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Abstract

We study the Howe dualities involving the reductive dual pairs (O(d),spo(2m|2n)) and
(Sp(d), 0sp(2m|2n)) on the (super)symmetric tensor of C!®C"". We obtain complete
decompositions of this space with respect to their respective joint actions. We also use these
dualities to derive a character formula for these irreducible representations of spo(2m|2n) and
osp(2m|2n) that appear in these decompositions.
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1. Introduction

Howe duality [13,14] relates the representation theories of a pair of Lie groups/
algebras. It enables the study of representations of one Lie group/algebra via the
representations of its dual partner, and hence it has become a fundamental tool
where representation theory of classical Lie groups/algebras is indispensable. As
simple and fundamental a concept it is therefore of no surprise that the Howe duality
also applies to generalizations of finite-dimensional Lie groups/algebras. We point
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out here the Howe dualities of finite-dimensional Lie superalgebras in
[4,5,22,27,30,31] of infinite-dimensional Lie algebras in [9,12,17,18,32,33] and of
infinite-dimensional Lie superalgebras in [6]. In the above-mentioned articles, the
main themes revolve around the construction of Howe dualities. In the present
article we are also concerned about applications of the Howe dualities that we
obtain.

Consider a Lie superalgebra whose representation theory we wish to study.
Suppose that on some natural space one has a Howe duality involving this Lie
superalgebra with a classical Lie group or Lie algebra as its dual partner. As the
representation theory of its classical counterpart is well-understood, one expects that
this should enable one to study the representations of the Lie superalgebra in
question with the help of the representation theory of its classical dual partner. Of
particular interest is a derivation of a character formula for this Lie superalgebra. It
appears plausible that knowing the character of the total space and the characters of
each of the irreducible representations of the classical group/algebra, one should in
principle be able to obtain a character formula for the Lie superalgebra in question.
As is well-known, character formulas for Lie superalgebras in general are rather
difficult to obtain, and hence such a method could facilitate the computation of
characters for certain representations of Lie superalgebras. One of the main purposes
of this paper is to demonstrate for the orthosymplectic Lie superalgebra that such an
approach to character formulas is indeed viable. The general idea is the following.

Let g,, be a classical Lie algebra of rank m and let X be a fixed finite-dimensional
classical Lie algebra. Suppose on some space §,, the pair (g,,, X') forms a dual pair in
the sense of Howe. Suppose that this is the case for every m. That is, we have for each
m a (multiplicity-free) decomposition with respect to g,, x X of the form

8.111 = Z Vém ® VXa
.

where V7 and V))g’ denote irreducible representations of g,, and X, respectively. Here

9
4 is summed over a subset of irreducible representations of g,. Since here the
correspondence between irreducible representations of g,, and X, given by A— 2/, is
one-to-one, we will write V% for V.

Now suppose that Synfn is the Lie superalgebraic analogue of g,, and we have an
action of the dual pair g,,, x X on §,,,, which is the tensor product of ,, with a

Grassmann superalgebra depending on n. Thus we have similarly

1 )
gW’l” = Z ng\n ® V:\L/’

A

where Vq’1 ‘ denotes an irreducible representation of g,,,.

Our claim is that if one knows the characters of Vé for every m, then one, in

principle, also knows the characters for V;'

m|n
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Let us now discuss the content of the present article in more detail. Let X = O or
X = Spso that X (d) denotes either the orthogonal or the symplectic group acting on
C?. We have an induced action on C?®C”, thus giving rise to an action on the
symmetric tensor S(Cd®(€’"). Now by classical invariant theory (cf. [13,11]) the
invariants of X(d) in the endomorphism ring of S(C?®C") is generated by
quadratic invariants, which may be identified with the Lie algebra sp(2m) in the case
X =0 and so(2m) in the case X = Sp. This implies that (O(d),sp(2m)) and
(Sp(d), so(2m)) are Howe dual pairs on S(C?®C™).

Now let C"" be the complex superspace of dimension (m|n). The Lie group X (d)
acts in a similar fashion on the (super) symmetric tensor S(Cd ® C’“‘"). Analogously
one derives the (O(d),spo(2m|2n))- and the (O(d),osp(2m|2n))-Howe duality on
S (Cd ® (D’”'”). Although these dualities appear already in Howe’s classical paper [13],

the complete decompositions of S(C?® C"") with respect to these joint actions are
unknown to the best of our knowledge. In [27] a partial decomposition is obtained
for X = O, with a complete answer given in the case of m =n =1 only.

Our first main task is to give the complete decompositions of S(CY®C™") with
respect to these Howe dual pairs. This is achieved in the following way. By [13] the

decomposition of S(C?® C"") with respect to X (d) and its dual partner is reduced
to the decomposition of the subspace of harmonic polynomials H with respect to the
dual pair (X(d),gl/(m|n)). Our task is then reduced to the construction of all
(X(d), gl(m|n))-highest weight vectors in H. Our analysis of the (X (d),gl(m|n))-
highest weight vectors in H relies heavily on the (g/(d),gl/(m|n))-Howe duality
in S(CY®C™") in [5] (see also [30,31]) and the description of their joint highest
weight vectors given in [5]. Another important ingredient is the construction of
an explicit basis for each irreducible g/(d) x gl(m|n)-component that appears
in S(C!@C"M.

The idea to obtain a character formula for the irreducible representations of
spo(2m|2n) or osp(2m|2n) is roughly as follows. In order to simplify notation we take
X = Sp in what follows, but note that the same applies to X = O with minor
modification. We first consider the classical duality, i.e. the case when n = 0. Thus we
have an identity of characters of the form

ch S(C'®C™) = Z ch VS)Lp(d) ®ch ij(zm)-
7

Since now characters are polynomial functions on a Cartan subalgebra, we can write
Lspay(X) = ch Vi, and 70,0, (¥) = ch V],(5,), where x and y denote the linear
functions on the respective Cartan subalgebras. The left-hand side is the character of
the algebra of polynomials in dm variables, which is a symmetric function in x and y.
Now taking the limit as m— oo in an appropriate way one obtains a combinatorial
identity involving infinitely many variables y = y1, 2, ..., Ym, ... . Since the right-
hand side is symmetric in y, we may apply to this identity the involution @ of
symmetric functions that sends the complete symmetric functions to the elementary
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symmetric functions (see [24]). The w turns the left-hand side into the character of
the tensor product of a polynomial algebra with a Grassmann algebra. Therefore,
due to ““linear independence” of the Xé,,( )’ it follows that (modulo some minor

manipulation of the variables) the expression w(limmqufoum) (y)) is essentially the

character of the irreducible representation of osp(2m|2n) paired with Vép( a)- At this

point we wish to point out our results imply that the characters of the
representations of the Lie superalgebra osp(2m|2n) (respectively spo(2m|2n)), for
any m,ne 7., that appear under the Howe duality are completely determined by the
characters of the representations of the Kac—Moody algebra corresponding to the
infinite affine matrix D, (respectively C ) (see [16]) that appear under a similar
Howe duality.

The next problem is to describe the expression Xi{)(Zm) (y). For this we use the

beautiful formula of Enright [8,7] for unitarizable irreducible representations
associated to a classical Hermitian symmetric pair. The reason for this is that in
our case we may express such a character in terms of Schur functions which are
carried by w to the so-called hook Schur functions of Berele and Regev [1]. This
allows us to obtain a satisfactory description of the characters.

We now come to the organization of the paper. In Section 2 we recall some basic
facts on the orthogonal and symplectic groups and the orthosymplectic
superalgebra, where we also take the opportunity to set the notation to be
used throughout the paper. In Section 3 we recall the (g/(d), gl/(m|n))-duality on
S(CY’@C™") and construct an explicit basis for each irreducible component
that appears in the decomposition of S(CY®C™"). In Sections 4 and 5 we study
the (O(d),spo(2m|2n))-duality and the (Sp(d),osp(2m|2n))-duality and obtain the
complete decompositions of S(C?@C™") with respect to their respective
joint actions. In Section 6 we derive a character formula for these representations
of spo(2m|2n) and osp(2m|2n) that appear in the decomposition of S(C¢®C™").
Here we should mention that in the case of O(d) x spo(2m|2n) with d even,
we are only able to derive the formula for a sum of two irreducible representations in
general. We also remark that in [26] a character formula for the oscillator
representations is given. This corresponds to our case O(1). In order to obtain a
better description of the character formulas we are required to study Enright’s
formula in more detail. This is done in the Section 7. In Section 8 we study
the character formulas in more detail. In Section 9, as another application of our
Howe dualities, we give formulas for decomposing tensor products of these
irreducible spo(2m|2n)- and osp(2m|2n) modules that appear in the decomposition
of S(C/@C"").

Finally all vector spaces, algebras, etc. are over the complex field C unless
otherwise specified. By a partition we mean a non-increasing finite sequence of non-
negative integers. A composition is a finite sequence of either all non-negative integers
or all positive half-integers. Furthermore, by a generalized partition we will always
mean a finite non-increasing sequence of either all integers or all half integers. By a
generalized composition we will mean a finite sequence of either all integers or all half
integers.
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2. Parameterization of irreducible representations

In this section we give parameterizations of irreducible representations of the Lie
groups and Lie superalgebras that we will be dealing with in this paper. For a more
complete treatment of the material on Lie groups the reader is referred to [2].

2.1. Irreducible representations of the general linear Lie superalgebra

Let C"" denote the complex (m|n)-dimensional superspace. The space of complex
linear transformations on C” has a natural structure as a Lie superalgebra, which
we will denote by g/(m|n). Choose a homogeneous basis for C"" so that we may
regard gl(m|n) as (m + n) x (m + n) matrices. Denote by Ej the elementary matrix
with 1 in the ith row and jth column and 0 elsewhere. Then h = ), CE;; is a Cartan
subalgebra, while B= )", < CEj is a Borel subalgebra containing ). Recall that
finite-dimensional irreducible g/(m|n)-modules are parameterized by 1eh” with 4; —
Aiv1€Zy, for i=1,...m—1m+1,....om+n—1, where 2; =A(E;). We will
denote the corresponding finite-dimensional irreducible module by V,f;‘n. Suppose
that 1 is a partition (or a Young diagram) with 4,,,;<n. Then drawing the
corresponding diagram A may be visualized as lying in the (m|n)-hook, i.e. from
n+ 1th column on the columns of A all have lengths less than m + 1. We may
interpret A as a highest weight of g/(m|n) by associating to the diagram / the labels
A=Ay ey dam; <A —m), .., (AL —m)), where 1! is the length of the ith column of
the diagram A4, and <{r) stands for r, if reN, and 0 otherwise. If clear from the
context that 11is a Young diagram with 4, <n, we will mean by Vjﬂn the irreducible

gl(m|n)-module of highest weight /.

2.2. Irreducible representations of the orthogonal group

Let us denote by {e', ..., e?} the standard basis for C?. Consider the symmetric
non-degenerate bilinear form determined by the d x d matrix

00 - 01
0 0 1 0
= Lo
0 0 0
1 0 0 0

The complex orthogonal group O(d) is the subgroup of the complex general linear
group GL(d) preserving this form. The Lie algebra of O(d) is so(d), which consists of
those A egl(d) with J;A'J; + A = 0, that is, 4 is skew-symmetric with respect to the
diagonal running from the top right to the bottom left corner.
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Consider the case when d = 2k is even. We take as a Borel subalgebra b the
subalgebra of so(d) contained in the subalgebra of upper triangular matrices.
Furthermore, we take as a Cartan subalgebra of b the subalgebra [) spanned by the
elements E; = E; — Eqqi—igyi-i, for i=1,...,k. Now a finite-dimensional irredu-
cible representation of so(d) is determined by its highest weight 1eh* subject to

ME; — Einrin)eZs,

ME1 1 + E)eZ,

for i=1,....,k—1. Let }; = A(Ej;) and identify 1 with the sequence of complex
numbers (A, ..., Ax). An irreducible representation of so(2k) is finite-dimensional if
and only if its highest weight 4 satisfies the conditions 4; >4, --- > 4, with either 4,€Z
or else /1,6%4— Z,i=1,...,kand 4,20, j=1, ...,k — 1. Furthermore such a weight
lifts to a representation of SO(d) if and only if 4,€Z,.

Let V' be a finite-dimensional irreducible O(d)-module. When regarded as an
so(d)-module we have the following possibilities:

(1) V is a direct sum of two irreducible so(d)-modules of highest weights
(A1, 22, ..oy A) and (A1, Ao, ..., Ak—1, —Ak), respectively, where 4 >0.
(ii) V is an irreducible so(d)-module of highest weight (41, 42, ..., 4x—1,0).

Here 4;€ 7, for all i. In the first case, that is when V' is the direct sum of the two
irreducible so(d)-modules we denote V by Vé< 4> Where we let 1=
(A1,22, «-vy Ak—1, 4 >0). In the second case there are two possible choices of V,
which we denote by Vé( 2 and Vé( o ®det, respectively. Recalling that O(d) is a
semidirect product of SO(d) and Z, these two O(d)-modules as SO(d)-modules are
isomorphic. However as O(d)-modules they differ by the determinant representation
so that we may distinguish these two modules as follows: consider the element
1€ 0(d) — SO(d) that switches the basis vector ¢ with ¢/*! and leaves all other basis
vectors of C? invariant. We declare Vé(d) to be the O(d)-module on which t
transforms an SO(d)-highest weight vector trivially. Note that 7 transforms an
SO(d)-highest weight vector in the O(d)-module ¥}, ®det by —1.

We may associate Young diagrams to these O(d)-highest weights as follows (cf.
[14]). For 21 =1, = 4, >0 we have an obvious Young diagram of length k. When
Ar = 0, we associate to the highest weight of Vé(d) the usual Young diagram of
length less than k. To the highest weight of Vé( d)®det we associate the Young
diagram obtained from the Young diagram of 1 by replacing its first column by a
column of length d — 2. Here and further, for a partition 4, we denote by 1’ its
conjugate partition. We have thus associated to each finite-dimensional irreducible
representation of O(d) a Young diagram 4 with 1] + 4, <d.

Next consider the case when d = 2k + 1 is odd. We take as a Borel subalgebra b
the subalgebra of so(d) spanned by upper triangular matrices so that a Cartan
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subalgebra by of b is again spanned by the elements E; = Ej; — Eqpi—igr1—i, for i =
1,...,k. Now a finite-dimensional irreducible representation of so(d) is determined
by its highest weight Ae}h* subject to

ME; — Eppri) €2y,

;L(Ekk) E% Z+’
fori=1,....k — 1. We set 4; = A(E;) and identify A with the sequence of complex
numbers (11, 2y, ..., A). It follows that a highest weight 4 of so(2k + 1) gives a finite-
dimensional irreducible representation if and only 4, >/,--- >/ and 4;€Z, or else
}vie%+Z+, fori=1,... k.

Recall that when d is odd O(d) is a direct product of SO(d) and Z,. Thus any
finite-dimensional irreducible representation of O(d), when regarded as an SO(d)-
module, remains irreducible. Conversely an irreducible representation of SO(d)
gives rise to two non-isomorphic O(d)-modules that differ from each other by
the determinant representation det. We let Vé( q) stand for the irreducible o(d)-
module corresponding to A= (4 =4>-->4>0) on which the element —7
transforms trivially, so that {Vé(d)7 Vé( d) ®det} with A ranging over all partitions
as above is a complete set of finite-dimensional non-isomorphic irreducible O(d)-
modules.

Similarly as before we may associate Young diagrams to these O(d)-highest
weights. For the highest weight A = (4, =/4,--- =4, >0) of Véw we have an obvious
Young diagram with /(1) := 2| <k. To the highest weight of Vé(d) ® det we associate
the Young diagram obtained from the Young diagram of 4 by replacing its first
column by a column of length d — 2].

Let ¢;€h” so that &(Ej;) = ;. We put x; = % when dealing with characters of
o(d).

2.3. Irreducible representations of the symplectic group

Let d = 2k and consider the non-degenerate skew-symmetric bilnear form ¢ - |- >

given by the d x d matrix
0 J
~Jie 0 )

The symplectic group Sp(d) is the subgroup of GL(d) preserving { - |- >. We take as
a Borel subalgebra b the subalgebra of sp(d) that is contained in the subalgebra of
upper triangular matrices and a Cartan subalgebra of b as the subalgebra [) spanned
by the elements E; = E; — Eiigy1—i, for i=1,...;k. A finite-dimensional
irreducible representation of sp(d) is determined by its highest weight /ieb”
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subject to

ME; — Ein) €y,

j‘(EN‘kJ() € Z-H

for i=1,....k — 1. As before we let 1; = A(Ej;) and identify 2 with the sequence
(A1, 22, ..., k). A highest weight A of sp(2k) gives a finite-dimensional irreducible
representation if and only if ;> 2,--- >, and A;€Z, fori =1, ..., k. Furthermore
each such representation lifts to a unique irreducible representation of Sp(d) and so
we obtain an obvious parameterization of Sp(d)-highest weight in terms of Young
diagrams 4 with /(1) <4.

We let ¢;eh” so that &;(Ej) = J;. We put y; = ¢ when dealing with characters of
Sp(2k).

2.4. Irreducible representations of the orthosymplectic Lie superalgebra

Let C"" be the (m|n)-dimensional complex superspace. Suppose that # is even and
(+]) is a supersymmetric non-degenerate bilinear form, i.e. it is symmetric on the even
subspace " and symplectic on the odd subspace C%. The orthosymplectic Lie
superalgebra osp(m|n) (cf. [15]) is defined to be the subalgebra of g/(m|n) =
gl(m|n); @ gl(m|n); consisting of those linear transformations preserving the form
(:]-), i.e. osp(m|n) = osp(m|n); @ osp(m|n); with

osp(mln), = {Aegl(m|n),|(Avlw) + (—1)° deg v (| Aw) = 0},
where v and w are any homogeneous vectors of C’”‘”, deg v here and further denotes

the degree of the homogeneous element v and ¢€Z,. We will fix the bilinear form
associated to matrix

Ju 0 0
0 0 Ju
0 —Jyy O

We note that osp(m|n); =so(m)@sp(n). Let b be a Borel subalgebra of osp(m|n)
containing the Borel subalgebras of so(m) and sp(n) as chosen above so that a
Cartan subalgebra ) of osp(m|n) can be taken to be the subalgebra spanned by the

diagonal matrices E; = Ej; — Enii-imir-i, i=1,...,[4], E[%HL["%]H = Entjmsj —
Epinit—jmint1-j, j=1,...,5. Here and further the symbol [r] stands for the largest

integer smaller than or equal to r. As usual, highest weight irreducible representa-
tions of osp(m,n) are parameterized by Aebh* and we denote by 4; the ith label A(Ej;),
fori=1,...,[4] +35 As usual, we will identify 4 with (41, 42, ...).



132 S.-J. Cheng, R.B. Zhang | Advances in Mathematics 182 (2004) 124—-172

Suppose that m is an even integer and consider the following Z-gradation of
osp(m|n). Let C"° = V'@ V* be a sum of two isotropic subspaces of C"° with
respect to the restriction of the form (-]-) on C"°. Likewise let C°" = W @ W* be
such an isotropic decomposition of C%". We have osp(m|n);=S>(C"") @ A>(C"")
and osp(m|n); =C"* @C". Setg, = (VOW)R(VOW)", g, = S2(V)@AX(W)®
(V@W)and g, = S>(V*)@A*(W*)® (V*® W*). This equips osp(m|n) with a Z-
gradation with g, isomorphic to g/(%[5) such that its standard Cartan subalgebra is
also [.

Now take a finite-dimensional irreducible g,-module V/}z‘n of highest weight Aebh”,
212

which we again will identify with a sequence (41,42, ...). We may extend len

trivially to a module over the parabolic subalgebra g,@g,;. Inducing it to an
osp(m|n)-module, it is clear that it has a unique irreducible quotient, which we will
denote by Vmp(m|l1 Of course ngp (mn) is not finite-dimensional in general. As such
osp(m|n)-modules play an important role in the sequel, we will give a more detailed
description of their parameterizations. Let ¢;eb”, i=1,...,[5] +5, be defined by
&/(Ej) = ;. We will label the simple roots and coroots of osp(m|n) according to the
following diagram.

%

o o om om oam o m+
2 3 2 sl #5342 ot
Here o) = —&1 —&,00 = &1 — &2, ...,0m = &m_| — &m, ..., Umtn = Emsn | — émzn, and,
2 2 2 2 2 - 2
as is customary, ® denotes an isotropic root. Thus if 2 = (41,42, ..., Amtn) is the
2

highest weight of a finite-dimensional irreducible g/(%|5)-module V,ﬁ 2 then the labels

of the irreducible highest weight module V*

osp(m|n)

with respect to the above Dynkin
diagram is given by

(—),1 — o, A — A, ,i% — im Am -i—/pm_‘_l7

R} (2.1)

When dealing with characters of osp(m|n) we will use the notation x; = e%, for

j=1,. 72andzl—e2“ forl=1,...4

On the superspace C"" with m even we may take a skew-supersymmetric non-
degenerate bilinear form (-|-), i.e. it is symplectic on the even subspace C"° and

symmetric on the odd subspace C%. In the same fashion we may define the
symplectic-orthogonal Lie superalgebra spo(m|n) to be the subalgebra of g/(m|n)
preserving (-]-). We remark that as Lie superalgebras we have spo(m|n) = osp(n|m)
and hence our discussion of the orthosymplectic Lie superalgebra carries over to
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spo(m|n), for n even, with minor modification. We label the simple roots and coroots
according to the following diagram.

noon LTI el R T amtn
Here o) = —2¢e,00 =& —&,...,0m =é&m_| —&m, ..., 0mtn = Emin_, — Emen.  SiMi-
2 2 2 2 2 ! 2
larly we will denote the irreducible quotient of the induced g/(m|n)-module Vélﬂ
212
by Véw(m‘n). Soif A = (41, 42, ...,ﬂv@) is the g/(%5)-labels of V%I%’ then the spo(m|n)-
7
labels of V ipo(min) aT€
(721,/11 — A2y s /1%71 - }v%, /1%1 + ;L%+l, }N%Jrl - }»%Jrz, ) (2.2)

When dealing with characters of spo(m|n) we will use the notation y; = €%, for

em
. S+
j=1,...,%and zy=e2", forl=1,... 5

3. The (g/(d), gl(m|n))-duality

In this section we present some results on (g/(d), gl(m|n))-duality that will be used
later on. In particular, Theorem 3.4 constructs explicit bases for irreducible
gl(d) x gl(m|n)-modules appearing in the decomposition of S(C!®C""), and we
believe the result to be new.

Consider the natural actions of g/(d|q) on C%% and gl(m|n) on C"". We can form
the g/(d|q) x gl(m|n)-module C/“®C™" We have an induced action on the
symmetric tensor S(Cd|q®([3’"‘”). This action is completely reducible and in fact
(gl(d|q),gl(m|n)) is a dual pair in the sense of Howe [5] (see also [30]). Since in this
paper we will only concern ourselves with the case when ¢ = 0, we will make this
assumption in what follows. In this case we have the following decomposition:

SCIQC" =D Vi@V (3.1)
2

The sum in (3.1) is over all partitions of integers 2 = (41,42, ..., 44) of length /() not
exceeding d subject to 4,41 <n. Since /(1) <d we may regard Z as a highest weight for
an irreducible g/(d)-module so that there is no ambiguity in V. The meaning of Vrfﬂn
as a gl(m|n)-module was explained in Section 2.1.

In the sequel it is important to have an explicit formula for the joint highest weight
vectors of the irreducible component V/; ® V;ﬁ;\n in (3.1). (See also [25,28] for different
descriptions of these vectors.) In order to present them we need to introduce some
more notation.
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We let e',....¢¢ denote the standard basis for the standard gl(d)-module.
Similarly we let ey, ..., ey f1, ..., fn denote the standard homogeneous basis for the
standard g/(m|n)-module. The weights of ¢/, ¢; and f; are denoted by #;, & and Jy,
for 1<i<d, 1<I<m and 1<k<n, respectively. We set

xp=eQe, 1= Qfk. (3.2)

We will denote by C[x,n] the polynomial superalgebra generated by (3.2). By
identifying S(C?® C"") with the polynomial superalgebra C[x,n] the commuting
pair (g/(d), gl(m|n)) may be realized as first-order differential operators as follows:
(I1<i,’<d, 1<s,5<m and 1<k, k'<n):

m

" (3.3)

Jj=1

d ; 9 d d

Here (3.3) spans a copy of gl(d), while (3.4) spans a copy of gl/(m|n).
The standard Cartan subalgebras of g/(d) and gl/(m|n) are spanned, respectively,
by

Zm:xlia.—i—zn:n’: a and Zd:x/ a zd:n’i
— " Ol ! On; Yoxl & o

j=1 i =1 j =1

while the nilpotent radicals are, respectively, generated by the simple root vectors
m . 8 n . a
Zx’f‘—.JrZ il 1<i<d
J J ) )
= Ox; 5 n;

and

d

0 .0
¥ , S l<s<m,1<k<n.
Z s— 18)(?{; Z 172 187’[;( Z X 81’[11

J=1 Jj=1 Jj=1

We will consider two separate cases, namely m>d and m<d.
First suppose that m>d. Here the condition 4,.;<n is vacuous. For

1 <r<min(d, m) define
1l 1
xl x2 e xr
22 2
X7 X5 e X:
A, = det b2 !

r I
xl x2 cee X
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Theorem 3.1 (Cheng and Wang [5]). In the case when m=d, the gl(d) x gl(m|n)
highest weight vectors in C[x,m] associated to the weight A is given by the product
Ay dy--Ay .

174 o

We now consider the case d>m. It is readily checked that the highest weight
vectors associated to Young diagrams A with 4,,,1 = 0 can be obtained just as in the
previous case so that we may assume that /(1) >m. Let 4}, 73, ...,4; denote its
column lengths as usual. We have d>2;>25--->2; and m>/,

b1 For m<r<d,
consider the following determinant of an r x r matrix:

xl xl .o x’{

xé x% e x;

1 2 r

X, X X
Agy=det] 7 7 ", k=1,...,n (3.6)

e M o Mk

mo i

Me M Mk
That is, the first m rows are filled by the vectors (x}, ey Xp), for j=1,....m, in
increasing order and the last r — m rows are filled with the same vector (i}, ..., 7).

Here the determinant of a matrix

1 2 ¥
a, @ a
1 2 7
a a a
2 2 2
A= . )
1 2 r
a, a; a.

with matrix entries possibly involving Grassmann variables #}, is by definition the
expression 205&_(—1)]<">a$“>a§<2> --al") where I(c) is the length of ¢ in the
symmetric group S,.

Theorem 3.2 (Cheng and Wang [5]). In the case when m<d, the gl(d) x gl(m|n)
highest weight vectors in C[x, ] associated to the weight 1 is given by the product

v A

1T 2c ] 45 (3.7)
J

k=1

Jj=r+1

where v is defined by A,>m and %, <m.
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For application purposes it is useful to construct an explicit basis for the
gl(d) x gl(m|n)-modules Vnﬁ‘n that appear in the decomposition of S(C?®C"").
This we will do now.

Recall that A is a partition (or a Young diagram) which lies in the (m|n)-hook of
length not exceeding d. Let x, ..., x, and 5y, ..., n, be even and odd indeterminates,
respectively. We form a tableau of shape A by filling the nodes of 4 from the set
{X1, .ees Xy y5 ---, M, } SO that the resulting tableau T is (m|n)-semi-standard. This
means that we first fill the nodes of a subdiagram p < A with the even indeterminates
{x1, ..., X, } so that the resulting subtableau is semi-standard. Then we fill the skew-
diagram A/p with odd indeterminates {#,,...,7,} so that its transpose is semi-
standard. Let us suppose that the ith column of 7" has length r and is filled from top
to bottom by

(Xiy s Xiyy weey Xigy My woe s Mj,)- (3.8)

We associate to (3.8) the following determinant:

1 2 r

X Xy X

1 r

n Yot Xy

1 2 r

T xi.S xi.S o xi.S

AT = det , (3.9)

! 1 2. A

i M M

1 2 r

M M M

1 2 ¥

n]r 17]1 n]r

where r = s+ 1. We set AT = [, 47.

Theorem 3.3. The set {AT}, with T running over all (m|n)-semi-standard tableaux of

shape 1., is a basis for the space of gl(d)-highest weight vectors in S(C?®@C™") of
highest weight 1.

Proof. It is easy to see that every A7 is a g/(d)-highest weight vector of g/(d)-highest

weight /. Now according to [1] the dimension of V;i\n equals the number of (m|n)-

semi-standard tableaux of shape 4 and hence it is enough to show that the set {47} is
a linearly independent set. Now due to weight considerations it is enough to prove
that the set of {47}, where T is over all (m|n)-semi-standard tableaux with fixed
occurrence of {xi,...,Xm, ", ...,1,}, is linearly independent. We proceed by
induction on the number of odd indeterminates that occur inside the 7’s. If that
number is zero, then the conclusion of the theorem is know to be true (see e.g. [10]).
Thus we may assume that at least one odd indeterminate occurs in all of the 7s.
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Now let #; be the odd indeterminate appearing in all 47 with i minimal. Let

> ara” =0. (3.10)
T

We embed S(C?®C"") into S(C?® C™ ") so that we may regard (3.10) as a sum
in S(C!®C"™ ). We apply to (3.10) the linear map

>
4= xﬁn aJ
= +1 817i

It is clear that the resulting sum is of the form

Z Z /’LSAsv
T Sedr
where A7 is the set of all tableaux obtained from T by replacing one of the #;-nodes
by an x,,,1-node. We may assume that all S are (m + 1|n)-semi-standard with one
less odd node. Furthermore each g is a non-zero positive integral multiple of Ar.
(Note that As = pAs if and only if #; appears with multiplicity p in some column and
S is obtained from 7" by replacing the first #; node of this column by x,41.)

We claim that all S are distinct (m + 1|n)-semi-standard tableaux and thus by
induction they are linearly independent. This implies s = 0 and hence Ay = 0 and
we are done.

In order to prove the claim we consider two cases.

In the first case suppose that S and S’ are obtained from the same 7. But in this
case S and S’ are obviously different, since S and S’ are obtained from T by
replacing #; by x,,4; in different columns.

Now suppose that S and S’ are obtained from 7T and T’, respectively, and T # T".
If the positions of #; in T"and T” are the same, then 7" and 7" differ at some #, node,
i#s. But then S and §’ also differ at this particular #,-node as well. If on the other
hand T and T’ differ at some #; node, then this means that T at a node has r;, while
at the same node 7" has some 7, i#s, or X, k#m + 1. But then in all of S’ this
particular node is always #, or xi, while in all S this particular node is either #; or
Xmy1- Thus S and S” must be distinct. [

Let 1 be a Young diagram lying in the (m|n)-hook of with /(1)<d and T be an
(m|n)-semi-standard tableau of shape 2. We may fill the boxes of the Young diagram 1
from the set {x!, ..., x?} in a way so that the resulting tableau 7" is semi-standard. Let
the ith column of 7" be filled by {x*!, ..., x*'}. Suppose that a joint gl/(m|n) x gl(d)-
highest weight vector is of the form (3.7). We may replace the upper indices 1,2, ..., r
of all the entries in 4; s (or 4 ;ﬁ;_) by k1, ks, ..., k.. Let us call the resulting determinant
Aiﬁ; (or A)'T:_') and consider the following product of determinant.

v A

Al 1 4%
H k,/fk ij’-

k=1 j=v+1
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It is clear from symmetry between the upper and lower indices that when T’ ranges
over all semi-standard tableaux we obtain a basis for the g/(m|n)-highest weight

vectors of highest weight / in S(C?®C"").
Now let 1 be a Young diagram lying in the (m|n)-hook of with /(1) <d and T and
T’ as before. Let the ith column of 77 and T be filled by

{xf Xy

(xi|axiz7 ~--axl}7’7j|7 ~--17Ij,)7

respectively, from top to the bottom. To the ith column of the bi-tableau (7, T") we
associate the following determinant:

xf?" X2 X

1 n 11

ki k> Ky

Xy X, X,

k k k,

(T’ T,) . xisl xl‘: een xi;
AT =det| Ty 0 o (3.11)

My My M

ki ko k,

UL 17/‘2’

ki k> ky

r’]t ;/’jl n]r

where again r = s + 7. We set 477 HA‘ A (I'T) The following theorem gives an
explicit basis for each irreducible g/(d) x gl(m|n)-component in S(C!@C"m.

Theorem 3.4. The set ATT) where T' is semi-standard in {x", ...,x%} and T is (m|n)-
semi-standard in {x1, ..., Xm0y, ..., N, }, is a basis for Vi® Vniq‘n in S(C!@C™M).

Proof. Given A""T) with (T, T’) fixed. By Theorem 3.3 and the Jacobson density
theorem (more precisely by Burnside’s theorem) we can find an element
(a®b)e U(gl(d))® U(gl(m|n)) such that (a®b)AT-T) is the joint gl(d) x gl(m|n)-
highest weight vector and a®»b annihilates all 455) for (S,8")# (T, T"). This
implies that the set {A(T’T/)} is linearly independent. But the number of semi-
standard tableaux in {x!, ..., x?} times the number of (m|n)-semi-standard tableaux
N {X1, ooy Xy Hyy ey i} 1S prec1sely the dimension of the space V‘@ V’ O

min*

Remark 3.1. The above theorem is known in the case when n = 0 (see e.g. [10]).



S.-J. Cheng, R.B. Zhang | Advances in Mathematics 182 (2004) 124—-172 139
4. The (O, spo)- and (Sp, osp)-duality

Let C? be the d-dimensional complex vector space with standard basis
{e',e?,...,e?}. Let O(d) be the orthogonal group leaving invariant the symmetric
bilinear form (-|-) as in Section 2, and let C"" be the superspace of dimension (m|n).
The natural action of O(d) on C? extends to an action on C¢/®C™". This action
gives rise to an action of O(d) on the supersymmetric tensor S(C¢ ® C""), which, as
in Section 3, we identify with C[x,n], the commutative superalgebra in (3.2). As the
action g/(d) under this identification gets identified with certain first-order
differential operators as in (3.3), the action of the Lie algebra of O(d) naturally
gets identified with certain first-order differential operators as well.

Consider the following first-order differential operators:

EX = Z x —+ 5”, Eik = Z 88 ’
j=1 "I

Jj=1

El = Z ’72 El = Z "115,11 621 i (4.1)
k

wherei,s =1, ...,mand k,t =1, ..., n. It is evident that they form a basis for the Lie
superalgebra g/(m|n) and it is clear that O(d) commutes with gl(m|n).
Next consider another set of operators on C[x, n].

d
Orxx __  d+1—j (0] m d+1—j o __ d+1—j
=% xxt on fon .o Z:fkn :
j=1

d d d
- 0 0 : 0 0 0 0
O gxx O 4xn O 4mn E
A = — T Ai = —_— A = - -
’ ; o ax{ ‘ ]21‘ ax] ol S oy on T

where 1 <i<s<m and 1 <k<t<n. We note that these operators also commute with
the action of O(d) on C[x, 7. It is not hard to see that these operators together with
(4.1) form a basis of the symplectic-orthogonal Lie superalgebra spo(2m|2n). In fact,
using the Z-gradation of spo(2m|2n) given in Section 2, we have g; = 3. CO4¥ +
S COU + 3 COUM and g_, = Y COLF + 3 COn" + Y COIl. Thus on C[x,n]
we have an action of O(d) x spo(2m|2n).

An element /'€ C[x,n] will be called ©A-harmonic, if CA%f =0 A}'f = 0A]lf = 0.
The space of ?4-harmonics will be denoted by ©H. Note thdt since [gl(m|n)7 g,]<=g
the space ?H is invariant under the action of gl/(m|n). Also °H is clearly invariant
under the action of O(d). Hence we have an action of O(d) x gl(m|n) on °H. Let °1
be the subalgebra of C[x,n] generated by I, °I" and °I!'. It is clear that °7 is

[AN

the subalgebra of O(d)-invariants in C[x,n]. We have the following theorem.
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Theorem 4.1 (Howe [13]). The pairs (O(d),spo(2m|2n)) and (O(d),gl(m|n)) form
dual reductive Howe pairs on S(C*® C"") and on CH, respectively. Thus we have

C[Xv 'l] = Z Vé(d) ® Vsi)o(2m|2n)7

1) ~ ;//
H= § : VO m\n’

where A is summed over a set of irreducible O(d)-highest weights. Here 7 and )" are
certain non-isomorphic irreducible spo(2m|2n)- and gl(m|n)-highest weights, respec-
tively. Furthermore the map I ® °H — CIx, | given by multiplication is surjective and
we have, for each 1, Vspo(zm\zn) or V,fﬂ"ln

Let d be an even integer and consider the d-dimensional complex vector space with
the standard basis e',¢?, ...,e? and equipped with the non-degenerate skew-
symmetric bilinear form ¢ -|- > as in Section 2. Let Sp(d) be the corresponding
symplectic group. Again we have an action of Sp(d) on C?®@C™", inducing an
action of Sp(d) on the supersymmetric tensor S(C?® C™"), which we again identify
with C[x, n].

Introduce the following operators:

(ST

d
2

_ 1—j 1—j 1—j
SPIIIW § : d-H/ d+ Ix/)’ Sp[‘iﬂ § x;1+ .IHZ+ ./)’

j=1

1=
(N1

2 0 0
Spypm _ J o d+1—j d+1-j / Sp 4 ‘cx_
e Z i e Z <8x’ oxdH1= gyt 8)&)7
.: 1

Jj=1

d
2 o 0

Sp 4xn

pAtk _Z <8XJ8 d+1—j ax?urlja_";{)’

J=1

d
2. (o o a 0
Sp A — =,
kt — Z <a]7k ai’[d+l —j a”]z+17] a'/’]r

j=1

where 1 <i<s<m and 1<k<t<n. It is again not hard to see that these operators
together with (4.1) form a basis for the Lie superalgebra osp(2m|2n) and their actions
and that of Sp(d) on C[x,n] commute.
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An element /'€ C[x,n] will be called ” A-harmonic, if P AL f =S A}'f =P A]lf = 0.
The space of *” A-harmonics will be denoted by *” H. Similarly, we have an action of
Sp(d) x gl(m|n) on PH. Let ’I be the subalgebra of C[x,n] generated by
Spxx, S and SPLN) so that I is the subalgebra of Sp(d)-invariants in C[x, 7).

In a similar fashion we have the following theorem.

Theorem 4.2 (Howe [13]). The pairs (Sp(d),osp(2m|2n)) and (Sp(d), gl(m|n)) form
Howe dual reductive pairs on S(C'@C"™") and on P H, respectively. Therefore we
have a decomposition of modules

C[Xv 'ﬂ = Z Vép(d) ® Vjsp(ZmBn)’

S ~ A i
PH= Y Va)® Vi
2

where J. is summed over a set of irreducible Sp(d)-highest weights. Here i’ and 2" are
certain non-isomorphic irreducible osp(2m|2n)- and gl(m|n)-highest weights, respec-
tively. Furthermore the map P ® " H — C[x, | given by multiplication is surjective

\ 2 _Sp Y
and we have, for each 1, Vosp(zm\zn) =~rJ Vm‘n.

The proofs of Theorems 4.1 and 4.2 are based on the fact that the invariants of the
classical group of the corresponding dual pair in the endomorphism ring of

S (Cd®([3’”|”) are generated by quadratic invariants. Although in [13] it is shown that
the pairs (O(d),spo(2m|2n)) and (Sp(d),osp(2m|2n)) are indeed dual pairs on
S(C!®C™M), the explicit decomposition of S(C?®C™") was not given. We will
embark on this task in Section 5.

We conclude this section by showing that the representations of spo(2m|2n) and
osp(2m|2n) that appear in Theorems 4.1 and 4.2 are unitarizable. We first recall some
definitions.

Let A be a superalgebra and T an anti-linear map with (ab)T =b'a’, for a,b in A.
We call ¥ an anti-linear anti-involution if (a")" = a. Now let 4 be a superalgebra
equipped with an anti-linear anti-involution ¥ and let ¥ be an A-module. A
Hermitian form (-|-) on V is said to be contravariant if (av|w) = (v|a'w), for ae 4 and
v,we V. If furthermore (-|-) is positive-definite, then V is said to be a unitarizable A-
module. We remark here that we have defined the anti-involution and the
contravariant form without “super signs”. It follows then that any unitarizable
module is completely reducible.

and V*

osp(2ml2n) that occur in the

Proposition 4.1. The representations Vs);';o(zm\zn)

decompositions of S(C! ® C"") are unitarizable.
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Proof. We need to construct a contravariant positive-definite Hermitian form on
C[x,m]. We proceed as follows. First note that the space C[x,n] is an irreducible
representation of the direct sum of a Heisenberg algebra and a Clifford superalgebra

with generators mapped to xj nk7 ? < ?r/’ fori=1,....om, k=1,...,n and j =

.,d, and 1. Identifying this superalgebra with its image we have an anti-linear
anti-involution given by

T T
5 0 ; ; 0 0 ;
) S IV VIS S A B T

This gives rise to a unique contravariant Hermitian form (-|-) on C[x, n] with (1|1) = 1.
Furthermore for any non-zero monomial f € C[x,n] we have (f|f) >0, and hence (-|-)
is positive-definite. Therefore C[x,m], as a representation of the Clifford super-
algebra, is unitarizable.

Now it is easy to see, using (4.1) along with the formulas for 5?1, 4 and °I, °4
in this section, that osp(2m|2n) and spo(2m|2n) are invariant under the anti-
involution . This implies that the representations of osp(2m|2n) and spo(2m|2n) on
C[x, n] are unitarizable. O

5. Joint highest weight vectors

In this section we will describe the explicit decomposition of the space

S(CY®C™") under the joint actions of the relevant dual pairs. We will do so by
explicitly finding a joint highest weight vector for each irreducible component.

5.1. The case of (O, spo)-duality

Consider the (O(d), spo(2m|2n))-duality on the space S(C?®C™"). Using the
notation from Section 4 we make the identification of S(CY/®C™") with the
polynomial superalgebra C[x,n] so that the Lie algebra so(d) and spo(2m|2n) are
identified with differential operators.

By Theorem 4.1 we only need to find the decomposition of the space of harmonic
polynomials ?H into irreducible O(d) x g/(m|n)-modules. By Theorem 3.2 C[x, n] as
a gl(d) x gl(m|n)-module decomposes into Y, Vi® V,f;‘n, where the summation is
over all partitions 2 with /(1) <d and 4,41 <n.

Consider first the case when m=>4. Take a diagram 4 with 2| + 1, <d and let v; be
the corresponding joint g/(d) x gl(m|n)-highest weight vector in C[x,n] of the form
in Theorems 3.1 or 3.2. Note that in this case it is automatic that 7,,,; <n, as long
asn=1.
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Here and further we use 1 to denote the (m + n)-tuple (3, ..., % —3, ..., —1). That is,
|

the first m entries are %, while the last n entries are —3.

Proposition 5.1. Suppose that n>1 and m=>4. The vector v, is ©A-harmonic of O(d)-
weight corresponding to the diagram 1. Therefore
1
1o} ; }+di
H= Z Vi

m\n ’

where J. ranges over all diagrams with J + 2y <d. Here the weight /. + d% denotes the
sum of the gl(m|n)-weight corresponding to the Young diagram A with the (m + n)-
tuple d,.

Proof. Note that by our choice of the Borel subalgebra of so(d), it is automatic that
v; is an O(d) x gl(m|n)-highest weight vector. (In fact this is true for any 1.) Thus in
order to show that v, is 9 A-harmonic it is enough to show that it is annihilated by

0N = Z]d Lo 7 M, This is because v, is already annihilated by the nilpotent

radical of the Borel subalgebra of g/(m|n), which together with 947} generates the
nilpotent radical of the Borel subalgebra of spo(2m|2n). Also note that if 2| <m, then
the joint highest weight vector is the usual joint highest weight vector in the classical
O(d) x sp(2m)-duality and hence is killed by °47y [14]. So we may assume that
Jy>m. In this case in order to show that OAHUA =0, we consider the classical
O(d) x sp(2m + 2n)-duality. Here the joint highest weight vector w; of O(d) x
sp(2m + 2n) is a product of determinants of the form 4, 4, ~~A;r , with only 1}

exceeding m. That is, only in 4 can we possibly have variables of the form xfnﬂ with
i=1,...,n From the duality in the classical case we know that w, is harmonic [14]

and hence in particular 47w, = 0. Consider the first-order differential operators
I;= Z]‘.lzl '7]13%’ fori=1,...,n. We see that 94} commutes with all I'; and hence
mAi

0=T1-Ty A w; = A5 T

1 l’ﬂ

But I'y--- Ty _,,w; = (=1 (2, — m)lv; and hence °A}fv; = 0.
Finally the addition of d% to the g/(m|n)-highest weight A is of course due to
@.1. O

As in [14] one shows that v, indeed has O(d)-weight corresponding to the Young
diagram A. But as 4 ranges over all partitions with 1] + 2, <d we conclude that the
v;’s generate the complete set of all finite-dimensional irreducible O(d)-modules.
Due to O(d) x gl(m|n)-duality in H we see that

1

01y o 1 Atd 5

H> E Vo @ Vin z
A

where / ranges over all Young diagrams with 4| + 5 <d.
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Proposition 5.2. Suppose that n>1 and m=4. Then as an O(d) x spo(2m|2n)-module
we have the following decomposition.

!
d miny ~ A Atd 3
S(C@C"™) = Z Vo @V poamiony
where J. ranges over all Young diagrams with 2\ + 5 <d.

Now consider the case when m<%. For this case we introduce new even variables
so that the total number of even variables is at least %. Since the case when d is odd is
analogous we assume for simplicity that d is even and we add new variables

x!

1> ...,xf_i, j=1,...,d, to the polynomial superalgebra C[x,n] and denote the
2

resulting superalgebra by C[x’,nm]. That is, we are considering the embedding

d
S(Cc! @ = s(C?@C2"). Without further mentioning we adopt the convention
of adding a ’ to operators, vectors, etc., when we are regarding them as over

S ((Cd®([3%‘"). So for example we denote the corresponding Laplacian of C[x’,n] by
OAF, 1<i,j<4, etc. and call ©A’-harmonic an element /' € C[x’, 0] that is annihilated
by all these Laplacians. We note that OAfsx = OAZ{YV", for 1 <i,s<m, etc. Furthermore
OAgfx, with either i or j not in {1,...,m}, is a sum of second-order differential
operators, each of them involving differentiation with respect to some of the new

variables x/ o xf! that we have introduced. It follows that if f € C[x,n] = C[x', 7],
2

m+17

then f is A’-harmonic if and only if £ is ©A-harmonic. Thus °H<%H'.
Now in C[x/,n] we know that the subspace of A’-harmonics is

1
}Hrdi

oy — Z Vé(d) ® Vipz ,
7 2

where A ranges over all Young diagrams with 1| 4+ 4, <d by Proposition 5.1. Let v/,
be a joint highest weight vector in Y H’ for the component V& o ® V;:d%' Then if the
first column exceeds ‘7" we have up to a scalar multiple ’

vy = Auqﬁ‘ag“‘l‘zgl~
Otherwise we have up to a scalar multiple

J— e N
U;‘ _A)“/IA),Z A/“le
Suppose 4 is such a diagram with 4,,,; > n. In this case the nth column of / exceeds m
and hence 4, contains at least one row with entries consisting entirely of newly

introduced variables. Now by Theorems 3.3 and 4.1 all the O(d)-highest weight
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vectors of highest weight 1 in “H’ are, up to a scalar multiple, of the form A7, where

T runs over all (¢n)-semi-standard tableaux. But then it is not hard to see that one of

the rows in some 4] must consist entirely of newly introduced variables so that 47

- =/, = 0. Since °H<H’, this implies that
2

reduces to zero when setting x/, =

there are no O(d)-highest weight vectors of highest weight 4 with 4,1 >n in °H.
On the other hand if i’l + 2'2 <d and 4,1 <n, it is quite easy to see, using Theorem
3.2, that v; (that is the O(d) x gl(m|n)-joint highest weight vector in C[x,n]) is

. d ; .. .
annihilated by 43 =37 %%, and hence v; is indeed ©4-harmonic.
X1 xl

Combining the results of this section we have proved the following.

Theorem 5.1. We have the following decomposition of °H as an O(d) x gl(m|n)-
module:

Of~ Z V’ 7+d;

\"’

where ). ranges over all diagrams with | +5<d and i\ <n. Thus as an
O(d) x spo(2m|2n)-module we have

S Cm ‘n Z VO(d spo 2m\ 2n)?

where A ranges over all Young diagrams with I +25<d and .y <n. Here the labels

S]

of the spo(2m|2n)-highest weight of Vpo (3mion) with respect to the Dynkin diagram of
Section 2.4 is obtained by applying (2.2) to the gl(m|n)-weight . + di.

Proof. The preceding discussion already shows that the theorem hold when n>1 and
m<4. Since in the case when m>% and n>1 the condition 4, <n is vacuous, the
theorem is true in this case due to Proposition 5.2. But of course the case n = 0 is the
well-known classical case for which the conclusion of the theorem hold as well. [

Remark 5.1. Partial results on the decomposition of the space S(C?® C"") with
respect to the joint action of O(d) x spo(2m|2n) were obtained earlier by Nishiyama
in [27] by constructing certain O(d) x spo(2m|2n)-joint highest weight vectors in
S(C?®C™"). However, the full set of such joint highest weight vectors (and hence
the complete decomposition) was not obtained in there.

5.2. The case of (Sp, osp)-duality

Now consider the action of the dual pair (Sp(d),osp(2m|2n)) on the space
S(CY®C™M). The procedure is similar to that of Section 5.1.
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In view of Theorem 4.2 we again only need to find the decomposition of the space
P H with respect to the joint action of Sp(d) x gl(m|n). According to Theorem 3.2
C[x,n] as a gl(d) x gl(m|n)-module decomposes into >3, V;®V,,,, where the
summation is over all partitions 1 with /(1) <d and A, <n.

Let us first consider the case when m>%. We take a Young diagram 2 with /(1) <4
so that the condition 4,,.; <n here is automatic. We recall from Section 2 that the
finite-dimensional irreducible representations of Sp(d) are parameterized by

diagrams with length not exceeding %

Proposition 5.3. Suppose that m?% and let 1 be a diagram with I(1) <%. Let
veVi®Vh
P A-harmonic of Sp(d)-weight corresponding to the diagram J.. Therefore

be a gl(d) x gl(m|n)-joint highest weight vector in C[x,n|. Then v, is

|n

. 1
S ~ 2 /nLa'i
PH=Y Vi ® V7
A

Here A+ d% denotes the sum of the

where ) ranges over all diagrams with | ()L)S%I. e
m + n)-tuple d.

gl(m|n)-weight corresponding to . and the (

Proof. Since m>% and /(1) <4, the g/(d) x gl(m|n)-joint highest weight vector is of
the form v; = Hf;l Ay, that is, only the x variables are involved. Since the Borel

subalgebra of sp(d) is contained in the standard Borel subalgebra of g/(d), v, is an

sp(d) x gl(m|n)-highest weight vector. We need to show that it is ” A-harmonic. For

d

this it is again sufficient to show that v; is annihilated by P47} = /.7:1 (a% 5 -
- X 0%

ﬁ?“’fd%) But this is clear by the classical Sp(d) x so(2m)-duality [14], because the
formulas for the joint highest weight vector v; and for the Laplacian 747} in the
classical case are identical with our formulas here. Now the proposition follows from
Theorem 4.2 together with the fact that we have constructed an Sp(d)-highest weight

vector corresponding to every finite-dimensional irreducible Sp(d)-module. O

We now consider the case m <%. In this case the condition 4,,,1 <nis not an empty
condition. Here we can apply the idea of Section 4.1 by inserting enough new even

variables X’/

> ...,x’é and consider the Sp(d) x osp(d|2n)-duality on the space
2

S(Cd®¢3§‘”). We identify S(C‘J®Cg‘”) with C[x',n] as before and regard
Clx,m|<C[x’,n]. Again we will use ' to distinguish elements in C[x’,n] from
elements in C[x,n]. As in Section 4.1 it is easy to see that an element
feClx,n)=C[x',q] is »A-harmonic if and only if it is %’ A’-harmonic and therefore
SPHCSPH/,
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Now by Proposition 5.3 we have

SpH/ _ Z V)' ® V;‘+d%
- - Sp(d) %‘n ’

where Z is summed over all partitions of length /(1) <%. A joint highest weight vector
v, 1s given by Hf;l A; and hence by Theorem 3.3, the set of 47’s, where T runs over
all (%’|n)-semi-standard tableaux of shape 4, is a basis for the space of Sp(d)-highest
weight vectors of highest weight 4 in P H'.

Now suppose that 4,41 >n. Let T be a (4n)-semi-standard tableau and 47 =
[1,47. 1t is clear that in this case one of the 4]’s must contain a row consisting
entirely of newly introduced variables. But then this means that, by setting these
newly introduced variables equal to zero, 47 is zero. This implies that in ? H there
are no Sp(d)-highest weight vectors of highest weight 2, and hence no Sp(d)-module
of the form Vép( 4) €an occur in the decomposition of “ H with respect to the action
of Sp(d).

The above argument combined with Proposition 5.3 gives the complete
description of the Sp(d) x osp(2m|2n)-duality on the space S(C?® C""), which we
summarize in the following theorem.

Theorem 5.2. We have the following decomposition of PH as an Sp(d) x gl(m|n)-
module:

o1

S ~ 2 /nLdE

"H = Z VSp(d) @ Vm|n ’
A

where ). ranges over all diagrams with [(1)<% and Jyp1<n. Thus as an

Sp(d) x osp(2m|2n)-module we have

d
2

1
y L § Jrdt
S(C!@C"m) ~ Z Vso@) @V ospamfan)
7

where ) ranges over all Young diagrams with 1(1) <% and A1 <n. Here the labels of

itdd
the osp(2m|2n)-highest weight of V. e

osp(Imi2n) with respect to the Dynkin diagram of

Section 2.4 is obtained by applying (2.1) to the gl(m|n)-weight . + di.

Proof. Let 2 be a diagram with /(2) <4 and A, <n. In view of the discussion above

and Proposition 5.3 it remains to prove that in the case when m<%, the

gl(d) x gl(m|n)-joint highest weight vector in C[x,n] is indeed S’ A-harmonic. For
d

this it is enough to show that it is annihilated by 7475 = e (le T~ o mé).
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But this is easy to see using the formula for such a joint highest weight vector given in
Theorem 3.2. [

6. Character formulas for irreducible unitarizable spo(2m|2n)- and
osp(2m|2n)-modules

In this section we give combinatorial character formulas for the spo(2m|2n)- and
osp(2m|2n)-representations that appear in the decomposition of S(C?®C™") of
Section 5. We shall need a result of Enright [8] which we shall recall. Before this we
need some preparatory material.

Consider a Hermitian symmetric pair (G, K), where G is a real classical simple Lie
group. Let g and f denote the corresponding complexified Lie algebras. Fix a Cartan
subalgebra ) of f so that ) is also a Cartan subalgebra of g. Let b be a Borel
subalgebra of g containing ) so that ¢ = f + b is a maximal parabolic subalgebra of g
with abelian radical u. Hence as a vector space we have g = {@u. Denote by 4 and
A(¥) the root systems of (g,b) and (I, ), respectively, and let 4., be the set of positive
roots determined by b. Furthermore set A(f), = 4, n4(f) and let p and p; denote
the respective half sums of positive roots. Also let A(u) = {axeA|g,=u} and put
Py = %Z“E” a. Let W and W(T) denote the Weyl groups of g and f, respectively.

Now to each Aelh* one can associate a subgroup W, of W. Since we will need to
explicitly compute W) later on, we will give a detailed description of it now. The
group W, is the subgroup of W generated by the reflections s,, where aeA(u)
satisfying the following three conditions [8,7]:

(i) <A+p,a)eN.
(i) If for some fe A we have (/4 + p|f) =0, then (a|f) = 0.
(iii) If for some long root fe A we have (1 + p|f) =0, then « is a short root.

Associated to W, one may define a root system 4, consisting of the roots y€ 4 such
that s, lies in W;. Now we set 4,(f) = 4,n4(Y), 4,4 =4, n4; and 4;(f), =
A,(f)n4;4. The group W,(I) is defined to be the subgroup of W, generated by
reflection along the roots lying in 4,(f),. We have a decomposition of the group

W, =W, (t) x W}, where

Wi = {weW;|{wp,a)eZ,, Vaed;(f), }. (6.1)

Remark 6.1. Note that our definition of W is actually the definition of W), in [7.8].

For peb” being a 4(f), -dominant integral weight we denote the finite-dimensional
irreducible f-module of highest weight u by V}', as usual.

Now let 1eh” be a A(f) -dominant integral weight. We may extend Vf)~ to a g-
module in the trivial way and consider the induced representation Mg of g. It is clear
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that Mé contains a unique maximal submodule and hence has a unique irreducible
quotient, which is isomorphic to the highest weight irreducible g-module of highest
weight 4. We will denote this g-module by Véx

For ¢ebh” with (&, d) eR for all xe A(f), we denote the unique A(f) , -dominant

element in the W (f)-orbit of & by &.
We have the following character formula for an irreducible unitarizable
representation V7.

Theorem 6.1 (Davidson et al. [7], Enright [8]). We have

e Pu Zwe wt (— l)l(w)ch Vfw()“+p)_/’
[Lieaw(l —e) ;

ch Véz

where [(w) is the length of w in W).

6.1. Character formula for spo(2m|2n)-modules

It follows from Theorem 4.1 in the case when » = 0 that we have the following
identities of characters, for d even and odd, respectively.

d
d 2 1 o
V1ee-ym)? — ch VigchV, 52, deven,  (6.2)
,11 ,1} (1= xp)(1 = x7"y) z;: o p2 2
d-—1
o T !
Vi Vm —
1 (L=xip) (1= x71y) (1 =)
= Z ch Vg ch V;*jng d odd. (6.3)

Here 7 is summed over all partitions with 4] + 45 <d such that /(1) <m and } stands
for the m-tuple (4, ...,1). Let us write Xo( )( x) for the character of Vé(d) to stress its

dependence on the variables xi, ..., We will now apply Theorem 6.1 to the

[5]'

Hermitian symmetric pair (Sp(2m), U(m)), so that g = sp(2m) and = gl(m). We
A

may now rewrite ch V. J(r ) in terms of Schur functions as follows. Since p, + di is

W ()-invariant, we have by Theorem 6.1

)
h V; +d 1 ZWE W?‘-thl% ( l) Sw(;”"»pd)*pd (y)
2

=1 ym) ;
sp(2m) m H1<i<j<m (I —yiyy)
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where here and further p;, = p + d' Here Wf is the subset of the Weyl group of

sp(2m) defined by (6.1).

s
2

Remark 6.2. As we now need to deal with W! b W, p! and W, Ll (f) for different
2 a3

m at the same time, we introduce a superscript m in order to distinguish them. So for
example mel is the subset W' | of the Weyl group of sp(2m).
A+d2 +di

Combining this with (6.2) and (6.3), respectively, we have for even and odd d
respectively

1(w)
% m 1 ) Zu € Wfill— (_ 1 ) ‘ S\'V(/'L-&-P,i)—l’z/ (y)
= XA X s 5 6.4
Z 0(d>( ) H1<i<j<m (1 _yiyf) ( )

gt 1
,11 ,11 (1= x7) (1 = x;7 ') (1 = p)
. Zwew/fzk (=" s, )
— ; Lo()(X) om0 ) ) (6.5)

Here 15, (x) = X?’)(d)(x) if and only if / is obtained from A by replacing the first
column of 4 by a column of length d — A|. That is, the corresponding representation
of the Lie algebra so(d) are isomorphic. Here and further we denote by / the Young
diagram obtained from 2 by replacing its first column by d — 2| boxes.

In order to distinguish such representations at the level of characters in the case
when d is odd let us take —I € O(d)\SO(d) and let ¢ denote the eigenvalue of —1 so
that we have ¢ = 1. We may then rewrite (6.5) as

I

-1

i 1
E —exi) (1 —ex; ) (1 — eyy)
I(w)
D e wh (=1) vt pa)—pa )

2 pawy
= X & X , 6.6
2/1: O(d)( ) Hl<i</'<m (1 _yiyj) (66)

=

where now XAO( d) (e,x) is a polynomial in x and ¢ such that when setting ¢ = 1, we

obtain Xio(d) (x). Now it is easy to see that if 4 is a Young diagram and Xéo(d) (x) is the
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corresponding SO(d)-character of ;{_A"OM(S,X), then y5, (6:X) = el 150.4) (X), Where
|4] is the size of 1. Hence we have i (2,X) = &2, (e, %)

Identities (6.4) and (6.6) will be our starting point for a character formula for
unitary spo(2m|2n)-modules. We need the following lemma.

Lemma 6.1. Suppose that f*(y) and g*(y) are power series in the variablesy.

(i) Suppose that d is odd and
Zfi( ,{O(d) €,X) Z g ( Xo d) €,X), (6.7)

where the summation is over the full set of irreducible finite-dimensional characters

of O(d). Then f*(y) = g*(y), for all J.
(ii) Suppose that d is even and

Z f (Y)X/é)(d)(x) = Z QA(Y)Xé(d) (x),
2

A

where the summation is over the full set of irreducible finite-dimensional characters

of O(d). Then [*(y) +/*(y) = 9"(y) + 9" ().

Proof. We shall only show (i), i.e. for d odd, as the case of d even is analogous (in
fact easier). The argument is similar to the one given in [3].
We multiply identity (6.7) by the Weyl denominator D of the Lie group SO(d) and

10) (it p)
using the Weyl character formula for st*o( d)(x) = ZEW+ we obtain
DLW Y (1) =3 g B (<) et (68)
A weW A weW

Now as /A ranges over all integral dominant weights, 4 + p ranges over all regular
integral dominant weights of SO(d). Hence if 2+ as SO(d)-dominant weights, then
the set of weights {w(4 + p), w(u + p)|we W} are all distinct. Clearly two weights A
and p are equal as SO(d)-dominant weights if and only if u = 4. Thus looking at the
coefficient of ¢*** in (6.8) we obtain

A (1) 4 f(y)et = gy (y)et? + elg;(y)e .

Since &#lell = ¢, we conclude that /*(y)e’*? = g(y)e’*? and hence f*(y) = ¢*(y). O

From identities (6.6) and (6.4) by using Lemma 6.1 we obtain the following results
for every meN:
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In the case when d is odd:

I(w
Z (=1) ( )SW(7~+PJ)*W W15 e m, 0)

we W[,m+ll
itdy

I(w
= > (= )Swuw)fpd(yl’ s Vm)-

we W .
Jtdy

In the case when d is even:

I(w
(=1 (H)Sm_pd(yh w3 m; 0)

we Wf.mtl
Z+Lli
1y w)
+ Z ( l) SW(;:+pd)_pd(yla-~~7ym70)
we W?m+ll
Z+Lli
_ I(w)
a Z (=1) swuﬂu)w W1, e Vm)
we whn '
Z-tli
I(w
+ Z (_1) (W)Sw()}pd)fpd (yl7 cee ,ym).
we Wf‘m .

itdy

This allows us to define, in the case when d is odd, an element Ssip (1,2, ...) in the

inverse limit of symmetric polynomials, that is uniquely determined by the property
that

) I(w
S;Lp(ylﬂy%"'ayhﬁo?o?"') = Z (_1)( >Sw(/l+pd)fpd(y17""ym)'

we W 1
/'.+d§

Similarly we may define an element Sip 1,p2, --) + Sgp (1,52, -..) in the case when d
is even.

Remark 6.3. The elements Sﬁp(yl,yg, ...) and Sfp(yl,yz, L)+ Sfp(yl,yz, ...) are in
general infinite sums of symmetric functions and hence are strictly speaking not
symmetric functions. However, in these infinite sums there are only finitely many
summands for any fixed degree.

We now take the limit as m— oo in (6.4) and (6.6) and obtain the following
identities, respectively

| : S%,(y)
— A x) P ,
T (= xp) (1 = x;71y)) Z: Zouw( Tcic; (1= yiy)

d
2
(6.9)

o0

1

J
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Sp()

d% 00 1
H H 1 Z /CO(d &, X/H a
i=1 I1<i<y

= (1 —exiy;) (1 —ex;'y;) (1 —eyy) ~

—yiyj) (6.10)

where 1 is summed over all O(d)-highest weights and y = (y1, 2, -..).

Identities (6.9) and (6.10) follow from the fact that setting y,,.1 = Yo = --- =0,
they reduce to identities (6.4) and (6.6), respectively. Thus the left- and the right-
hand sides of (6.9) and (6.10) give rise to the same elements in the ring of the
symmetric functions, respectively.

Recall that w, the involution of the ring of symmetric functions which sends the
complete symmetric functions to the elementary symmetric functions, is defined by
o([Tjen ﬁ) = [[jen (1 +w;) (see for example [24]). We can now apply o partially

to the variables y,, i1, Vimi2, ... . After that we set the variables v, 11 = Viinaz =
-- =0 and we obtain the following identities (z; = y,,4s, for [ =1, ..., n).
d
2

H = f[ (1 +XiZ[)(1 —|—X;121)
i=1 j=1 I=1 (1 —xp;)(1 —x-fly/)

_ Z X%)( (x) 1S, (v.2) [T, (1+yiz) 7 6.11)
7 H1<,</<m (1- yzy]) H1<l<k<n (1 = zzx)
d-1
20 v (L+exiz)(1+ex'z)(1 +ez)
,1} JH o (L= exiy) (1 —exi 'y (1 — eyy)
= Z o) (&%) i HS;%( 2 1y (L +yiz) . (6.12)
P 1<i<j<m Yivi) Il <ci<ren (1 = Zizk)

Remark 6.4. We note that o([ ], <;<x 1=
following identities:

) = Ili</<k 7= This follows from the

Z/Z

E Z] Z2y eun
1 Z]Zk ) ) )7

Y,

S Zl Z2y ...
1 Z1Zk ; n ) 9 )7

I1<i<k

I<I<k

where /1 is summed over all partitions with even row lengths, and u is summed over
all partitions with even column lengths.

Let us now explain the term HSfp(y,z). Since setting the variables yy.p+1 =
Vmanio = --- = 0 the expression S;p(y) reduces to a finite sum whose summands are
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Schur polynomials with coefficients + 1, it follows that applying the involution o to
it, we obtain a sum whose summands consists of hook Schur functions with

coefficients + 1. In fact if Sﬁ'p(yl,yg, sL) = Zu &uSu(¥1,¥2, ...), where ¢, = + 1, then
(cf. [3])
w(SsAp(yl’yL )) = Z EHHS;l(yla weey Ymy 21, 22, )7
I

where HS,(y1, ..., Vm; 21,22, ...) 1s the hook Schur function of [1] in the variables
V1, ..., ¥ym and zy,z,, ... corresponding to the partition p. Next setting the variables

Zp+l = Zpsp = - = 0 we get the hook Schur polynomial associated to p, which we
denote by HS,(y1, .., ¥m; Z1, ..., Z»). One property of hook Schur polynomials is that
HS, (1, ..., Ym; 21, ..., 2y) is non-zero if and only if u lies in the (m|n)-hook, i.e.

Ui <n. So if Sf})(y) = >, €usu(y), then by HSﬁ“p(y, z) we mean the expression

HS?'I,(y,z) = Z el S, (1, -, Ymi 21y ooy Zn)-
u

Therefore 4 in (6.11) and (6.12) is summed over all O(d)-highest weights 4 such that
Sl K.

From Theorem 5.1, Lemma 6.1, and identities (6.11) and (6.12) we obtain the
following theorem.

1

Theorem 6.2. Let 4 be a diagram of Theorem 5.1 and let y

spo(2m(2n) be the irreducible

spo(2m|2n)-module corresponding to Vé( q) under the Howe duality. Here 1 is the
(m+n)-tuple (3, ... 5 =%, ..., =1).

(i) If d is odd, then

d HS;,(v,2) IT;,(1 + yiz1)

1

Jd>
chv. 2 .
Hl<i<j<m (l _yiyj) Hl<l<k<n (1 - Z[Zk)

-1
spo(2m|2n) — (yZ )

(i1) If d is even, then

1

| =
At-dy5 At+dy
ch Vsp0(22m\2n) +ch Vspo(22m\2n)
N (HSfp(yaZ)—"_HSiJ(%Z))Hi.I (1 +yi21)
=(yz)? :

Hlsis_/gm (l _yiyj) H1<l<k<n (1 - lek).

-1
-

Here yz~! stands for the product yy---yuzy'-z

Remark 6.5. The expression HS?},(y,z) in general involves an infinite number of

hook Schur functions, so the computation of these characters is a highly non-trivial
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task. In order to have a method to compute them, it is necessary to have an explicit
fm

ivdy
Section 8 that the coefficients of the monomials in a character of a fixed degree can
be computed by computing a finite number of hook Schur functions.

description of W ™" ;. We will do this in Section 7. From this we will then show in

6.2. Character formula for osp(2m|2n)-modules

As the arguments in this case are very similar to the one given in the previous
section, we will only sketch them here.

It follows from Theorem 5.2 in the case when n = 0 that we have the following
identity of characters.

d
2

FILI

o
=1 =1 = xyi) (1= x7)

=5 h Vi gych ijjm (6.13)
A

X m

d
2

). Let us write x5, (y) for the character of Vg, , to stress its

Here 1 is summed over all partitions with /(1) <min(%

1 1
Ry

dependence on the variables yi, ..., 4. We now apply Theorem 6.1 to the Hermitian
2

m) and } stands for the m-
tuple (

symmetric pair (SO*(2m), U(m)), so that we have g = so(2m) and t = g/(m). By

A
Theorem 6.1 we can then write ch Vw(2m) in terms of Schur functions as

I(w
ZneW‘m (71) ( )SW()~+pd>7pd (X)

A+d2 . d /+2
ch VY” (2m) — (01-+m)2 Hi</’(1 — XiX})

Here W™ A is a subset of the Weyl group of so(2m). Thus we have the following
A+ 2

identity.

I(w)
m ) Ewe Wf‘m 1 (_ 1) SW(/1+M)*PLI (X)

Atd:
— Lo (¥) 2 . (6.14)
(1 = x:)( 1 =Xy ZA: S(d) Hi<j (I = xix;)

Analogous to the proof of Lemma 6.1 one proves the following lemma.

Lemma 6.2. Suppose that f*(x) and g*(x) are power series in the variables x and
suppose that

Zf/L /CSp Zg /Spd (615)
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where the summation is over the full set of irreducible finite-dimensional characters of

Sp(d). Then f*(x) = ¢g*(x), for all J.

From Lemma 6.2 and identity (6.14) it follows that

I(w
(—1) ( >S1fv(/l+p)fp(xl’ ceey Xm, 0)

we W[ m\ 1
/+({2

I(w
= Z (—1) (t)Smipd(Xl, ...7Xm),

we W””
Atd: 2

which then allows us to define an element Sﬁn(xl,xQ, ...) in the inverse limit of
symmetric polynomials, uniquely determined by the property that

S% (X1, X2, +ves X, 0,0, ...) = Z (—l)l(w)s

we Wf.m .
Itdy

W) (X1 +oes o)

Taking the limit as m— oo (6.14) and Lemma 6.2 imply the following identity.

‘ 1 e
= =2 vl % (616)

_xfyz

We apply to (6.16) the involution of symmetric functions w partially to the variables
Xmals Xmi2, ..., then set the variables z,,; =z, = --- =0. We arrive at the
following identity (z; = x4y, for I =1,2,...).

d
ﬁ 1 . +in1)(1 +y;'z)
i=1 j=1 I= ylx])(l _y;lxj)
HS: (x;2) 1., (1 +x;z
Z Xp so( )Ht,l ( /) , (617)
1 H1<l</<m (1 - Xij) nglngn (1 _lek)
where HSfO(xl, eeesXm; Z1, .-+, Zn) 1s Obtained by applying the involution ® to Sfo and
setting the variables z,.; = z,.2 = -+ =0. As before it is also a sum whose

summands consist of hook Schur polynomials with coefficients + 1. By Theorem 5.2
and Lemma 6.2 we then obtain the following theorem.

1

Theorem 6.3. Let A be a diagram of Theorem 5.2 and let V

osp(zm\zn be the irreducible

osp(2m|2n)-module corresponding to Vép(d) under the Howe duality. Here % is the
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(m+n)-tuple (3, ..., % 3%, ..., =%). Then
s A (- .
Atdy N HS.S‘O(X’Z) Hi,l (1 +ylzl)
ch Vosp(22m|2n) = (XZ )2

H1<i<j<m (1= xix) [Ti<rcnen (1 —2i2k)

where xz~! denotes the product x1x3++xpzy 'z 2

Remark 6.6. We actually have Howe dualities of the dual pairs (O(d), g(C)) and
(Sp(d),g(D.,)) on the space S(CY ® C*). Here the infinite-dimensional Lie algebras
g(Cy) and g(Dy) are Kac-Moody algebras corresponding to the infinite affine
matrices C.,, and D, respectively [16]. From these dualities one can show that,
using similar arguments as we have given here, the corresponding characters of those
irreducible representations of g(C.)- and g(D. )-modules are given by certain
infinite sums of symmetric functions. Applying the involution w to these characters
one obtains the characters for our spo(2m|2n)- and osp(2m|2n)-modules. Thus the
characters of the representations of g(Cy,) (respectively g(D.,)) that appear in these
dualities determine the characters of the representations spo(2m|2n) (respectively
osp(2m|2n)).

7. The group W1+ d%

Throughout this section 4 = (41,42, ..., A) is a partition of non-negative integers
of length s<d. We shall describe the groups W;’” A and W™ P (T) for the Hermitian
i+ ) A+ 2

symmetric pairs (Sp(2m), U(m)) and (SO*(2m), U(m)).
Recall that the group W)’77 P is defined as the subgroup of the Weyl group of
I+

2
sp(2m) or so(2m) generated by reflections corresponding to aeA(u) satisfying
conditions (i)—(iii) given in Section 6. We will simply refer to them as conditions (i)—

(iii) in what follows.
7.1. The case of O(d) x sp(2m)-duality for d even

In the case when d is even W)'” A is the subgroup of the Weyl group of sp(2m),
i+ 2
which is isomorphic to the sign permutation group S,,><Z5'. The positive roots 4

of sp(2m) are generated by the simple roots —2¢1,&; — €,6 — €3, ...y Em—1 — &m. We
have p = —g; — 2e — --- — me,,, which we write as
p=(-1,-2,...,—m).

We have the condition that 2| + 15 <d. Now 4. (f) is generated by the simple roots
&1 — &2, ..., Em—1 — &m, While A(u1) consists of roots of the form —e¢; — ¢, 1 <i<<j<m.
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Let us first consider the case s = %. In this case

1 , o d d d
/1+di+p— </u1+2 1,/12+§*2,...,/1%71 +1,/1%,1,2,,m+2>

We see that A + d% + p has no zero coefficient, and hence condition (iii) is vacuous. It
follows that for each i = 1, ...,% with m>4; +d — i we have

1
<;u —|—d§+ p,—¢& — Si[er,') =0. (7.1)
On the other hand if m<A; +d —1i,i= l...7§7 we have forallt=1,...,m
. 1
<A + di+p, —g — g,) <0. (7.2)

This implies by condition (ii) that if « = —g; — ¢ is such that s, € W/’l’7 Pr then neither
il

2
k nor / can be in the index set J = {1, ...,%,21 +d—-1,+d-2, ...,id+%}. Let
2

I°={1,....m}\J. Let & = —&; — & with k,/eI°. Clearly we have
1 .
<i+di+p,a>€N,

and hence condition (i) is satisfied for such an . This implies that W;jrd% is generated
by the reflections s, with & = —¢, — &, k, /e I°. Hence Wﬁdl is the sign permutation
group on the index set I°. Therefore W)”:Ld% (f) is equal to tlee permutation group of
the index set 7° and hence A@+d%(f)+ consists of & — ¢ with k<[ and k,lel’.

Next consider the case s<%. In this case we have

d

2 1,2
2

d
Atdi+p=li+s-1,... 4+

—s,=—s—1,...
2 S’ N ) )

> =M+ =

) )

0
d
2
Since (4 + d% +p,2¢4) =0, condition (iii) implies that if aeA(u) is such that
2
s, €W Pt then « is a short root. As in the previous case (7.1) and (7.2) hold in this
Ata 3
case as well with i = 1, ..., s. In addition we have for j =s+1,...,4

1
()L+dz+p,—8j —de) =0. (73)
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Let J={l,....d—s— 1,41 +d—-1,...,A4+d—s} and I~ ={l,...,m}\J. Simi-

larly as in the previous case conditions (i) and (i) now tell us that a€ 4(u) is such that

s, €W P ifand only if o = —g; — ¢y with k, /eI~ and k#/. Clearly W;” A is equal to
Atdy i+dy

the even sign permutation group (i.e. permutations with an even number of sign

changes) in the index set /~. Therefore W ll(f) is the permutation group on the
A+¢§

index set /- and hence 4 A+l1(f)+ consists of ¢, — ¢ with k</ and k,/el™.
e CE

Finally consider the case when s>‘5’. In this case we have

1 d , d
i-’—di-f—p— ),]+§—1,...7/Ld73—§+s,s—§,
——————
d—s

d d d
ey 1 vyl ==, —1+==s5, ..., — =
I\ ,303 ) +2 s, +2 S, ) m+2

d _,_/‘,1_/

2 s s+

Then (7.1) and (7.2) hold for i =1, ...,d — s and we have in addition

, 1 ) d
(A+d2+p,—8/—8‘[]+2>07 ]:d—s+2,...,§,

\ 1
(A + di +p, 2£%+1) =0. (7.4)

Let I"T={d—s+1,s+1,s+2,....mPNii+d—1,....,2s+d—(d—s)}. Then

W)’” A is generated by s,, where o = —g; — ¢ with k,/el™ and k#1[. This implies
tHdy

that W” | is the even sign permutation group on the index set /™ and hence

A+d§
W}m P (f) is the permutation group on the index set /™ and hence Am_dl(f) . consists
-+ 3

2
of ¢ — e with k<l and k,leI™.

7.2. The case of O(d) x sp(2m)-duality for d odd

Suppose that s = 4L We have

3
72’

N W
INW)
N|+{MH

1 d
= =|lAh+z—1,., 43—
/1+d2+p l+2 ’ al%

Therefore (7.1) and (7.2) hold for i =1, ...7“’2;3 and also

1
(lﬁ-d—-ﬁ-ﬂ,—ﬁa{]—sd%) =0.
2 2
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Note that the coefficients of 4 + dj + p are all half integers. Hence if fe4(u) is a
long root, then

1
</H—d +p, /3>e +Z.

Thus the long roots are eliminated from the consideration of W)m A by condition (1).
L+ 2

Now let J={I,... . 3% +d—1,.. Jgs+d—(d—s)} and let I°=
{1, ...,m}\J. Then W”’ A is the even sign permutatlon group on the index set 7°
+dy

so that W;” P (f) is the permutation group on 7°.
+dy
d+1
Now suppose that s<“- so that

1

SIS
pon s Ty

S,

ST

Thus (7.1) and (7.2) hold for i=1,...,s. Furthermore (7.3) holds for j=

s+1,...,%L As before the long roots in A(u) are eliminated from considera-
tions of W'"dl. Set J={l,...,d—s—1,Ai+d—1,...,A,+d—s} and let
+
I’:{l,...,m}\J Then W;’” P is the even sign permutation group on the
+dy

2
index set I~ so that W;” P () is the permutation group on 7.
+dz

. . d+1
Finally consider the case when s> i so that we have

1
/l—i—di—&—p: il—i—il—l,...,)td,s—c—i—i—s s
—————

2 200y
d—s
L1 d d d
53 ,——,...,1+——s,—1—|———s,...,—m+—
22 2 2 2
~—~ —_—— ——
d+1 d+3 K} s+1

Thus (7.1) and (7.2) still hold with i =1, ...,(d —s) and also (7.4) holds with j =

I, ... ,%. Again the long roots are eliminated from the consideration of W™ A Let
A+ 2
J=A{l,...,(d—s),(d—s)+2, ...,dzi‘,/h +d-1,..., kg s+d—(d—s)} and let
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I ={1,...,m}\J. Then W;’” 1 is the even sign permutation group on the index set
.+ci

I'" so that W;”M% (f) is the permutation group on I*.

7.3. The case of Sp(d) x so(2m)-duality

In this case W A is a subgroup of the Weyl group of so(2m), which is isomorphic
Atdy

to the even sign permutation group S, >< Zg”’l. The positive roots 4 is generated by
the simple root —&; — &3,6] — €,8 — €3, ..., &m—_1 — &y, and hence p = —ey — 2e3--+ —
(m — 1)g,,, which we write as

p=(0,—1,-2,...,—m+1).

Let A = (41,42, ..., A4) be a partition so that
2

1 , d . d d
i—‘rdi-’—p— /Ll+§,/b2+§_17...7;k.62_]+17 0 ,—1,—2,...,—m+§+l
%-H

The set 4(u) consists of roots of the form —eg; — ¢, with k#/.
We have in the case m>/;, +d — i+ 2

1 d
;L+d_+p778i78/1-+d7i+2 :O, 1= 1, ey A (75)
2 : 2
On the other hand if m<4; +d — i+ 2, then for every t = 1, ..., m we have
, 1
<A+di+p,—8,‘—8[> <0. (7.6)

This implies by condition (ii) that if « = —g; — & with s, € W™ it
Ata 2

one of the indices in (7.5) and (7.6). On the other hand set J = {1, ...,4,4; +d + 1,
Jatd,....0g+9+2}andlet I ={1,2,....,m}\J. Clearly if « = —g; — & with k, [ €],
2

then

then k, [ cannot be

(}v+d;+p,8k81>EN,

and so condition (i) is satisfied. Of course here (iii) is irrelevant, as A4 is simply-laced.

Thus W}’” P is equal to the even sign permutation group on the index set / and hence
itdy

W;’idl () is the permutation group on I.

2

From our explicit description of W;’" awe have the following.
-+ 2
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Proposition 7.1. Let 1 = (A1, ..., As) and let W" | be the corresponding group of

/Hrdi
either sign or even sign permutation group on the index set I={1,...,m}. Write p =
A+ d%+ 0 = (U, o, -, ly,) for the generalized partition with either all integral or
half-integral row lengths.

(i) We have |p;|# ||, for i,jel with i#].

(i) For we W™ 1 the rows of the generalized composition w(A + d% + p) are all of
2+£2

different length.
(i) In the case s<% we have ; <0, for iel.
(iv) In the case s>4 we have u;>0 and i€l if and only if i = (d — s+ 1) and py_,., =
d
s —%.

(V) For all meN we have W™ 1S W’”“l.
ity Ity

8. Consequences for the character formula

In this section we will use the result of Section 7 to study the character formulas of
Section 6. In Section 7 we gave a description of Wf‘ Pt However, in the character

At 2
formula we actually need to have a description of W;"k 1
2+

2
Let we W* . From Section 7 we know that w is either a sign permutation or an

Atdy
2
even sign permutation on an index set /.
Recall the decomposition W | = Wk (f) x W™ | As W* | is the sign or the
/l+di )Hrdi ).+d2 )Hrdi

even sign permutation group on I and W)" L () is the permutation group on I, it

+d3

follows that the elements of W?‘kdl are in one-to-one correspondence with either the
Atdy
2

sign or the even sign changes of the index set /. This correspondence can be made
explicit as follows. Let I = {ji <jp<---<j,} and set p = (p,,p,, ..., p;) and p; =
(pj1 Py e pj,). Let 7 be either a sign change or an even sign change of 1. Let ¢ be the
unique permutation on / which permutes the rows of the generalized composition
t(p;) so that at(p;) is a generalized partition. Set w, = g7, then w, e Wf’kdl is the

Atdy
element corresponding to t under the above-mentioned one-to-one correspondence.
More explicitly, if © changes the signs of p; at the rows i} <i, < --- <ij, then ¢ is the
permutation that moves #; to ji, i;_| to j», ..., [; to j;. After that the remaining indices
Ji+1s ---,Jr are then assigned from the indices I\{i|, ..., ;} in increasing order.

We are now in a position to describe w(4 + di + p) with we W?’]‘dl. For this it is
Atdy

convenient to identify Wf’kdl with either a sign change or an even sign change of the
Atdy
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index set I = {j; <jp<--- <j;}. Set
1
/1+d2+p =u= (:ulv,u'b "'7:”1{)'

Let we W' . and let 7, be the corresponding sign change. Let us suppose that t,,

Atdy+p
corresponds to sign changes of the subset I, =7. Suppose that I, =i, i, ..., 0.
Then
1
Ty /1+di+p = (g Has oy =My wony =Hiyy oeey =My -2 )

That is, 7,,(u) is obtained from u by replacing all the rows indexed by I, with its
negative. Set g,, equal to the unique permutation on {1,2, ... k} that permutes the
rows of generalized composition 7,,(u) so that the resulting is a generalized partition.
We denote by A,(4+ di+ p) the partition o,,7,,(4 + d}+ p) — p — di.

The following proposition is an easy consequence of the correspondence between

sign changes of the index set / and Wf’kdl
Atdy

Proposition 8.1. With the notation introduced above we have

1 1 1
/1w<A+d2+p> lV(/quderp) _p_df'

Using Proposition 8 1 we can now prove the following corollary for the characters

of vao(2m|2n) and Vmp<2m‘2n) Recall the character formulas given in Theorems 6.2 and
6.3. In these formulas the expression HS——— , is the hook Schur function

w(/l+d%+p)fpfd§
associated to the partition w(4+ d%—k p)—p— d%. Due to Proposition 8.1 we will

from now on write HS 1 . for HS——— »
Ay (A+dy+p) w(i+dy+p)—p—dy

The next corollary shows that in general the character formulas involve an infinite
sum of hook Schur functions.

1

orV

Corollary 8.1. Fix a diagram /. corresponding to V osp 2m|2n>

WM(ZM\M of length
I(A) =s.

(i) Suppose that m>s+2 and n>1. Then HS;, and HS;, are infinite sums of non-
zero hook Schur polynomials.

(i) Suppose that s = m and i;>n. Then HS?'O and HS?F are finite sums of non-zero
hook Schur polynomials.
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Proof. Take any k> 1) + d so that both k and k — 1 lie in the index set I associated
to W}I;dl of sp(2k) or so(2k). Let we W:’fdl correspond to t,, the even sign
permutation that permutes the indices k — 1 anc21 k and changes the signs of them. It
is then easy to see that A,,(4 + di + p) is a partition with 2 from the (s + 3)th row on.
Since n> 1, it follows that the partition associated to A,,(4 + di + p) lies in the (m|n)-
hook and thus its corresponding hook Schur polynomial is non-zero. This proves (i).

To prove (ii) let k> /; +d and consider any we Wf’k 1 corresponding to a sign
A+z§

change involving k. Then A,,(1+ d%—&— p) is a partition with the first m + 1 rows
exceeding n. But then the corresponding hook Schur polynomial is zero. [

Let C[[y, z]] denote the ring of power series in the variables y and z. We have a
natural filtration of ideals determined by the leading term.

([:Hy7ZH = %OD%IDgzjn-D{ng....

The formulas of Theorems 6.2 and 6.3 involve in general an infinite number of
hook Schur polynomials. However, for a fixed monomial that appears in the
character formula we can use a finite number of hook Schur polynomials to compute
its coefficient. This follows from the following proposition.

Proposition 8.2. Ler 1 be a partition with (1) = s and J} + 25<d. Let k>d.
(i) If s> welet | =2k + |A| — 25 — 1. If s<$ we let | = 2k + |A| — d. Then we have
HS, (v = Y (~)HS, 4 () (mod )

we Wf.k—ll
).+11§

1
Atdy+p)

(i) Let I =2k + |2 —d — 1. Then
). _ —1\(w) . c
HSSO(Xv Z) = Z}\ 1( 1) HSAHV(;ﬁd%er)(XaZ) (mOd 8’])

we W
/'.+d§

Proof. The theorem follows rather easily from Proposition 8.1. We will only prove (ii), as
(i) is quite similar. We may assume without loss of generality that kel. Consider
we Wf’kdl such that w¢ W;’k;ll. This means that t,, changes the sign of k. We consider
Atdy ‘+dy
the partition A,,(Z + di + p). It is not hard to see that the size of this diagram is at least
2k —d+ "}, /2 — 1. But this means that the hook Schur polynomial determined by
Ay (4 + di + p) contains only monomials of degree / =2k —d + >_._, A; — 1. Thus the
hook Schur polynomials associated to A, (4 +d3+ p) with we W,f’kc;ll contain all
4+ 2

monomials of HS% of degree less than or equal to / — 1. [



S.-J. Cheng, R.B. Zhang | Advances in Mathematics 182 (2004) 124—-172 165

We now compute the functions HS’ and HS?}, explicitly in the case of 1=
(0,0, ...,0), the trivial partition.
Let us first consider the case of HSi'p with 4 being the trivial partition. We will
write in this case simply HS;, for HSf:p. In this case Wﬁdl is the group of the even
2

sign permutations in the indices d,...,k. Let we W;"kl and let 7, be the
0+

2
corresponding sign changes. Let us suppose that 7, changes signs at the following

lrows: i <ip<--- <ij_1 <i. Here iy >d and [ is an even non-negative integer. Then it
is not hard to see that Aw(d% + p) is the following partition:

i—d+ 1, —d+2,....ii —d+11,...,1,
——

i—1

I—1,...,0—1,..,1,...,1,0, ... |. (8.1)
—_———— ——

h—i—1 i—i—1—1

That is, the first / entriesare iy —d + 1,i;_y —d + 2, ...,i1 — d + [, followed by i; — 1
entries of /, etc. The length of Aw(d%—l— p) is i;. For a sequence of positive integers
I ={i<iy<---<ij} with i; >d denote by u; partition (8.1). Furthermore we let |/|

denote / + Zj/-:l ij.

Proposition 8.3. We have

HSSp(yh-"?ym;Zla"-? Z |I|HS/11 yla' ~7ym;Zl7~--72n)7
1

where the summation is over all tuples I = (i\,i,...,i5) with | even and
d<iy<ip<--- <ij satisfying one of the following conditions.

(1) In the case when n=m we have I<n and at most m of the i;’s exceed d +n —
m— 1.

(ii) In the case when m>n we have |<m. If in addition we have | + i, — t + 1<m+
I<l+iy—t—1, for somet=0,1,....] — 1, then | — t<n. (Here by definition
iv=0.)

Proof. First we note that if we Wj’kdl and 1, its corresponding sign changes at the
L+ 2
rows i <ir < -+ <ij_y <ij, then (=1)/™ = (=)l"|.

(i) Obviously if />n, then the corresponding partition y; cannot lie inside the
(m,n)-hook. Thus the corresponding hook Schur polynomial is zero. Also clearly if
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I<m, then y; lies in the (m,n)-hook. Now suppose that m</<n and we have
N<bh< < p<il_pme1 <--<ij.

Then y; lies in the (m, n)-hook if and only if i;_,, — d + (m + 1) <n, which happens if
and only if i, <d —m+n—1.

(ii) Clearly, if /=m, then p; does not lie in the (m, n)-hook. Now if / <m and i; <m,
then it is easy to see that y; lies in the (m, n)-hook. On the other hand if m<ij, we let
t=0,1,...,/] —1 be such that

[+i —t<m+ 1<l +i g —t—1.

It follows from (8.1) that the (m + 1)th row of y; is [ — t. Thus p; lies in the (m, n)-
hook if and only if / — t<n. O
Consider now the case of HS% , where / is the trivial partition. We will again write
in this case simply HS,, for HS%. Here W;" P is the group of the even sign
tdy
permutations in the indices d/2 + 1,d +2,d 4+ 3, ..., k. Let we W;’kdl and let 7,, be
+

2
the corresponding sign changes, which changes signs at the following / rows:

h<ip<-- <ij_1<ij.
First suppose that ij #d/2 + 1. In this case A,,(di + p) is the partition

i—d—-1i_—d,...;i—d+1-2,1,...,1,
~——

i—1

=1, 0—1,..,1,...,1,0, ... |. (8.2)
—_——— ——

ih—i—1 ij—ij—1—1

) d )
Now if i} = §+ 1, then Aw(d% +p)is

i—d—-1,i_1—d,....ib—d+1-3,1—-1,...,]1—1,
—— —

h—1
[=2,. . 0=2..1,...,1,0,... | (8.3)
—— —— ——
i3—ir—1 ij—ip—1—1

Note that (8.3) is just (8.2) corresponding to the sequence i <i3<:--<i, with
d+2<i.
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For a sequence of positive integers J = {ij <ip < --- <ij} with i >d + 2 we let v; be
the partition (8.2). Let |[J| =1+ Ejl-zl ij.

Proposition 8.4. We have

HSsoW1s oo s Ymi 215 s Z Z DYHS, (71, oo Ymi 215 s 2Z0),s
T

where the summation is over all tuples J = (i1, ip, ..., i) with d +2<ij <ir<--- <i
satisfying the following conditions.

(1) In the case when nz=m we have [<n and at most m of the i;’s exceed d +n —
m+ 1.

(i1) In the case when m>n we have [ <m. If in addition we have | + i, —t+ 1<m+ 1
<l+igp—t—1, for somet=1,....1 —1, then | — t<n. (Here again iy = 0.)

Proof. As the proof is analogous to that of Proposition 8.3, we omit it. [J

The module Vspo (2m[2n)
the O(d)-invariants (respectively Sp(d)-invariants) inside S(C?®C™"). Thus our
computations of HSy, and HS,, give character formulas of these invariants. On the

other hand we can describe the invariants, denoted by S(C‘l®03’”|")0<d) and
S(C?@C"m) in the following different way. Since g/(m|n) commutes with O(d)

and Sp(d), S(C!@C"M % and $(C?@C"") @ are modules over gl(m|n). We
have the following analogue of classical invariant theory.

(respectively V*

osp(2m|2) ) with A being the trivial partition is

Proposition 8.5. We have the following isomorphisms of gl(m|n)-modules

) S(Cd®Cm|”) >,V m‘n, where the summation is over all partitions A with
even row lengths, l(i) <d and dp 1 <n.
(i) S(Cd®le")Sp<d) =>, V’ﬁ‘n, where the summation is over all partitions p with

even column lengths, [(n) <d and p,,  <n.

Proof. The proof is in the same spirit as the one in the classical case given in [14].
The (g/(d), g/(m|n))-duality gives (3.1) and hence taking the O(d)-invariants on both
sides of (3.1) gives

sElec ™ =3 (VH? eV,

)

But it is known that V4 has only O(d)-invariants if and only if / is an even partition,
i.e. all rows have even length. Furthermore in this case the dimension of O(d)-
invariants in V;} equals 1. This proves (i).



168 S.-J. Cheng, R.B. Zhang | Advances in Mathematics 182 (2004) 124—-172

For (i) we note that ¥ has Sp(d)-invariants if and only if 4 has even columns, in
which case the dimension of the invariants is again 1. [

As the character of the g/(m|n)-module V' i 18 given by the hook Schur function

associated to 4 we obtain the following corollary.

Corollary 8.2. As gl(m|n)-modules we have
ch S(C4 @ Cmim° Z HS; (V1 oo s Ymi Z1y «vv s Zn)s

ch S(C! @y ZHS (X1y eees Xpi 21y ees Zn),

where the summations over /. and p are as in Proposition 8.5.

From these two descriptions of the O(d)-invariants inside S(C?® C™"), in the
case when d is odd, we have the combinatorial identity

Z HSi()’la -~~7ym;zla "'72}’!)
A

= Z ! ‘HSM, 1y ees Ims 215 oees Zn)

HlSiSjSm.1<l<k<n (1 —yiJ’j)(l — 21zk)

« ( Hlsigm,lglgn (14 yiz1) )

where A is summed over all partitions with even row lengths, /(1) <d and 4,41 <n,
and [ is summed over all [ as in Proposition 8.3 with y; as in (8.1).
Similarly from the descriptions of the Sp(d)-invariants we have

E HS\ (X1, ooy X3 215 e, Zn)

= E ‘ ‘HS‘,J (X1, eeey X3 21y oeey Zn)

y ( Hléiém,lélén (1 + xiz1) >

H1<i<j<m.1<1<k<n (1= xix;) (1 = zyzg)

where p is summed over all partitions with even column lengths, /(u)<d and
U1 <n, and J is summed over all J as in Proposition 8.4 with v; as in (8.2).
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9. Tensor product decomposition

As another application of Theorems 5.1 and 5.2 we derive in this section formulas
for the decomposition of tensor products of two representations of either spo(2m|2n)

or osp(2m|2n) that appear in the decomposition of S(C?®C"").
We first recall two Howe dualities involving the dual pairs (O(d),so(2k)) and

(Sp(d), sp(2k)) on the space A(C?® CK).

Theorem 9.1 (Howe [14]). The pairs (O(d),so(2k)) and (Sp(d),sp(2k)) form dual
pairs on the space A(Cd®CI‘). Furthermore with respect to their joint actions we have
the following decompositions:

"
AT ®CH) = Z Vouy ®Vaids (9.1)
AC'®@Ch) = Z v, Zk) (9.2)

where in the first sum J is summed over all diagrams with 1(2)<d, 2| + 5<d and
l1 <k, while in the second sum u is summed over all diagrams with () <d/2 and
H <k.

Remark 9.1. We regard so(2k)=~osp(2k|0) and sp(2k)=~spo(2k|0) and hence the
labellings of their highest weights are as in Section 2.4.

Consider for positive integers ¢ and r the decompositions S(CY®C"")x

1 1
u+ds +
dou Vg(d> ® Vspo(zzm\zn) and S(C"®C"") ~ >V 0<r Voo 2m\2n)' We have
S(Cd ®G:m|n) ®S(Cr ® (Dm|n)
1
,u+d v /+r—
= Z Vg(d) spo 22m\2n ® Z V Spo %m\Zn)
u
;Hrdl ,+;

= Z d) ® V/ ) ® ( vao(2m\2n) YV, SPO(Q’”\Z” )

Hrtl ,u+(d+r)1

~ My
) ® vaa (omfan) = 220 € vao(zm\zn we have therefore

Now writing va (Om[2n)

1
mln r mlny\ ~u y ) pu+(d+r)y
SEIRC"M @S ®C" = Y (Vo ® Vi) ®V pomany (93

2oy
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On the other hand we have
S(Cd ® Cm\n) ® S(Cr ® Cm\n) ~ S(CdJrr ® Cm\n)

; 1
~ v JA(d+r)5
= Z VO(d-H‘) ® va0(2111\213)'

A
If we let V O(d+7) :Zw v V” 0(d) ®V/(r), that is, we regard V O(d4+r) A4S an
O(d) x O(r)-module in the 0bV1ous way, then we have

1
min r m n L Y AH(d+r)y
SEC@C™M@S(C T =" b (Vi) @V, ®V, 2

spo(2m|2n)* (94)
Apst

Combining (9.3) and (9.4) we see that ¢}’ = b/ﬁy.

This connection between the branching coefficients and the tensor product
coefficients, which may be regarded as a special case of Kudla’s seesaw pairs [21], is
of course known [14].

Now the same argument applied to the first dual pair of Theorem 9.1 tells us that

bfw = a ' where

!

1 1 y 1

W —dy U et

Vm(2k) ® Vso(2k) = Z ay Vso(zk) :
p

Taking account the fact that the O(d)-, O(r)- and O(2d)-modules that appear in the
various decompositions may not be identical we have proved the following theorem.

Theorem 9.2. Let u and vy be diagrams lying in the (m|n)-hook and satisfying the

1 ; 1
y+ry ) d+r)y
conditions 1) + py<d and y| + yzgr Let VW(Zmlzn ® Véptémm); >, ;t(<2;1_|2)n2)'
d+r)y
Let k=max(y,,y,) and V\O 2k ® V ~ >, a VA( (>+ 2 Then for A lying in the

(m|n)-hook with 7} + 2, <d +r we have cﬁ’ = a4’. Otherwise ¢’ = 0.

We can derive the following theorem for osp(2m|2n)-modules in a completely
analogous fashion.

Theorem 9.3. For d and r even let u and y be diagrams lying in the (m|n) hook with

,u+d +l )+(d+1)
l(lu) <d/z and Z(V) <V/2 Let Vosp 22m\2n ® V(:Sp 2m|2n ZJ (’ osp 2m\2n) Let
N —=(d+r
k>=max(pu,,y,) and V 2k ®V\p D WVW@;; )2. Then for A lying in the

mn)-hook with 1( d +r)/2 we have ¢’ = a'’. Otherwise ¢’ = 0.
fl

Remark 9.2. Of course the computation of the coefficients ¢’ are in general rather
difficult. There are combinatorial algorithms that in principle can be used to
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compute them. See for example [19,23] and references therein. It turns out that the
coefficients can be computed once the usual Littlewood—Richardson coefficients (for
the general linear group) are known. The precise formulas are given in [20].

Remark 9.3. The tensor product decompositions of the spo(2m|2n)-modules and the

osp(2m|2n)-modules that appear in the decomposition of S(C?® C"") are stable in
the following sense. The coefficients ¢’ are independent of m and n for n>1 and
m=>=d/2. This follows from a minor modification of our argument above.

Remark 9.4. The above method for computing the tensor product decomposition
using Howe duality appears to be quite general and could have further applications.
For example, using the g/(d) x gl(m|n)-Howe duality of Section 3 one can derive
rather easily the fact that the multiplication rule of the Hook Schur functions is the
same as that of ordinary Schur functions. This was derived earlier in [29] using
purely combinatorial methods.
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