i=$ $2, \ldots, k$. If there exist nonnegative numbers $\alpha_{2}, \ldots, \alpha_{k}$ such that $\sum_{i=2}^{k} \alpha_{i}=1$ and $A_{1 i} A_{i i}^{\dagger} A_{i 1}+\alpha_{i}\left(A_{11}-\sum_{i=2}^{k} A_{1 i} A_{i i}^{\dagger} A_{i 1}\right)$ is entrywise nonnegative for $i=2, \ldots, k$, then A is $C P$.

Proof. A_{11} has a DN-decomposition relative to $A_{12} A_{22}^{\dagger} A_{21}, \ldots, A_{1 k} A_{k k}^{\dagger} A_{k 1}$ by Theorem 2. For each i, A_{i}, as defined in (3), is CP since $G\left(A_{i}\right)$ is NLOC and A_{i} is DN . Hence A is CP.

In the same way that Theorem 10 follows directly from Theorem 2, Theorems 11 and 13 below follow directly from Theorems 3 and 6, respectively.

Theorem 11. Suppose A is a DN matrix of form (1) and $G\left(M_{i}\right)$ is NLOC for $i=$ $2, \ldots, k$. If the matrices $A_{12} A_{22}^{\dagger} A_{21}, \ldots, A_{1 k} A_{k k}^{\dagger} A_{k 1}$ are entrywise nonnegative and $A_{11}-\sum_{i=2}^{k} A_{1 i} A_{i i}^{\dagger} A_{i 1} \in Z$, then A is $C P$.

If A_{11} is a diagonal matrix, the condition involving Z in the hypothesis of Theorem 11 is automatically satisfied.

Corollary 12. Suppose A is a DN matrix of form (1), with A_{11} diagonal, and $G\left(M_{i}\right)$ is NLOC for $i=2, \ldots, k$. If the matrices $A_{12} A_{22}^{\dagger} A_{21}, \ldots, A_{1 k} A_{k k}^{\dagger} A_{k 1}$ are entrywise nonnegative, then A is $C P$.

Theorem 13. Suppose A is a DN matrix ofform (1), with A_{11} diagonal, and $G\left(M_{i}\right)$ is NLOC for $i=2, \ldots, k$. If $A_{11} \succeq \sum_{i=2}^{k}\left|A_{1 i} A_{i i}^{\dagger} A_{i 1}\right|$, then A is $C P$.

We note that Corollary 12 follows directly from Theorem 13, as well as from Theorem 11.

Theorem 14. Suppose A is a $D N$ matrix of form (1), with A_{11} diagonal. If there are signature matrices S_{2}, \ldots, S_{k} such that $A_{11} \nsucceq \sum_{i=2}^{k} S_{i} A_{1 i} A_{i i}^{\dagger} A_{i 1} S_{i}$, then A is not C.

Proof. If A were CP, then A_{11} would be DN -decomposable relative to $A_{12} A_{22}^{\dagger} A_{21}$, $\ldots, A_{1 k} A_{k k}^{\dagger} A_{k 1}$ but, by Theorem 7, such a decomposition cannot exist.

References

[1] F. Barioli, Completely positive matrices with a book-graph, Linear Algebra Appl. 277 (1998) 11-31.
[2] A. Berman, Completely positive graphs, in: Combinatorial and Graph-theoretical Problems in Linear Algebra, The IMA Volumes in Mathematics and its Applications, vol. 50, Springer, Berlin, 1993, pp. 229-233.
[3] A. Berman, R. Grone, Bipartite completely positive matrices, Proc. Cambridge Philos. Soc. 103 (1988) 269-276.
[4] A. Berman, D. Hershkowitz, Combinatorial results on completely positive matrices, Linear Algebra Appl. 95 (1987) 111-125.
[5] W. Barrett, C.R. Johnson, R. Loewy, The real positive definite completion problem: cycle completability, Mem. Amer. Math. Soc. 584 (1996) 71.
[6] J. Drew, C.R. Johnson, The no long odd cycle problem for completely positive matrices, in: Random Discrete Structures, The IMA Volumes in Mathematics and its Applications, vol. 76, Springer, Berlin, 1997, pp. 103-115.
[7] R. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[8] R. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[9] N. Kogan, A. Berman, Characterization of completely positive graphs, Discrete Math. 114 (1993) 297-304.

[^0]: * Corresponding author.

 E-mail address: jhdrew@math.wm.edu (J.H. Drew).
 ${ }^{1}$ Research supported in part by a Faculty Research assignment from the College of William and Mary.
 2 The work of this author was made possible by NSF grant DMS 96-19577, which supported the Research Experiences for Undergraduates Program held at the College of Wiliam and Mary in the summer of 1998.

