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Abstract

We study the Howe dualities involving the reductive dual pairs ðOðdÞ; spoð2mj2nÞÞ and

ðSpðdÞ; ospð2mj2nÞÞ on the (super)symmetric tensor of Cd#Cmjn: We obtain complete

decompositions of this space with respect to their respective joint actions. We also use these

dualities to derive a character formula for these irreducible representations of spoð2mj2nÞ and
ospð2mj2nÞ that appear in these decompositions.
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1. Introduction

Howe duality [13,14] relates the representation theories of a pair of Lie groups/
algebras. It enables the study of representations of one Lie group/algebra via the
representations of its dual partner, and hence it has become a fundamental tool
where representation theory of classical Lie groups/algebras is indispensable. As
simple and fundamental a concept it is therefore of no surprise that the Howe duality
also applies to generalizations of finite-dimensional Lie groups/algebras. We point
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out here the Howe dualities of finite-dimensional Lie superalgebras in
[4,5,22,27,30,31] of infinite-dimensional Lie algebras in [9,12,17,18,32,33] and of
infinite-dimensional Lie superalgebras in [6]. In the above-mentioned articles, the
main themes revolve around the construction of Howe dualities. In the present
article we are also concerned about applications of the Howe dualities that we
obtain.
Consider a Lie superalgebra whose representation theory we wish to study.

Suppose that on some natural space one has a Howe duality involving this Lie
superalgebra with a classical Lie group or Lie algebra as its dual partner. As the
representation theory of its classical counterpart is well-understood, one expects that
this should enable one to study the representations of the Lie superalgebra in
question with the help of the representation theory of its classical dual partner. Of
particular interest is a derivation of a character formula for this Lie superalgebra. It
appears plausible that knowing the character of the total space and the characters of
each of the irreducible representations of the classical group/algebra, one should in
principle be able to obtain a character formula for the Lie superalgebra in question.
As is well-known, character formulas for Lie superalgebras in general are rather
difficult to obtain, and hence such a method could facilitate the computation of
characters for certain representations of Lie superalgebras. One of the main purposes
of this paper is to demonstrate for the orthosymplectic Lie superalgebra that such an
approach to character formulas is indeed viable. The general idea is the following.
Let gm be a classical Lie algebra of rank m and let X be a fixed finite-dimensional

classical Lie algebra. Suppose on some space Fm the pair ðgm;XÞ forms a dual pair in
the sense of Howe. Suppose that this is the case for every m: That is, we have for each
m a (multiplicity-free) decomposition with respect to gm � X of the form

Fm ¼
X
l

V l
gm
#V l0

X ;

where Vl
gm
and Vl0

X denote irreducible representations of gm and X ; respectively. Here

l is summed over a subset of irreducible representations of gm: Since here the

correspondence between irreducible representations of gm and X ; given by l-l0; is
one-to-one, we will write V l

X for Vl0
X :

Now suppose that gmjn is the Lie superalgebraic analogue of gm and we have an

action of the dual pair gmjn � X on Fmjn; which is the tensor product of Fm with a

Grassmann superalgebra depending on n: Thus we have similarly

Fmjn ¼
X
l

Vl
gmjn

#Vl
X ;

where V l
gmjn

denotes an irreducible representation of gmjn:

Our claim is that if one knows the characters of V l
gm

for every m; then one, in

principle, also knows the characters for Vl
gmjn

:
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Let us now discuss the content of the present article in more detail. Let X ¼ O or
X ¼ Sp so that XðdÞ denotes either the orthogonal or the symplectic group acting on
Cd : We have an induced action on Cd#Cm; thus giving rise to an action on the

symmetric tensor SðCd#CmÞ: Now by classical invariant theory (cf. [13,11]) the

invariants of X ðdÞ in the endomorphism ring of SðCd#CmÞ is generated by
quadratic invariants, which may be identified with the Lie algebra spð2mÞ in the case
X ¼ O and soð2mÞ in the case X ¼ Sp: This implies that ðOðdÞ; spð2mÞÞ and

ðSpðdÞ; soð2mÞÞ are Howe dual pairs on SðCd#CmÞ.
Now let Cmjn be the complex superspace of dimension ðmjnÞ: The Lie group X ðdÞ

acts in a similar fashion on the (super) symmetric tensor SðCd#CmjnÞ: Analogously
one derives the ðOðdÞ; spoð2mj2nÞÞ- and the ðOðdÞ; ospð2mj2nÞÞ-Howe duality on

SðCd#CmjnÞ: Although these dualities appear already in Howe’s classical paper [13],
the complete decompositions of SðCd#CmjnÞ with respect to these joint actions are
unknown to the best of our knowledge. In [27] a partial decomposition is obtained
for X ¼ O; with a complete answer given in the case of m ¼ n ¼ 1 only.

Our first main task is to give the complete decompositions of SðCd#CmjnÞ with
respect to these Howe dual pairs. This is achieved in the following way. By [13] the

decomposition of SðCd#CmjnÞ with respect to XðdÞ and its dual partner is reduced
to the decomposition of the subspace of harmonic polynomials H with respect to the
dual pair ðXðdÞ; glðmjnÞÞ: Our task is then reduced to the construction of all
ðXðdÞ; glðmjnÞÞ-highest weight vectors in H: Our analysis of the ðXðdÞ; glðmjnÞÞ-
highest weight vectors in H relies heavily on the ðglðdÞ; glðmjnÞÞ-Howe duality

in SðCd#CmjnÞ in [5] (see also [30,31]) and the description of their joint highest
weight vectors given in [5]. Another important ingredient is the construction of
an explicit basis for each irreducible glðdÞ � glðmjnÞ-component that appears

in SðCd#CmjnÞ:
The idea to obtain a character formula for the irreducible representations of

spoð2mj2nÞ or ospð2mj2nÞ is roughly as follows. In order to simplify notation we take
X ¼ Sp in what follows, but note that the same applies to X ¼ O with minor
modification. We first consider the classical duality, i.e. the case when n ¼ 0: Thus we
have an identity of characters of the form

ch SðCd#CmÞ ¼
X
l

ch Vl
SpðdÞ#ch V l

soð2mÞ:

Since now characters are polynomial functions on a Cartan subalgebra, we can write

wlSpðdÞðxÞ ¼ ch Vl
SpðdÞ and wlsoð2mÞðyÞ ¼ ch V l

soð2mÞ; where x and y denote the linear

functions on the respective Cartan subalgebras. The left-hand side is the character of
the algebra of polynomials in dm variables, which is a symmetric function in x and y:
Now taking the limit as m-N in an appropriate way one obtains a combinatorial
identity involving infinitely many variables y ¼ y1; y2;y; ym;y : Since the right-
hand side is symmetric in y; we may apply to this identity the involution o of
symmetric functions that sends the complete symmetric functions to the elementary
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symmetric functions (see [24]). The o turns the left-hand side into the character of
the tensor product of a polynomial algebra with a Grassmann algebra. Therefore,

due to ‘‘linear independence’’ of the wlSpðdÞ; it follows that (modulo some minor

manipulation of the variables) the expression oðlimm-Nwlsoð2mÞðyÞÞ is essentially the
character of the irreducible representation of ospð2mj2nÞ paired with Vl

SpðdÞ: At this

point we wish to point out our results imply that the characters of the
representations of the Lie superalgebra ospð2mj2nÞ (respectively spoð2mj2nÞ), for
any m; nAZþ; that appear under the Howe duality are completely determined by the
characters of the representations of the Kac–Moody algebra corresponding to the
infinite affine matrix DN (respectively CN) (see [16]) that appear under a similar
Howe duality.
The next problem is to describe the expression wlsoð2mÞðyÞ: For this we use the

beautiful formula of Enright [8,7] for unitarizable irreducible representations
associated to a classical Hermitian symmetric pair. The reason for this is that in
our case we may express such a character in terms of Schur functions which are
carried by o to the so-called hook Schur functions of Berele and Regev [1]. This
allows us to obtain a satisfactory description of the characters.
We now come to the organization of the paper. In Section 2 we recall some basic

facts on the orthogonal and symplectic groups and the orthosymplectic
superalgebra, where we also take the opportunity to set the notation to be
used throughout the paper. In Section 3 we recall the ðglðdÞ; glðmjnÞÞ-duality on
SðCd#CmjnÞ and construct an explicit basis for each irreducible component
that appears in the decomposition of SðCd#CmjnÞ: In Sections 4 and 5 we study
the ðOðdÞ; spoð2mj2nÞÞ-duality and the ðSpðdÞ; ospð2mj2nÞÞ-duality and obtain the
complete decompositions of SðCd#CmjnÞ with respect to their respective
joint actions. In Section 6 we derive a character formula for these representations
of spoð2mj2nÞ and ospð2mj2nÞ that appear in the decomposition of SðCd#CmjnÞ:
Here we should mention that in the case of OðdÞ � spoð2mj2nÞ with d even,
we are only able to derive the formula for a sum of two irreducible representations in
general. We also remark that in [26] a character formula for the oscillator
representations is given. This corresponds to our case Oð1Þ: In order to obtain a
better description of the character formulas we are required to study Enright’s
formula in more detail. This is done in the Section 7. In Section 8 we study
the character formulas in more detail. In Section 9, as another application of our
Howe dualities, we give formulas for decomposing tensor products of these
irreducible spoð2mj2nÞ- and ospð2mj2nÞ modules that appear in the decomposition
of SðCd#CmjnÞ:
Finally all vector spaces, algebras, etc. are over the complex field C unless

otherwise specified. By a partition we mean a non-increasing finite sequence of non-
negative integers. A composition is a finite sequence of either all non-negative integers
or all positive half-integers. Furthermore, by a generalized partition we will always
mean a finite non-increasing sequence of either all integers or all half integers. By a
generalized composition we will mean a finite sequence of either all integers or all half
integers.
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2. Parameterization of irreducible representations

In this section we give parameterizations of irreducible representations of the Lie
groups and Lie superalgebras that we will be dealing with in this paper. For a more
complete treatment of the material on Lie groups the reader is referred to [2].

2.1. Irreducible representations of the general linear Lie superalgebra

Let Cmjn denote the complex ðmjnÞ-dimensional superspace. The space of complex

linear transformations on Cmjn has a natural structure as a Lie superalgebra, which

we will denote by glðmjnÞ: Choose a homogeneous basis for Cmjn so that we may
regard glðmjnÞ as ðm þ nÞ � ðm þ nÞ matrices. Denote by Eij the elementary matrix

with 1 in the ith row and jth column and 0 elsewhere. Then h ¼
P

i CEii is a Cartan

subalgebra, while B ¼
P

ipj CEij is a Borel subalgebra containing h: Recall that

finite-dimensional irreducible glðmjnÞ-modules are parameterized by lAh� with li 	
liþ1AZþ; for i ¼ 1;y;m 	 1;m þ 1;y;m þ n 	 1; where li ¼ lðEiiÞ: We will

denote the corresponding finite-dimensional irreducible module by V l
mjn: Suppose

that l is a partition (or a Young diagram) with lmþ1pn: Then drawing the
corresponding diagram l may be visualized as lying in the ðmjnÞ-hook, i.e. from
n þ 1th column on the columns of l all have lengths less than m þ 1: We may
interpret l as a highest weight of glðmjnÞ by associating to the diagram l the labels

l ¼ ðl1;y; lm;/l01 	 mS;y;/l0n 	 mSÞ; where l0i is the length of the ith column of

the diagram l; and /rS stands for r; if rAN; and 0 otherwise. If clear from the

context that l is a Young diagram with lmþ1pn; we will mean by Vl
mjn the irreducible

glðmjnÞ-module of highest weight l:

2.2. Irreducible representations of the orthogonal group

Let us denote by fe1;y; edg the standard basis for Cd : Consider the symmetric
non-degenerate bilinear form determined by the d � d matrix

Jd ¼

0 0 ? 0 1

0 0 ? 1 0

^ ^ ^ ^ ^

0 1 ? 0 0

1 0 ? 0 0

0
BBBBBB@

1
CCCCCCA:

The complex orthogonal group OðdÞ is the subgroup of the complex general linear
group GLðdÞ preserving this form. The Lie algebra of OðdÞ is soðdÞ; which consists of
those AAglðdÞ with JdAtJd þ A ¼ 0; that is, A is skew-symmetric with respect to the
diagonal running from the top right to the bottom left corner.
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Consider the case when d ¼ 2k is even. We take as a Borel subalgebra b the
subalgebra of soðdÞ contained in the subalgebra of upper triangular matrices.
Furthermore, we take as a Cartan subalgebra of b the subalgebra h spanned by the

elements Ẽii ¼ Eii 	 Edþ1	i;dþ1	i; for i ¼ 1;y; k: Now a finite-dimensional irredu-

cible representation of soðdÞ is determined by its highest weight lAh� subject to

lðẼii 	 Ẽiþ1;iþ1ÞAZþ;

lðẼk	1;k	1 þ ẼkkÞAZþ;

for i ¼ 1;y; k 	 1: Let li ¼ lð *EiiÞ and identify l with the sequence of complex
numbers ðl1;y; lkÞ: An irreducible representation of soð2kÞ is finite-dimensional if
and only if its highest weight l satisfies the conditions l1Xl2?Xlk with either liAZ

or else liA1
2
þ Z; i ¼ 1;y; k and ljX0; j ¼ 1;y; k 	 1: Furthermore such a weight

lifts to a representation of SOðdÞ if and only if liAZþ:
Let V be a finite-dimensional irreducible OðdÞ-module. When regarded as an

soðdÞ-module we have the following possibilities:

(i) V is a direct sum of two irreducible soðdÞ-modules of highest weights
ðl1; l2;y; lkÞ and ðl1; l2;y; lk	1;	lkÞ; respectively, where lk40:

(ii) V is an irreducible soðdÞ-module of highest weight ðl1; l2;y; lk	1; 0Þ:

Here liAZþ for all i: In the first case, that is when V is the direct sum of the two

irreducible soðdÞ-modules we denote V by V l
OðdÞ; where we let l ¼

ðl1; l2;y; lk	1; lk40Þ: In the second case there are two possible choices of V ;

which we denote by V l
OðdÞ and V l

OðdÞ#det; respectively. Recalling that OðdÞ is a

semidirect product of SOðdÞ and Z2 these two OðdÞ-modules as SOðdÞ-modules are
isomorphic. However as OðdÞ-modules they differ by the determinant representation
so that we may distinguish these two modules as follows: consider the element

tAOðdÞ 	 SOðdÞ that switches the basis vector ek with ekþ1 and leaves all other basis

vectors of Cd invariant. We declare V l
OðdÞ to be the OðdÞ-module on which t

transforms an SOðdÞ-highest weight vector trivially. Note that t transforms an

SOðdÞ-highest weight vector in the OðdÞ-module V l
OðdÞ#det by 	1:

We may associate Young diagrams to these OðdÞ-highest weights as follows (cf.
[14]). For l1Xl2?Xlk40 we have an obvious Young diagram of length k: When

lk ¼ 0; we associate to the highest weight of Vl
OðdÞ the usual Young diagram of

length less than k: To the highest weight of V l
OðdÞ#det we associate the Young

diagram obtained from the Young diagram of l by replacing its first column by a

column of length d 	 l01: Here and further, for a partition l; we denote by l0 its
conjugate partition. We have thus associated to each finite-dimensional irreducible

representation of OðdÞ a Young diagram l with l01 þ l02pd:
Next consider the case when d ¼ 2k þ 1 is odd. We take as a Borel subalgebra b

the subalgebra of soðdÞ spanned by upper triangular matrices so that a Cartan
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subalgebra h of b is again spanned by the elements Ẽii ¼ Eii 	 Edþ1	i;dþ1	i; for i ¼
1;y; k: Now a finite-dimensional irreducible representation of soðdÞ is determined
by its highest weight lAh� subject to

lðẼii 	 Ẽiþ1;iþ1ÞAZþ;

lðẼkkÞA
1

2
Zþ;

for i ¼ 1;y; k 	 1: We set li ¼ lðẼiiÞ and identify l with the sequence of complex
numbers ðl1; l2;y; lkÞ: It follows that a highest weight l of soð2k þ 1Þ gives a finite-
dimensional irreducible representation if and only l1Xl2?Xlk and liAZþ or else

liA1
2
þ Zþ; for i ¼ 1;y; k:

Recall that when d is odd OðdÞ is a direct product of SOðdÞ and Z2: Thus any
finite-dimensional irreducible representation of OðdÞ; when regarded as an SOðdÞ-
module, remains irreducible. Conversely an irreducible representation of SOðdÞ
gives rise to two non-isomorphic OðdÞ-modules that differ from each other by

the determinant representation det: We let V l
OðdÞ stand for the irreducible OðdÞ-

module corresponding to l ¼ ðl1Xl2X?XlkX0Þ on which the element 	I

transforms trivially, so that fVl
OðdÞ;V l

OðdÞ#detg with l ranging over all partitions

as above is a complete set of finite-dimensional non-isomorphic irreducible OðdÞ-
modules.
Similarly as before we may associate Young diagrams to these OðdÞ-highest

weights. For the highest weight l ¼ ðl1Xl2?XlkX0Þ of V l
OðdÞ we have an obvious

Young diagram with lðlÞ :¼ l01pk: To the highest weight of Vl
OðdÞ#det we associate

the Young diagram obtained from the Young diagram of l by replacing its first

column by a column of length d 	 l01:
Let eiAh� so that eiðẼjjÞ ¼ dij: We put xi ¼ eei when dealing with characters of

OðdÞ:

2.3. Irreducible representations of the symplectic group

Let d ¼ 2k and consider the non-degenerate skew-symmetric bilnear form / � j �S
given by the d � d matrix

0 Jk

	Jk 0

 !
:

The symplectic group SpðdÞ is the subgroup of GLðdÞ preserving / � j �S:We take as
a Borel subalgebra b the subalgebra of spðdÞ that is contained in the subalgebra of
upper triangular matrices and a Cartan subalgebra of b as the subalgebra h spanned

by the elements Ẽii ¼ Eii 	 Edþ1	i;dþ1	i; for i ¼ 1;y; k: A finite-dimensional

irreducible representation of spðdÞ is determined by its highest weight lAh�
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subject to

lðẼii 	 Ẽiþ1;iþ1ÞAZþ;

lðẼk;kÞAZþ;

for i ¼ 1;y; k 	 1: As before we let li ¼ lðẼiiÞ and identify l with the sequence
ðl1; l2;y; lkÞ: A highest weight l of spð2kÞ gives a finite-dimensional irreducible
representation if and only if l1Xl2?Xlk and liAZþ for i ¼ 1;y; k: Furthermore
each such representation lifts to a unique irreducible representation of SpðdÞ and so
we obtain an obvious parameterization of SpðdÞ-highest weight in terms of Young

diagrams l with lðlÞpd
2
:

We let eiAh� so that eiðẼjjÞ ¼ dij : We put yi ¼ eei when dealing with characters of

Spð2kÞ:

2.4. Irreducible representations of the orthosymplectic Lie superalgebra

Let Cmjn be the ðmjnÞ-dimensional complex superspace. Suppose that n is even and
ð�j�Þ is a supersymmetric non-degenerate bilinear form, i.e. it is symmetric on the even

subspace Cmj0 and symplectic on the odd subspace C0jn: The orthosymplectic Lie
superalgebra ospðmjnÞ (cf. [15]) is defined to be the subalgebra of glðmjnÞ ¼
glðmjnÞ%0"glðmjnÞ%1 consisting of those linear transformations preserving the form

ð�j�Þ; i.e. ospðmjnÞ ¼ ospðmjnÞ%0"ospðmjnÞ%1 with

ospðmjnÞe ¼ fAAglðmjnÞejðAvjwÞ þ ð	1Þe deg vðvjAwÞ ¼ 0g;

where v and w are any homogeneous vectors of Cmjn; deg v here and further denotes
the degree of the homogeneous element v and eAZ2: We will fix the bilinear form
associated to matrix

Jm 0 0

0 0 Jn=2

0 	Jn=2 0

0
B@

1
CA:

We note that ospðmjnÞ%0DsoðmÞ"spðnÞ: Let b be a Borel subalgebra of ospðmjnÞ
containing the Borel subalgebras of soðmÞ and spðnÞ as chosen above so that a
Cartan subalgebra h of ospðmjnÞ can be taken to be the subalgebra spanned by the

diagonal matrices Ẽii ¼ Eii 	 Emþ1	i;mþ1	i; i ¼ 1;y; ½m2 �; Ẽ½m
2
�þj;½m

2
�þj ¼ Emþj;mþj 	

Emþnþ1	j;mþnþ1	j; j ¼ 1;y; n
2
: Here and further the symbol ½r� stands for the largest

integer smaller than or equal to r: As usual, highest weight irreducible representa-

tions of ospðm; nÞ are parameterized by lAh� and we denote by li the ith label lðẼiiÞ;
for i ¼ 1;y; ½m

2
� þ n

2
: As usual, we will identify l with ðl1; l2;yÞ:
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Suppose that m is an even integer and consider the following Z-gradation of

ospðmjnÞ: Let Cmj0 ¼ V"V � be a sum of two isotropic subspaces of Cmj0 with

respect to the restriction of the form ð�j�Þ on Cmj0: Likewise let C0jn ¼ W"W � be

such an isotropic decomposition of C0jn: We have ospðmjnÞ%0DS2ðC0jnÞ"L2ðCmj0Þ
and ospðmjnÞ%1DCmj0#C0jn: Set g0 ¼ ðV"WÞ#ðV"WÞ�; g1 ¼ S2ðVÞ"L2ðWÞ"
ðV#WÞ and g	1 ¼ S2ðV �Þ"L2ðW �Þ"ðV �#W �Þ: This equips ospðmjnÞ with a Z-

gradation with g0 isomorphic to glðm
2
jn
2
Þ such that its standard Cartan subalgebra is

also h:

Now take a finite-dimensional irreducible g0-module V l
m
2
jn
2
of highest weight lAh�;

which we again will identify with a sequence ðl1; l2;yÞ: We may extend Vl
m
2
jn
2

trivially to a module over the parabolic subalgebra g0"g1: Inducing it to an

ospðmjnÞ-module, it is clear that it has a unique irreducible quotient, which we will

denote by V l
ospðmjnÞ: Of course V l

ospðmjnÞ is not finite-dimensional in general. As such

ospðmjnÞ-modules play an important role in the sequel, we will give a more detailed
description of their parameterizations. Let eiAh�; i ¼ 1;y; ½m

2
� þ n

2
; be defined by

eiðẼjjÞ ¼ dij: We will label the simple roots and coroots of ospðmjnÞ according to the

following diagram.

Here a1 ¼ 	e1 	 e2; a2 ¼ e1 	 e2;y; am
2
¼ em

2
	1 	 em

2
;y; amþn

2
¼ emþn

2
	1 	 emþn

2
; and,

as is customary, # denotes an isotropic root. Thus if l ¼ ðl1; l2;y; lmþn
2
Þ is the

highest weight of a finite-dimensional irreducible glðm
2 jn2Þ-module Vl

m
2
jn
2
; then the labels

of the irreducible highest weight module V l
ospðmjnÞ with respect to the above Dynkin

diagram is given by

ð	l1 	 l2; l1 	 l2;y; lm
2
	1 	 lm

2
; lm

2
þ lm

2
þ1; lm

2
þ1 	 lm

2
þ2;yÞ: ð2:1Þ

When dealing with characters of ospðmjnÞ we will use the notation xj ¼ eej ; for

j ¼ 1;y; m
2
and zl ¼ e

em
2
þl ; for l ¼ 1;y; n

2
:

On the superspace Cmjn with m even we may take a skew-supersymmetric non-

degenerate bilinear form ð�j�Þ; i.e. it is symplectic on the even subspace Cmj0 and

symmetric on the odd subspace C0jn: In the same fashion we may define the
symplectic-orthogonal Lie superalgebra spoðmjnÞ to be the subalgebra of glðmjnÞ
preserving ð�j�Þ: We remark that as Lie superalgebras we have spoðmjnÞDospðnjmÞ
and hence our discussion of the orthosymplectic Lie superalgebra carries over to
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spoðmjnÞ; for n even, with minor modification. We label the simple roots and coroots
according to the following diagram.

Here a1 ¼ 	2e1; a2 ¼ e1 	 e2;y; am
2
¼ em

2	1
	 em

2
;y; amþn

2
¼ emþn

2
	1 	 emþn

2
: Simi-

larly we will denote the irreducible quotient of the induced glðmjnÞ-module Vl
m
2 j

n
2

by V l
spoðmjnÞ: So if l ¼ ðl1; l2;y; lmþn

2
Þ is the glðm

2 jn2Þ-labels of V l
m
2
jn
2
; then the spoðmjnÞ-

labels of V l
spoðmjnÞ are

ð	l1; l1 	 l2;y; lm
2
	1 	 lm

2
; lm

2
þ lm

2
þ1; lm

2
þ1 	 lm

2
þ2;yÞ: ð2:2Þ

When dealing with characters of spoðmjnÞ we will use the notation yj ¼ eej ; for

j ¼ 1;y; m
2
and zl ¼ e

em
2
þl ; for l ¼ 1;y; n

2
:

3. The ðglðdÞ; glðmjnÞÞ-duality

In this section we present some results on ðglðdÞ; glðmjnÞÞ-duality that will be used
later on. In particular, Theorem 3.4 constructs explicit bases for irreducible

glðdÞ � glðmjnÞ-modules appearing in the decomposition of SðCd#CmjnÞ; and we
believe the result to be new.

Consider the natural actions of glðdjqÞ on Cdjq and glðmjnÞ on Cmjn: We can form

the glðdjqÞ � glðmjnÞ-module Cdjq#Cmjn: We have an induced action on the

symmetric tensor SðCdjq#CmjnÞ: This action is completely reducible and in fact
ðglðdjqÞ; glðmjnÞÞ is a dual pair in the sense of Howe [5] (see also [30]). Since in this
paper we will only concern ourselves with the case when q ¼ 0; we will make this
assumption in what follows. In this case we have the following decomposition:

SðCd#CmjnÞD
X
l

V l
d#V l

mjn: ð3:1Þ

The sum in (3.1) is over all partitions of integers l ¼ ðl1; l2;y; ldÞ of length lðlÞ not
exceeding d subject to lmþ1pn: Since lðlÞpd we may regard l as a highest weight for
an irreducible glðdÞ-module so that there is no ambiguity in Vl

d : The meaning of Vl
mjn

as a glðmjnÞ-module was explained in Section 2.1.
In the sequel it is important to have an explicit formula for the joint highest weight

vectors of the irreducible component V l
d#Vl

mjn in (3.1). (See also [25,28] for different

descriptions of these vectors.) In order to present them we need to introduce some
more notation.
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We let e1;y; ed denote the standard basis for the standard glðdÞ-module.
Similarly we let e1;y; em; f1;y; fn denote the standard homogeneous basis for the

standard glðmjnÞ-module. The weights of ei; el and fk are denoted by *ei; el and dk;
for 1pipd; 1plpm and 1pkpn; respectively. We set

xi
l :¼ ei#el ; Zi

k :¼ ei#fk: ð3:2Þ

We will denote by C½x; g� the polynomial superalgebra generated by (3.2). By

identifying SðCd#CmjnÞ with the polynomial superalgebra C½x; g� the commuting
pair ðglðdÞ; glðmjnÞÞ may be realized as first-order differential operators as follows:
ð1pi; i0pd; 1ps; s0pm and 1pk; k0pnÞ:

Xm

j¼1
xi

j

@

@xi0
j

þ
Xn

j¼1
Zi

j

@

@Zi0
j

; ð3:3Þ

Xd

j¼1
xj

s

@

@x
j
s0

;
Xd

j¼1
Zj

k0
@

@Zj
k

;
Xd

j¼1
xj

s

@

@Zj
k

;
Xd

j¼1
Zj

k

@

@x
j
s

: ð3:4Þ

Here (3.3) spans a copy of glðdÞ; while (3.4) spans a copy of glðmjnÞ:
The standard Cartan subalgebras of glðdÞ and glðmjnÞ are spanned, respectively,

by

Xm

j¼1
xi

j

@

@xi
j

þ
Xn

j¼1
Zi

j

@

@Zi
j

and
Xd

j¼1
xj

s

@

@x
j
s

;
Xd

j¼1
Zj

k

@

@Zj
k

;

while the nilpotent radicals are, respectively, generated by the simple root vectors

Xm

j¼1
xi	1

j

@

@xi
j

þ
Xn

j¼1
Zi	1

j

@

@Zi
j

; 1oipd;

and

Xd

j¼1
x

j
s	1

@

@x
j
s

;
Xd

j¼1
Zj

k	1
@

@Zj
k

;
Xd

j¼1
xj

m

@

@Zj
1

; 1ospm; 1okpn:

We will consider two separate cases, namely mXd and mod:
First suppose that mXd: Here the condition lmþ1pn is vacuous. For

1prpminðd;mÞ define

Dr :¼ det

x1
1 x1

2 ? x1
r

x2
1 x2

2 ? x2
r

^ ^ ^ ^

xr
1 xr

2 ? xr
r

0
BBB@

1
CCCA: ð3:5Þ
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Theorem 3.1 (Cheng and Wang [5]). In the case when mXd; the glðdÞ � glðmjnÞ
highest weight vectors in C½x; g� associated to the weight l is given by the product

Dl01
Dl02

?Dl0l1
:

We now consider the case d4m: It is readily checked that the highest weight
vectors associated to Young diagrams l with lmþ1 ¼ 0 can be obtained just as in the

previous case so that we may assume that lðlÞ4m: Let l01; l
0
2;y; l0l1 denote its

column lengths as usual. We have dXl01Xl02?Xl0l1 and mXl0nþ1: For morpd;

consider the following determinant of an r � r matrix:

Dk;r :¼ det

x1
1 x2

1 ? xr
1

x1
2 x2

2 ? xr
2

^ ^ ? ^

x1
m x2

m ? xr
m

Z1k Z2k ? Zr
k

Z1k Z2k ? Zr
k

^ ^ ? ^

Z1k Z2k ? Zr
k

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
; k ¼ 1;y; n: ð3:6Þ

That is, the first m rows are filled by the vectors ðx1
j ;y; xr

j Þ; for j ¼ 1;y;m; in

increasing order and the last r 	 m rows are filled with the same vector ðZ1k;y; Zr
kÞ:

Here the determinant of a matrix

A :¼

a11 a21 ? ar
1

a12 a22 ? ar
2

^ ^ ? ^

a1r a2r ? ar
r

0
BBB@

1
CCCA;

with matrix entries possibly involving Grassmann variables Zi
k; is by definition the

expression
P

sASr
ð	1ÞlðsÞ

a
sð1Þ
1 a

sð2Þ
2 ?a

sðrÞ
r ; where lðsÞ is the length of s in the

symmetric group Sr:

Theorem 3.2 (Cheng and Wang [5]). In the case when mod; the glðdÞ � glðmjnÞ
highest weight vectors in C½x; g� associated to the weight l is given by the product

Yn
k¼1

Dk;l0k

Yl1
j¼rþ1

Dl0j
; ð3:7Þ

where n is defined by l0n4m and l0nþ1pm:
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For application purposes it is useful to construct an explicit basis for the

glðdÞ � glðmjnÞ-modules V l
mjn that appear in the decomposition of SðCd#CmjnÞ:

This we will do now.
Recall that l is a partition (or a Young diagram) which lies in the ðmjnÞ-hook of

length not exceeding d: Let x1;y; xm and Z1;y; Zn be even and odd indeterminates,
respectively. We form a tableau of shape l by filling the nodes of l from the set
fx1;y; xm; Z1;y; Zng so that the resulting tableau T is ðmjnÞ-semi-standard. This
means that we first fill the nodes of a subdiagram mDl with the even indeterminates
fx1;y; xmg so that the resulting subtableau is semi-standard. Then we fill the skew-
diagram l=m with odd indeterminates fZ1;y; Zng so that its transpose is semi-
standard. Let us suppose that the ith column of T has length r and is filled from top
to bottom by

ðxi1 ; xi2 ;y; xis ; Zj1
;y; Zjt

Þ: ð3:8Þ

We associate to (3.8) the following determinant:

DT
i :¼ det

x1
i1

x2
i1

? xr
i1

x1
i2

x2
i2

? xr
i2

^ ^ ? ^

x1
is

x2
is

? xr
is

Z1j1 Z2j1 ? Zr
j1

Z1j2 Z2j2 ? Zr
j2

^ ^ ? ^

Z1jt Z2jt ? Zr
jt

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

; ð3:9Þ

where r ¼ s þ t: We set DT ¼
Ql1

i¼1 D
T
i :

Theorem 3.3. The set fDTg; with T running over all ðmjnÞ-semi-standard tableaux of

shape l; is a basis for the space of glðdÞ-highest weight vectors in SðCd#CmjnÞ of

highest weight l:

Proof. It is easy to see that every DT is a glðdÞ-highest weight vector of glðdÞ-highest
weight l: Now according to [1] the dimension of Vl

mjn equals the number of ðmjnÞ-
semi-standard tableaux of shape l and hence it is enough to show that the set fDTg is
a linearly independent set. Now due to weight considerations it is enough to prove

that the set of fDTg; where T is over all ðmjnÞ-semi-standard tableaux with fixed
occurrence of fx1;y;xm; Z1;y; Zng; is linearly independent. We proceed by
induction on the number of odd indeterminates that occur inside the T ’s. If that
number is zero, then the conclusion of the theorem is know to be true (see e.g. [10]).
Thus we may assume that at least one odd indeterminate occurs in all of the T ’s.
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Now let Zi be the odd indeterminate appearing in all DT with i minimal. LetX
T

lTDT ¼ 0: ð3:10Þ

We embed SðCd#CmjnÞ into SðCd#Cmþ1jnÞ so that we may regard (3.10) as a sum

in SðCd#Cmþ1jnÞ: We apply to (3.10) the linear map

A ¼
Xd

j¼1
x

j
mþ1

@

@Zj
i

:

It is clear that the resulting sum is of the formX
T

X
SALT

lSDS;

where LT is the set of all tableaux obtained from T by replacing one of the Zi-nodes
by an xmþ1-node. We may assume that all S are ðm þ 1jnÞ-semi-standard with one
less odd node. Furthermore each lS is a non-zero positive integral multiple of lT :
(Note that lS ¼ plS if and only if Zi appears with multiplicity p in some column and
S is obtained from T by replacing the first Zi node of this column by xmþ1:)
We claim that all S are distinct ðm þ 1jnÞ-semi-standard tableaux and thus by

induction they are linearly independent. This implies lS ¼ 0 and hence lT ¼ 0 and
we are done.
In order to prove the claim we consider two cases.
In the first case suppose that S and S0 are obtained from the same T : But in this

case S and S0 are obviously different, since S and S0 are obtained from T by
replacing Zi by xmþ1 in different columns.
Now suppose that S and S0 are obtained from T and T 0; respectively, and TaT 0:

If the positions of Zi in T and T 0 are the same, then T and T 0 differ at some Zs node,
ias: But then S and S0 also differ at this particular Zs-node as well. If on the other
hand T and T 0 differ at some Zi node, then this means that T at a node has Zi; while
at the same node T 0 has some Zs; ias; or xk; kam þ 1: But then in all of S0 this
particular node is always Zs or xk; while in all S this particular node is either Zi or
xmþ1: Thus S and S0 must be distinct. &

Let l be a Young diagram lying in the ðmjnÞ-hook of with lðlÞpd and T be an
ðmjnÞ-semi-standard tableau of shape l:Wemay fill the boxes of the Young diagram l
from the set fx1;y; xdg in a way so that the resulting tableau T 0 is semi-standard. Let

the ith column of T 0 be filled by fxk1 ;y; xkrg: Suppose that a joint glðmjnÞ � glðdÞ-
highest weight vector is of the form (3.7). We may replace the upper indices 1; 2;y; r

of all the entries in Di;l0i
(or Dl0i

) by k1; k2;y; kr: Let us call the resulting determinant

DT 0

i;l0i
(or DT 0

l0i
) and consider the following product of determinant.

Yv

k¼1
DT 0

k;l0k

Yl1
j¼vþ1

DT 0

l0j
:
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It is clear from symmetry between the upper and lower indices that when T 0 ranges
over all semi-standard tableaux we obtain a basis for the glðmjnÞ-highest weight
vectors of highest weight l in SðCd#CmjnÞ:
Now let l be a Young diagram lying in the ðmjnÞ-hook of with lðlÞpd and T and

T 0 as before. Let the ith column of T 0 and T be filled by

fxk1 ;y; xkrg

ðxi1 ; xi2 ;y; xis ; Zj1
;y; Zjt

Þ;

respectively, from top to the bottom. To the ith column of the bi-tableau ðT ;T 0Þ we
associate the following determinant:

DðT ;T 0Þ
i :¼ det

xk1
i1

xk2
i1

? xkr

i1

xk1
i2

xk2
i2

? xkr

i2

^ ^ ? ^

xk1
is

xk2
is

? xkr

is

Zk1
j1

Zk2
j1

? Zkr

j1

Zk1
j2

Zk2
j2

? Zkr

j2

^ ^ ? ^

Zk1
jt

Zk2
jt

? Zkr

jt

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; ð3:11Þ

where again r ¼ s þ t: We set DðT ;T 0Þ ¼
Ql1

i¼1 D
ðT ;T 0Þ
i : The following theorem gives an

explicit basis for each irreducible glðdÞ � glðmjnÞ-component in SðCd#CmjnÞ:

Theorem 3.4. The set DðT ;T 0Þ; where T 0 is semi-standard in fx1;y; xdg and T is ðmjnÞ-
semi-standard in fx1;y; xm; Z1;y; Zng; is a basis for Vl

d#Vl
mjn in SðCd#CmjnÞ:

Proof. Given DðT ;T 0Þ with ðT ;T 0Þ fixed. By Theorem 3.3 and the Jacobson density
theorem (more precisely by Burnside’s theorem) we can find an element

ða#bÞAUðglðdÞÞ#UðglðmjnÞÞ such that ða#bÞDðT ;T 0Þ is the joint glðdÞ � glðmjnÞ-
highest weight vector and a#b annihilates all DðS;S0Þ; for ðS;S0ÞaðT ;T 0Þ: This
implies that the set fDðT ;T 0Þg is linearly independent. But the number of semi-

standard tableaux in fx1;y; xdg times the number of ðmjnÞ-semi-standard tableaux

in fx1;y; xm; Z1;y; Zng is precisely the dimension of the space V l
d#Vl

mjn: &

Remark 3.1. The above theorem is known in the case when n ¼ 0 (see e.g. [10]).
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4. The ðO; spoÞ- and ðSp; ospÞ-duality

Let Cd be the d-dimensional complex vector space with standard basis

fe1; e2;y; edg: Let OðdÞ be the orthogonal group leaving invariant the symmetric

bilinear form ð�j�Þ as in Section 2, and let Cmjn be the superspace of dimension ðmjnÞ:
The natural action of OðdÞ on Cd extends to an action on Cd#Cmjn: This action

gives rise to an action of OðdÞ on the supersymmetric tensor SðCd#CmjnÞ; which, as
in Section 3, we identify with C½x;g�; the commutative superalgebra in (3.2). As the
action glðdÞ under this identification gets identified with certain first-order
differential operators as in (3.3), the action of the Lie algebra of OðdÞ naturally
gets identified with certain first-order differential operators as well.
Consider the following first-order differential operators:

Exx
is ¼

Xd

j¼1
x

j
i

@

@x
j
s

þ d

2
dis; E

xZ
ik ¼

Xd

j¼1
x

j
i

@

@Zj
k

;

E
Zx
ki ¼

Xd

j¼1
Zj

k

@

@x
j
i

; E
ZZ
tk ¼

Xd

j¼1
Zj

t

@

@Zj
k

	 d

2
dik; ð4:1Þ

where i; s ¼ 1;y;m and k; t ¼ 1;y; n: It is evident that they form a basis for the Lie
superalgebra glðmjnÞ and it is clear that OðdÞ commutes with glðmjnÞ:
Next consider another set of operators on C½x; g�:

OIxx
is ¼

Xd

j¼1
x

j
ix

dþ1	j
s ; OI

xZ
ik ¼

Xd

j¼1
x

j
iZ

dþ1	j
k ; OI

ZZ
kt ¼

Xd

j¼1
Zj

kZ
dþ1	j
t ;

ODxx
is ¼

Xd

j¼1

@

@x
j
i

@

@x
dþ1	j
s

; ODxZ
ik ¼

Xd

j¼1

@

@x
j
i

@

@Zdþ1	j
k

; ODZZ
kt ¼

Xd

j¼1

@

@Zj
k

@

@Zdþ1	j
t

;

where 1pipspm and 1pkotpn: We note that these operators also commute with
the action of OðdÞ on C½x; g�: It is not hard to see that these operators together with
(4.1) form a basis of the symplectic-orthogonal Lie superalgebra spoð2mj2nÞ: In fact,
using the Z-gradation of spoð2mj2nÞ given in Section 2, we have g1 ¼

P
CODxx

is þP
CODxZ

ik þ
P

CODZZ
kl and g	1 ¼

P
COIxx

is þ
P

COI
xZ
ik þ

P
COI

ZZ
kl : Thus on C½x; g�

we have an action of OðdÞ � spoð2mj2nÞ:
An element fAC½x; g� will be called OD-harmonic, if ODxx

is f ¼O DxZ
ik f ¼ ODZZ

kl f ¼ 0:

The space of OD-harmonics will be denoted by OH: Note that since ½glðmjnÞ; g1�Dg1
the space OH is invariant under the action of glðmjnÞ: Also OH is clearly invariant

under the action of OðdÞ: Hence we have an action of OðdÞ � glðmjnÞ on OH: Let OI

be the subalgebra of C½x; g� generated by OIxx
is ; OI

xZ
ik and OI

ZZ
kl : It is clear that

OI is

the subalgebra of OðdÞ-invariants in C½x; g�: We have the following theorem.
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Theorem 4.1 (Howe [13]). The pairs ðOðdÞ; spoð2mj2nÞÞ and ðOðdÞ; glðmjnÞÞ form

dual reductive Howe pairs on SðCd#CmjnÞ and on OH; respectively. Thus we have

C½x; g�D
X
l

V l
OðdÞ#Vl0

spoð2mj2nÞ;

OHD
X
l

Vl
OðdÞ#V l00

mjn;

where l is summed over a set of irreducible OðdÞ-highest weights. Here l0 and l00 are

certain non-isomorphic irreducible spoð2mj2nÞ- and glðmjnÞ-highest weights, respec-

tively. Furthermore the map OI#OH-C½x; g� given by multiplication is surjective and

we have, for each l; V l0
spoð2mj2nÞ ¼ OIVl00

mjn:

Let d be an even integer and consider the d-dimensional complex vector space with

the standard basis e1; e2;y; ed and equipped with the non-degenerate skew-
symmetric bilinear form / � j �S as in Section 2. Let SpðdÞ be the corresponding

symplectic group. Again we have an action of SpðdÞ on Cd#Cmjn; inducing an

action of SpðdÞ on the supersymmetric tensor SðCd#CmjnÞ; which we again identify
with C½x; g�:
Introduce the following operators:

SpIxx
is ¼

Xd
2

j¼1
ðxj

ix
dþ1	j
s 	 x

dþ1	j
i xj

sÞ; SpI
xZ
ik ¼

Xd
2

j¼1
ðxj

iZ
j
k 	 x

dþ1	j
i Zdþ1	j

k Þ;

SpI
ZZ
kt ¼

Xd
2

j¼1
ðZj

kZ
dþ1	j
t 	 Zdþ1	j

k Zj
tÞ; SpDxx

is ¼
Xd
2

j¼1

@

@x
j
i

@

@x
dþ1	j
s

	 @

@x
dþ1	j
i

@

@x
j
s

 !
;

SpDxZ
ik ¼

Xd
2

j¼1

@

@x
j
i

@

@Zdþ1	j
k

	 @

@x
dþ1	j
i

@

@Zj
k

 !
;

SpDZZ
kt ¼

Xd
2

j¼1

@

@Zj
k

@

@Zdþ1	j
t

	 @

@Zdþ1	j
k

@

@Zj
t

 !
;

where 1piospm and 1pkptpn: It is again not hard to see that these operators
together with (4.1) form a basis for the Lie superalgebra ospð2mj2nÞ and their actions
and that of SpðdÞ on C½x; g� commute.

ARTICLE IN PRESS
S.-J. Cheng, R.B. Zhang / Advances in Mathematics 182 (2004) 124–172140



An element fAC½x; g� will be called SpD-harmonic, if SpDxx
is f ¼ SpDxZ

ik f ¼ SpDZZ
kl f ¼ 0:

The space of SpD-harmonics will be denoted by SpH: Similarly, we have an action of

SpðdÞ � glðmjnÞ on SpH: Let SpI be the subalgebra of C½x; g� generated by
SpIxx

is ; SpI
xZ
ik and SpI

ZZ
kl so that SpI is the subalgebra of SpðdÞ-invariants in C½x; g�:

In a similar fashion we have the following theorem.

Theorem 4.2 (Howe [13]). The pairs ðSpðdÞ; ospð2mj2nÞÞ and ðSpðdÞ; glðmjnÞÞ form

Howe dual reductive pairs on SðCd#CmjnÞ and on SpH; respectively. Therefore we

have a decomposition of modules

C½x; g�D
X
l

Vl
SpðdÞ#V l0

ospð2mj2nÞ;

SpHD
X
l

Vl
SpðdÞ#V l00

mjn;

where l is summed over a set of irreducible SpðdÞ-highest weights. Here l0 and l00 are

certain non-isomorphic irreducible ospð2mj2nÞ- and glðmjnÞ-highest weights, respec-

tively. Furthermore the map SpI#SpH-C½x; g� given by multiplication is surjective

and we have, for each l; V l0
ospð2mj2nÞ ¼ SpIVl00

mjn:

The proofs of Theorems 4.1 and 4.2 are based on the fact that the invariants of the
classical group of the corresponding dual pair in the endomorphism ring of

SðCd#CmjnÞ are generated by quadratic invariants. Although in [13] it is shown that
the pairs ðOðdÞ; spoð2mj2nÞÞ and ðSpðdÞ; ospð2mj2nÞÞ are indeed dual pairs on

SðCd#CmjnÞ; the explicit decomposition of SðCd#CmjnÞ was not given. We will
embark on this task in Section 5.
We conclude this section by showing that the representations of spoð2mj2nÞ and

ospð2mj2nÞ that appear in Theorems 4.1 and 4.2 are unitarizable. We first recall some
definitions.

Let A be a superalgebra and w an anti-linear map with ðabÞw ¼ bwaw; for a; b in A:

We call w an anti-linear anti-involution if ðawÞw ¼ a: Now let A be a superalgebra

equipped with an anti-linear anti-involution w and let V be an A-module. A

Hermitian form ð�j�Þ on V is said to be contravariant if ðavjwÞ ¼ ðvjawwÞ; for aAA and
v;wAV : If furthermore ð�j�Þ is positive-definite, then V is said to be a unitarizable A-
module. We remark here that we have defined the anti-involution and the
contravariant form without ‘‘super signs’’. It follows then that any unitarizable
module is completely reducible.

Proposition 4.1. The representations V l0
spoð2mj2nÞ and V l0

ospð2mj2nÞ that occur in the

decompositions of SðCd#CmjnÞ are unitarizable.
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Proof. We need to construct a contravariant positive-definite Hermitian form on
C½x; g�: We proceed as follows. First note that the space C½x; g� is an irreducible
representation of the direct sum of a Heisenberg algebra and a Clifford superalgebra

with generators mapped to x
j
i; Zj

k;
@
@x

j
i

; @
@Zj

k

; for i ¼ 1;y;m; k ¼ 1;y; n and j ¼
1;y; d; and 1. Identifying this superalgebra with its image we have an anti-linear
anti-involution given by

ðxj
iÞ
w ¼ @

@x
j
i

;
@

@x
j
i

 !w

¼ x
j
i; ðZj

kÞ
w ¼ @

@Zj
k

;
@

@Zj
k

 !w

¼ Zj
k; 1w ¼ 1:

This gives rise to a unique contravariant Hermitian form ð�j�Þ on C½x; g� with ð1j1Þ ¼ 1:
Furthermore for any non-zero monomial fAC½x; g� we have ð f jf Þ40; and hence ð�j�Þ
is positive-definite. Therefore C½x; g�; as a representation of the Clifford super-
algebra, is unitarizable.

Now it is easy to see, using (4.1) along with the formulas for SpI ; SpD and OI ; OD
in this section, that ospð2mj2nÞ and spoð2mj2nÞ are invariant under the anti-

involution w: This implies that the representations of ospð2mj2nÞ and spoð2mj2nÞ on
C½x; g� are unitarizable. &

5. Joint highest weight vectors

In this section we will describe the explicit decomposition of the space

SðCd#CmjnÞ under the joint actions of the relevant dual pairs. We will do so by
explicitly finding a joint highest weight vector for each irreducible component.

5.1. The case of ðO; spoÞ-duality

Consider the ðOðdÞ; spoð2mj2nÞÞ-duality on the space SðCd#CmjnÞ: Using the

notation from Section 4 we make the identification of SðCd#CmjnÞ with the
polynomial superalgebra C½x; g� so that the Lie algebra soðdÞ and spoð2mj2nÞ are
identified with differential operators.
By Theorem 4.1 we only need to find the decomposition of the space of harmonic

polynomials OH into irreducible OðdÞ � glðmjnÞ-modules. By Theorem 3.2 C½x; g� as
a glðdÞ � glðmjnÞ-module decomposes into

P
l Vl

d#V l
mjn; where the summation is

over all partitions l with lðlÞpd and lmþ1pn:

Consider first the case when mX
d
2
: Take a diagram l with l01 þ l02pd and let vl be

the corresponding joint glðdÞ � glðmjnÞ-highest weight vector in C½x; g� of the form
in Theorems 3.1 or 3.2. Note that in this case it is automatic that lmþ1pn; as long
as nX1:
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Here and further we use 1
2
to denote the ðm þ nÞ-tuple ð12;y; 12;	1

2;y;	1
2Þ: That is,

the first m entries are 1
2
; while the last n entries are 	1

2
:

Proposition 5.1. Suppose that nX1 and mX
d
2
: The vector vl is OD-harmonic of OðdÞ-

weight corresponding to the diagram l: Therefore

OHD
X
l

V l
OðdÞ#V

lþd
1
2

mjn ;

where l ranges over all diagrams with l01 þ l02pd: Here the weight lþ d1
2

denotes the

sum of the glðmjnÞ-weight corresponding to the Young diagram l with the ðm þ nÞ-
tuple d1

2
:

Proof. Note that by our choice of the Borel subalgebra of soðdÞ; it is automatic that
vl is an OðdÞ � glðmjnÞ-highest weight vector. (In fact this is true for any l:) Thus in
order to show that vl is

OD-harmonic it is enough to show that it is annihilated by
ODxx

11 ¼
Pd

j¼1
@
@x

j

1

@

@x
dþ1	j

1

: This is because vl is already annihilated by the nilpotent

radical of the Borel subalgebra of glðmjnÞ; which together with ODxx
11 generates the

nilpotent radical of the Borel subalgebra of spoð2mj2nÞ: Also note that if l01pm; then
the joint highest weight vector is the usual joint highest weight vector in the classical

OðdÞ � spð2mÞ-duality and hence is killed by ODxx
11 [14]. So we may assume that

l014m: In this case in order to show that ODxx
11vl ¼ 0; we consider the classical

OðdÞ � spð2m þ 2nÞ-duality. Here the joint highest weight vector wl of OðdÞ �
spð2m þ 2nÞ is a product of determinants of the form Dl01

Dl02
?Dl0l1

; with only l01

exceeding m: That is, only in Dl01
can we possibly have variables of the form x

j
mþi with

i ¼ 1;y; n: From the duality in the classical case we know that wl is harmonic [14]

and hence in particular ODxx
11wl ¼ 0: Consider the first-order differential operators

Gi ¼
Pd

j¼1 Z
j
1

@
@x

j
mþi

; for i ¼ 1;y; n: We see that ODxx
11 commutes with all Gi and hence

0 ¼ G1?Gl01	m
ODxx

11wl ¼ ODxx
11G1?Gl01	mwl:

But G1?Gl01	mwl ¼ ð	1Þl
0
1	m	1ðl01 	 mÞ!vl and hence ODxx

11vl ¼ 0:

Finally the addition of d 1
2
to the glðmjnÞ-highest weight l is of course due to

(4.1). &

As in [14] one shows that vl indeed has OðdÞ-weight corresponding to the Young

diagram l: But as l ranges over all partitions with l01 þ l02pd we conclude that the

vl’s generate the complete set of all finite-dimensional irreducible OðdÞ-modules.
Due to OðdÞ � glðmjnÞ-duality in OH we see that

OHD
X
l

Vl
OðdÞ#V

lþd
1
2

mjn ;

where l ranges over all Young diagrams with l01 þ l02pd:
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Proposition 5.2. Suppose that nX1 and mX
d
2
: Then as an OðdÞ � spoð2mj2nÞ-module

we have the following decomposition.

SðCd#CmjnÞD
X
l

Vl
OðdÞ#V

lþd
1
2

spoð2mj2nÞ;

where l ranges over all Young diagrams with l01 þ l02pd:

Now consider the case when mod
2: For this case we introduce new even variables

so that the total number of even variables is at least d
2
: Since the case when d is odd is

analogous we assume for simplicity that d is even and we add new variables

x
j
mþ1;y; x

j
d
2

; j ¼ 1;y; d; to the polynomial superalgebra C½x; g� and denote the

resulting superalgebra by C½x0;g�: That is, we are considering the embedding

SðCd#CmjnÞDSðCd#C
d
2
jnÞ: Without further mentioning we adopt the convention

of adding a 0 to operators, vectors, etc., when we are regarding them as over

SðCd#C
d
2
jnÞ: So for example we denote the corresponding Laplacian of C½x0; g� by

OD0xx
ij ; 1pi; jpd

2
; etc. and call OD0-harmonic an element fAC½x0; g� that is annihilated

by all these Laplacians. We note that ODxx
is ¼ OD0xx

is ; for 1pi; spm; etc. Furthermore
OD0xx

ij ; with either i or j not in f1;y;mg; is a sum of second-order differential

operators, each of them involving differentiation with respect to some of the new

variables x
j
mþ1;y; x

j
d
2

that we have introduced. It follows that if fAC½x; g�DC½x0; g�;

then f is OD0-harmonic if and only if f is OD-harmonic. Thus OHDOH 0:

Now in C½x0; g� we know that the subspace of OD0-harmonics is

OH 0 ¼
X
l

V l
OðdÞ#V

lþd
1
2

d
2
jn

;

where l ranges over all Young diagrams with l01 þ l02pd by Proposition 5.1. Let v0l

be a joint highest weight vector in OH 0 for the component V l
OðdÞ#V

lþd
1
2

d
2
jn

: Then if the

first column exceeds d
2
we have up to a scalar multiple

v0l ¼ D1l01
Dl02

?Dl0l1
:

Otherwise we have up to a scalar multiple

v0l ¼ Dl01
Dl02

?Dl0l1
:

Suppose l is such a diagram with lmþ14n: In this case the nth column of l exceeds m

and hence Dl0n
contains at least one row with entries consisting entirely of newly

introduced variables. Now by Theorems 3.3 and 4.1 all the OðdÞ-highest weight
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vectors of highest weight l in OH 0 are, up to a scalar multiple, of the form DT ; where

T runs over all ðd
2
jnÞ-semi-standard tableaux. But then it is not hard to see that one of

the rows in some DT
i must consist entirely of newly introduced variables so that DT

reduces to zero when setting x
j
mþ1 ¼ ? ¼ x

j
d
2

¼ 0: Since OHDOH 0; this implies that

there are no OðdÞ-highest weight vectors of highest weight l with lmþ14n in OH:

On the other hand if l01 þ l02pd and lmþ1pn; it is quite easy to see, using Theorem
3.2, that vl (that is the OðdÞ � glðmjnÞ-joint highest weight vector in C½x; g�) is

annihilated by ODxx
11 ¼

Pd
j¼1

@
@x

j

1

@

@x
dþ1	j

1

; and hence vl is indeed OD-harmonic.

Combining the results of this section we have proved the following.

Theorem 5.1. We have the following decomposition of OH as an OðdÞ � glðmjnÞ-
module:

OHD
X
l

V l
OðdÞ#V

lþd
1
2

mjn ;

where l ranges over all diagrams with l01 þ l02pd and lmþ1pn: Thus as an

OðdÞ � spoð2mj2nÞ-module we have

SðCd#CmjnÞD
X
l

V l
OðdÞ#V

lþd
1
2

spoð2mj2nÞ;

where l ranges over all Young diagrams with l01 þ l02pd and lmþ1pn: Here the labels

of the spoð2mj2nÞ-highest weight of V
lþd

1
2

spoð2mj2nÞ with respect to the Dynkin diagram of

Section 2.4 is obtained by applying (2.2) to the glðmjnÞ-weight lþ d1
2
:

Proof. The preceding discussion already shows that the theorem hold when nX1 and

mod
2
: Since in the case when mX

d
2
and nX1 the condition lmþ1pn is vacuous, the

theorem is true in this case due to Proposition 5.2. But of course the case n ¼ 0 is the
well-known classical case for which the conclusion of the theorem hold as well. &

Remark 5.1. Partial results on the decomposition of the space SðCd#CmjnÞ with
respect to the joint action of OðdÞ � spoð2mj2nÞ were obtained earlier by Nishiyama
in [27] by constructing certain OðdÞ � spoð2mj2nÞ-joint highest weight vectors in

SðCd#CmjnÞ: However, the full set of such joint highest weight vectors (and hence
the complete decomposition) was not obtained in there.

5.2. The case of ðSp; ospÞ-duality

Now consider the action of the dual pair ðSpðdÞ; ospð2mj2nÞÞ on the space

SðCd#CmjnÞ: The procedure is similar to that of Section 5.1.
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In view of Theorem 4.2 we again only need to find the decomposition of the space
SpH with respect to the joint action of SpðdÞ � glðmjnÞ: According to Theorem 3.2

C½x; g� as a glðdÞ � glðmjnÞ-module decomposes into
P

l V l
d#Vl

mjn; where the

summation is over all partitions l with lðlÞpd and lmþ1pn:

Let us first consider the case when mX
d
2
: We take a Young diagram l with lðlÞpd

2

so that the condition lmþ1pn here is automatic. We recall from Section 2 that the
finite-dimensional irreducible representations of SpðdÞ are parameterized by

diagrams with length not exceeding d
2
:

Proposition 5.3. Suppose that mX
d
2

and let l be a diagram with lðlÞpd
2
: Let

vlAVl
d#V l

mjn be a glðdÞ � glðmjnÞ-joint highest weight vector in C½x; g�: Then vl is
SpD-harmonic of SpðdÞ-weight corresponding to the diagram l: Therefore

SpHD
X
l

V l
SpðdÞ#V

lþd
1
2

mjn ;

where l ranges over all diagrams with lðlÞpd
2
: Here lþ d1

2
denotes the sum of the

glðmjnÞ-weight corresponding to l and the ðm þ nÞ-tuple d1
2
:

Proof. Since mX
d
2
and lðlÞpd

2
; the glðdÞ � glðmjnÞ-joint highest weight vector is of

the form vl ¼
Ql1

i¼1 Dl0i
; that is, only the x variables are involved. Since the Borel

subalgebra of spðdÞ is contained in the standard Borel subalgebra of glðdÞ; vl is an

spðdÞ � glðmjnÞ-highest weight vector. We need to show that it is SpD-harmonic. For

this it is again sufficient to show that vl is annihilated by SpDxx
12 ¼

Pd
2
j¼1ð @

@x
j

1

@

@x
dþ1	j

2

	
@

@x
dþ1	j

1

@
@x

j

2

Þ: But this is clear by the classical SpðdÞ � soð2mÞ-duality [14], because the

formulas for the joint highest weight vector vl and for the Laplacian SpDxx
12 in the

classical case are identical with our formulas here. Now the proposition follows from
Theorem 4.2 together with the fact that we have constructed an SpðdÞ-highest weight
vector corresponding to every finite-dimensional irreducible SpðdÞ-module. &

We now consider the case mod
2
: In this case the condition lmþ1pn is not an empty

condition. Here we can apply the idea of Section 4.1 by inserting enough new even

variables x
j
mþ1;y; x

j
d
2

and consider the SpðdÞ � ospðdj2nÞ-duality on the space

SðCd#C
d
2
jnÞ: We identify SðCd#C

d
2
jnÞ with C½x0; g� as before and regard

C½x; g�CC½x0; g�: Again we will use 0 to distinguish elements in C½x0; g� from
elements in C½x; g�: As in Section 4.1 it is easy to see that an element

fAC½x; g�CC½x0; g� is SpD-harmonic if and only if it is SpD0-harmonic and therefore
SpHCSpH 0:
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Now by Proposition 5.3 we have

SpH 0 ¼
X
l

V l
SpðdÞ#V

lþd
1
2

d
2
jn

;

where l is summed over all partitions of length lðlÞpd
2
: A joint highest weight vector

vl is given by
Ql1

i¼1 Dl0i
and hence by Theorem 3.3, the set of DT ’s, where T runs over

all ðd
2
jnÞ-semi-standard tableaux of shape l; is a basis for the space of SpðdÞ-highest

weight vectors of highest weight l in SpH 0:

Now suppose that lmþ14n: Let T be a ðd
2
jnÞ-semi-standard tableau and DT ¼Q

i D
T
i : It is clear that in this case one of the DT

i ’s must contain a row consisting

entirely of newly introduced variables. But then this means that, by setting these

newly introduced variables equal to zero, DT is zero. This implies that in SpH there
are no SpðdÞ-highest weight vectors of highest weight l; and hence no SpðdÞ-module
of the form Vl

SpðdÞ can occur in the decomposition of SpH with respect to the action

of SpðdÞ:
The above argument combined with Proposition 5.3 gives the complete

description of the SpðdÞ � ospð2mj2nÞ-duality on the space SðCd#CmjnÞ; which we
summarize in the following theorem.

Theorem 5.2. We have the following decomposition of SpH as an SpðdÞ � glðmjnÞ-
module:

SpHD
X
l

V l
SpðdÞ#V

lþd
1
2

mjn ;

where l ranges over all diagrams with lðlÞpd
2

and lmþ1pn: Thus as an

SpðdÞ � ospð2mj2nÞ-module we have

SðCd#CmjnÞD
X
l

V l
SpðdÞ#V

lþd
1
2

ospð2mj2nÞ;

where l ranges over all Young diagrams with lðlÞpd
2

and lmþ1pn: Here the labels of

the ospð2mj2nÞ-highest weight of V
lþd

1
2

ospð2mj2nÞ with respect to the Dynkin diagram of

Section 2.4 is obtained by applying (2.1) to the glðmjnÞ-weight lþ d1
2
:

Proof. Let l be a diagram with lðlÞpd
2
and lmþ1pn: In view of the discussion above

and Proposition 5.3 it remains to prove that in the case when mod
2
; the

glðdÞ � glðmjnÞ-joint highest weight vector in C½x; g� is indeed SpD-harmonic. For

this it is enough to show that it is annihilated by SpDxx
12 ¼

Pd
2
j¼1ð @

@x
j

1

@

@x
dþ1	j

2

	 @

@x
dþ1	j

1

@
@x

j

2

Þ:
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But this is easy to see using the formula for such a joint highest weight vector given in
Theorem 3.2. &

6. Character formulas for irreducible unitarizable spoð2mj2nÞ- and
ospð2mj2nÞ-modules

In this section we give combinatorial character formulas for the spoð2mj2nÞ- and
ospð2mj2nÞ-representations that appear in the decomposition of SðCd#CmjnÞ of
Section 5. We shall need a result of Enright [8] which we shall recall. Before this we
need some preparatory material.
Consider a Hermitian symmetric pair ðG;KÞ; where G is a real classical simple Lie

group. Let g and k denote the corresponding complexified Lie algebras. Fix a Cartan
subalgebra h of k so that h is also a Cartan subalgebra of g: Let b be a Borel
subalgebra of g containing h so that q ¼ k þ b is a maximal parabolic subalgebra of g

with abelian radical u: Hence as a vector space we have q ¼ k"u: Denote by D and
DðkÞ the root systems of ðg; hÞ and ðk; hÞ; respectively, and let Dþ be the set of positive
roots determined by b: Furthermore set DðkÞþ ¼ Dþ-DðkÞ and let r and rk denote

the respective half sums of positive roots. Also let DðuÞ ¼ faADjgaDug and put

ru ¼ 1
2

P
aAu a: Let W and WðkÞ denote the Weyl groups of g and k; respectively.

Now to each lAh� one can associate a subgroup Wl of W : Since we will need to
explicitly compute Wl later on, we will give a detailed description of it now. The
group Wl is the subgroup of W generated by the reflections sa; where aADðuÞ
satisfying the following three conditions [8,7]:

(i) /lþ r; $aSAN:
(ii) If for some bAD we have ðlþ rjbÞ ¼ 0; then ðajbÞ ¼ 0:
(iii) If for some long root bAD we have ðlþ rjbÞ ¼ 0; then a is a short root.

Associated to Wl one may define a root system Dl consisting of the roots gAD such
that sg lies in Wl: Now we set DlðkÞ ¼ Dl-DðkÞ; Dlþ ¼ Dþ-Dl and DlðkÞþ ¼
DlðkÞ-Dlþ: The group WlðkÞ is defined to be the subgroup of Wl generated by
reflection along the roots lying in DlðkÞþ: We have a decomposition of the group

WlDWlðkÞ � W k
l; where

W k
l ¼ fwAWlj/wr; $aSAZþ; 8aADlðkÞþg: ð6:1Þ

Remark 6.1. Note that our definition of Wl is actually the definition of Wlþr in [7,8].

For mAh� being a DðkÞþ-dominant integral weight we denote the finite-dimensional
irreducible k-module of highest weight m by V

m
k ; as usual.

Now let lAh� be a DðkÞþ-dominant integral weight. We may extend V l
k to a q-

module in the trivial way and consider the induced representation Ml
g of g: It is clear
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that Ml
g contains a unique maximal submodule and hence has a unique irreducible

quotient, which is isomorphic to the highest weight irreducible g-module of highest

weight l: We will denote this g-module by V l
g :

For xAh� with /x; $aSAR for all aADðkÞ; we denote the unique DðkÞþ-dominant
element in the WðkÞ-orbit of x by %x:
We have the following character formula for an irreducible unitarizable

representation V l
g :

Theorem 6.1 (Davidson et al. [7], Enright [8]). We have

ch V l
g ¼

e	ru
P

wAW k
l
ð	1ÞlðwÞ

ch V
wðlþrÞ	rk

kQ
aADðuÞð1	 e	aÞ ;

where lðwÞ is the length of w in Wl:

6.1. Character formula for spoð2mj2nÞ-modules

It follows from Theorem 4.1 in the case when n ¼ 0 that we have the following
identities of characters, for d even and odd, respectively.

ðy1?ymÞ
d
2
Yd
2

i¼1

Ym
j¼1

1

ð1	 xiyjÞð1	 x	1
i yjÞ

¼
X
l

ch Vl
OðdÞch V

lþd
1
2

spð2mÞ; d even; ð6:2Þ

ðy1?ymÞ
d
2
Yd	12
i¼1

Ym
j¼1

1

ð1	 xiyjÞð1	 x	1
i yjÞð1	 yjÞ

¼
X
l

ch Vl
OðdÞch V

lþd
1
2

spð2mÞ; d odd: ð6:3Þ

Here l is summed over all partitions with l01 þ l02pd such that lðlÞpm and 1
2
stands

for the m-tuple ð1
2
;y; 1

2
Þ: Let us write wlOðdÞðxÞ for the character of Vl

OðdÞ to stress its

dependence on the variables x1;y; x
½d
2
�
: We will now apply Theorem 6.1 to the

Hermitian symmetric pair ðSpð2mÞ;UðmÞÞ; so that g ¼ spð2mÞ and k ¼ glðmÞ: We

may now rewrite ch V
lþd

1
2

spð2mÞ in terms of Schur functions as follows. Since ru þ d1
2
is

WðkÞ-invariant, we have by Theorem 6.1

ch V
lþd

1
2

spð2mÞ ¼ ðy1?ymÞ
d
2

P
wAW k

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðyÞQ

1pipjpm ð1	 yiyjÞ
;

ARTICLE IN PRESS
S.-J. Cheng, R.B. Zhang / Advances in Mathematics 182 (2004) 124–172 149



where here and further rd ¼ rþ d1
2
: Here W k

lþd
1
2

is the subset of the Weyl group of

spð2mÞ defined by (6.1).

Remark 6.2. As we now need to deal with W k

lþd
1
2

; W
lþd

1
2

and W
lþd

1
2

ðkÞ for different

m at the same time, we introduce a superscript m in order to distinguish them. So for

example W
k;m

lþd
1
2

is the subset W k

lþd
1
2

of the Weyl group of spð2mÞ:

Combining this with (6.2) and (6.3), respectively, we have for even and odd d

respectively

Yd
2

i¼1

Ym
j¼1

1

ð1	 xiyjÞð1	 x	1
i yjÞ

¼
X
l

wlOðdÞðxÞ

P
wAW

k;m

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðyÞQ

1pipjpm ð1	 yiyjÞ
; ð6:4Þ

Yd	12
i¼1

Ym
j¼1

1

ð1	 xiyjÞð1	 x	1
i yjÞð1	 yjÞ

¼
X
l

wlOðdÞðxÞ

P
wAW

k;m

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðyÞQ

1pipjpm ð1	 yiyjÞ
: ð6:5Þ

Here wlOðdÞðxÞ ¼ w%lOðdÞðxÞ if and only if %l is obtained from l by replacing the first

column of l by a column of length d 	 l01: That is, the corresponding representation
of the Lie algebra soðdÞ are isomorphic. Here and further we denote by %l the Young
diagram obtained from l by replacing its first column by d 	 l01 boxes.
In order to distinguish such representations at the level of characters in the case

when d is odd let us take 	IAOðdÞ\SOðdÞ and let e denote the eigenvalue of 	I so

that we have e2 ¼ 1: We may then rewrite (6.5) as

Yd	12
i¼1

Ym
j¼1

1

ð1	 exiyjÞð1	 ex	1
i yjÞð1	 eyjÞ

¼
X
l

wlOðdÞðe; xÞ

P
wAW

k;m

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðyÞQ

1pipjpm ð1	 yiyjÞ
; ð6:6Þ

where now wlOðdÞðe; xÞ is a polynomial in x and e such that when setting e ¼ 1; we

obtain wlOðdÞðxÞ: Now it is easy to see that if l is a Young diagram and wlSOðdÞðxÞ is the
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corresponding SOðdÞ-character of wlOðdÞðe; xÞ; then wlOðdÞðe; xÞ ¼ ejljwlSOðdÞðxÞ; where
jlj is the size of l: Hence we have w%l

OðdÞðe; xÞ ¼ ewlOðdÞðe; xÞ:
Identities (6.4) and (6.6) will be our starting point for a character formula for

unitary spoð2mj2nÞ-modules. We need the following lemma.

Lemma 6.1. Suppose that f lðyÞ and glðyÞ are power series in the variables y:

ðiÞ Suppose that d is odd andX
l

f lðyÞwlOðdÞðe;xÞ ¼
X
l

glðyÞwlOðdÞðe; xÞ; ð6:7Þ

where the summation is over the full set of irreducible finite-dimensional characters

of OðdÞ: Then f lðyÞ ¼ glðyÞ; for all l:
ðiiÞ Suppose that d is even andX

l

f lðyÞwlOðdÞðxÞ ¼
X
l

glðyÞwlOðdÞðxÞ;

where the summation is over the full set of irreducible finite-dimensional characters

of OðdÞ: Then f lðyÞ þ f
%lðyÞ ¼ glðyÞ þ g

%lðyÞ:

Proof. We shall only show (i), i.e. for d odd, as the case of d even is analogous (in
fact easier). The argument is similar to the one given in [3].
We multiply identity (6.7) by the Weyl denominator D of the Lie group SOðdÞ and

using the Weyl character formula for wlSOðdÞðxÞ ¼
P

wAW
ð	1ÞlðwÞewðlþrÞ

D
we obtain

X
l

f lðyÞejlj
X

wAW

ð	1ÞlðwÞ
ewðlþrÞ ¼

X
l

glðyÞejlj
X

wAW

ð	1ÞlðwÞ
ewðlþrÞ: ð6:8Þ

Now as l ranges over all integral dominant weights, lþ r ranges over all regular
integral dominant weights of SOðdÞ: Hence if lam as SOðdÞ-dominant weights, then
the set of weights fwðlþ rÞ;wðmþ rÞjwAWg are all distinct. Clearly two weights l
and m are equal as SOðdÞ-dominant weights if and only if m ¼ %l: Thus looking at the
coefficient of elþr in (6.8) we obtain

ejljflðyÞelþr þ ej%ljf%lðyÞe
%lþr ¼ ejljglðyÞelþr þ ej%ljg%lðyÞe

%lþr:

Since ejljej%lj ¼ e; we conclude that f lðyÞelþr ¼ gðyÞelþr and hence f lðyÞ ¼ glðyÞ: &

From identities (6.6) and (6.4) by using Lemma 6.1 we obtain the following results
for every mAN:
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In the case when d is odd:X
wAW

k;mþ1
lþd

1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðy1;y; ym; 0Þ

¼
X

wAW
k;m

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðy1;y; ymÞ:

In the case when d is even:X
wAW k;mþ1

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðy1;y; ym; 0Þ

þ
X

wAW
k;mþ1
%lþd

1
2

ð	1ÞlðwÞ
s

wð%lþrd Þ	rd

ðy1;y; ym; 0Þ

¼
X

wAW
k;m

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðy1;y; ymÞ

þ
X

wAW k;m

%lþd
1
2

ð	1ÞlðwÞ
s

wð%lþrd Þ	rd

ðy1;y; ymÞ:

This allows us to define, in the case when d is odd, an element Sl
spðy1; y2;yÞ in the

inverse limit of symmetric polynomials, that is uniquely determined by the property
that

Sl
spðy1; y2;y; ym; 0; 0;yÞ ¼

X
wAW

k;m

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðy1;y; ymÞ:

Similarly we may define an element Sl
spðy1; y2;yÞ þ S

%l
spðy1; y2;yÞ in the case when d

is even.

Remark 6.3. The elements Sl
spðy1; y2;yÞ and Sl

spðy1; y2;yÞ þ S
%l
spðy1; y2;yÞ are in

general infinite sums of symmetric functions and hence are strictly speaking not
symmetric functions. However, in these infinite sums there are only finitely many
summands for any fixed degree.

We now take the limit as m-N in (6.4) and (6.6) and obtain the following
identities, respectively

Yd
2

i¼1

YN
j¼1

1

ð1	 xiyjÞð1	 x	1
i yjÞ

¼
X
l

wlOðdÞðxÞ
Sl

spðyÞQ
1pipjð1	 yiyjÞ

; ð6:9Þ
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Yd	12
i¼1

YN
j¼1

1

ð1	 exiyjÞð1	 ex	1
i yjÞð1	 eyjÞ

¼
X
l

wlOðdÞðe; xÞ
Sl

spðyÞQ
1pipj ð1	 yiyjÞ

; ð6:10Þ

where l is summed over all OðdÞ-highest weights and y ¼ ðy1; y2;yÞ:
Identities (6.9) and (6.10) follow from the fact that setting ymþ1 ¼ ymþ2 ¼ ? ¼ 0;

they reduce to identities (6.4) and (6.6), respectively. Thus the left- and the right-
hand sides of (6.9) and (6.10) give rise to the same elements in the ring of the
symmetric functions, respectively.
Recall that o; the involution of the ring of symmetric functions which sends the

complete symmetric functions to the elementary symmetric functions, is defined by

oð
Q

jAN
1

1	wj
Þ ¼

Q
jAN ð1þ wjÞ (see for example [24]). We can now apply o partially

to the variables ymþ1; ymþ2;y : After that we set the variables ymþnþ1 ¼ ymþnþ2 ¼
? ¼ 0 and we obtain the following identities (zl ¼ ymþl ; for l ¼ 1;y; n).

Yd
2

i¼1

Ym
j¼1

Yn

l¼1

ð1þ xizlÞð1þ x	1
i zlÞ

ð1	 xiyjÞð1	 x	1
i yjÞ

¼
X
l

wlOðdÞðxÞ
HSl

spðy; zÞ
Q

i;l ð1þ yizlÞQ
1pipjpm ð1	 yiyjÞ

Q
1plokpn ð1	 zlzkÞ

; ð6:11Þ

Yd	12
i¼1

Ym
j¼1

Yn

l¼1

ð1þ exizlÞð1þ ex	1
i zlÞð1þ ezlÞ

ð1	 exiyjÞð1	 ex	1
i yjÞð1	 eyjÞ

¼
X
l

wlOðdÞðe; xÞ
HSl

spðy; zÞ
Q

i;l ð1þ yizlÞQ
1pipjpm ð1	 yiyjÞ

Q
1plokpn ð1	 zlzkÞ

: ð6:12Þ

Remark 6.4. We note that oð
Q

1plpk
1

1	zl zk
Þ ¼

Q
1plok

1
1	zl zk

: This follows from the

following identities:

Y
1plpk

1

1	 zlzk

¼
X
l

slðz1; z2;yÞ;

Y
1plok

1

1	 zlzk

¼
X
m

smðz1; z2;yÞ;

where l is summed over all partitions with even row lengths, and m is summed over
all partitions with even column lengths.

Let us now explain the term HSl
spðy; zÞ: Since setting the variables ymþnþ1 ¼

ymþnþ2 ¼ ? ¼ 0 the expression Sl
spðyÞ reduces to a finite sum whose summands are
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Schur polynomials with coefficients 71; it follows that applying the involution o to
it, we obtain a sum whose summands consists of hook Schur functions with

coefficients 71: In fact if Sl
spðy1; y2;yÞ ¼

P
m emsmðy1; y2;yÞ; where em ¼ 71; then

(cf. [3])

oðSl
spðy1; y2;yÞÞ ¼

X
m

emHSmðy1;y; ym; z1; z2;yÞ;

where HSmðy1;y; ym; z1; z2;yÞ is the hook Schur function of [1] in the variables

y1;y; ym and z1; z2;y corresponding to the partition m: Next setting the variables
znþ1 ¼ znþ2 ¼ ? ¼ 0 we get the hook Schur polynomial associated to m; which we
denote by HSmðy1;y; ym; z1;y; znÞ: One property of hook Schur polynomials is that
HSmðy1;y; ym; z1;y; znÞ is non-zero if and only if m lies in the ðmjnÞ-hook, i.e.
mmþ1pn: So if Sl

spðyÞ ¼
P

m emsmðyÞ; then by HSl
spðy; zÞ we mean the expression

HSl
spðy; zÞ ¼

X
m

emHSmðy1;y; ym; z1;y; znÞ:

Therefore l in (6.11) and (6.12) is summed over all OðdÞ-highest weights l such that
lmþ1pn:
From Theorem 5.1, Lemma 6.1, and identities (6.11) and (6.12) we obtain the

following theorem.

Theorem 6.2. Let l be a diagram of Theorem 5.1 and let V
lþd

1
2

spoð2mj2nÞ be the irreducible

spoð2mj2nÞ-module corresponding to V l
OðdÞ under the Howe duality. Here 1

2
is the

ðm þ nÞ-tuple ð1
2
;y; 1

2
;	1

2
;y;	1

2
Þ:

ðiÞ If d is odd, then

ch V
lþd

1
2

spoð2mj2nÞ ¼ ðyz	1Þ
d
2

HSl
spðy; zÞ

Q
i;lð1þ yizlÞQ

1pipjpm ð1	 yiyjÞ
Q

1plokpn ð1	 zlzkÞ
:

(ii) If d is even, then

ch V
lþd

1
2

spoð2mj2nÞ þ ch V
%lþd

1
2

spoð2mj2nÞ

¼ ðyz	1Þ
d
2

ðHSl
spðy; zÞ þ HS

%l
spðy; zÞÞ

Q
i;l ð1þ yizlÞQ

1pipjpm ð1	 yiyjÞ
Q

1plokpn ð1	 zlzkÞ
:

Here yz	1 stands for the product y1?ymz	11 ?z	1n :

Remark 6.5. The expression HSl
spðy; zÞ in general involves an infinite number of

hook Schur functions, so the computation of these characters is a highly non-trivial
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task. In order to have a method to compute them, it is necessary to have an explicit

description of W
k;m

lþd
1
2

: We will do this in Section 7. From this we will then show in

Section 8 that the coefficients of the monomials in a character of a fixed degree can
be computed by computing a finite number of hook Schur functions.

6.2. Character formula for ospð2mj2nÞ-modules

As the arguments in this case are very similar to the one given in the previous
section, we will only sketch them here.
It follows from Theorem 5.2 in the case when n ¼ 0 that we have the following

identity of characters.

ðx1?xmÞ
d
2
Yd
2

i¼1

Ym
j¼1

1

ð1	 xjyiÞð1	 xjy
	1
i Þ ¼

X
l

ch V l
SpðdÞch V

lþd
1
2

soð2mÞ: ð6:13Þ

Here l is summed over all partitions with lðlÞpminðd
2;mÞ and 1

2
stands for the m-

tuple ð12;y; 12Þ: Let us write wlSpðdÞðyÞ for the character of V l
SpðdÞ to stress its

dependence on the variables y1;y; yd
2

: We now apply Theorem 6.1 to the Hermitian

symmetric pair ðSO�ð2mÞ;UðmÞÞ; so that we have g ¼ soð2mÞ and k ¼ glðmÞ: By

Theorem 6.1 we can then write ch V
lþd

1
2

soð2mÞ in terms of Schur functions as

ch V
lþd

1
2

soð2mÞ ¼ ðx1?xmÞ
d
2

P
wAW k;m

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðxÞQ

iojð1	 xixjÞ
:

Here W
k;m

lþd
1
2

is a subset of the Weyl group of soð2mÞ: Thus we have the following

identity.

Yd
2

i¼1

Ym
j¼1

1

ð1	 xjyiÞð1	 xjy
	1
i Þ ¼

X
l

wlSpðdÞðyÞ

P
wAW

k;m

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðxÞQ

ioj ð1	 xixjÞ
: ð6:14Þ

Analogous to the proof of Lemma 6.1 one proves the following lemma.

Lemma 6.2. Suppose that f lðxÞ and glðxÞ are power series in the variables x and

suppose that X
l

f lðxÞwlSpðdÞðyÞ ¼
X
l

glðyÞwlSpðdÞðyÞ; ð6:15Þ
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where the summation is over the full set of irreducible finite-dimensional characters of

SpðdÞ: Then f lðxÞ ¼ glðxÞ; for all l:

From Lemma 6.2 and identity (6.14) it follows that

X
wAW

k;mþ1
lþd

1
2

ð	1ÞlðwÞ
s

wðlþrÞ	rðx1;y; xm; 0Þ

¼
X

wAW
k;m

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðx1;y; xmÞ;

which then allows us to define an element Sl
soðx1; x2;yÞ in the inverse limit of

symmetric polynomials, uniquely determined by the property that

Sl
soðx1; x2;y; xm; 0; 0;yÞ ¼

X
wAW

k;m

lþd
1
2

ð	1ÞlðwÞ
s

wðlþrd Þ	rd
ðx1;y; xmÞ:

Taking the limit as m-N (6.14) and Lemma 6.2 imply the following identity.

Yd
2

i¼1

YN
j¼1

1

ð1	 xjyiÞð1	 xjy
	1
i Þ ¼

X
l

wlSpðdÞðyÞ
Sl

soðx1; x2;yÞQ
iojð1	 xixjÞ

: ð6:16Þ

We apply to (6.16) the involution of symmetric functions o partially to the variables
xmþ1; xmþ2;y; then set the variables znþ1 ¼ znþ2 ¼ ? ¼ 0: We arrive at the
following identity (zl ¼ xmþl ; for l ¼ 1; 2;y).

Yd
2

i¼1

Ym
j¼1

Yn

l¼1

ð1þ yizlÞð1þ y	1
i zlÞ

ð1	 yixjÞð1	 y	1
i xjÞ

¼
X
l

wlSpðdÞðyÞ
HSl

soðx; zÞ
Q

i;l ð1þ xizlÞQ
1piojpm ð1	 xixjÞ

Q
1plpkpn ð1	 zlzkÞ

; ð6:17Þ

where HSl
soðx1;y; xm; z1;y; znÞ is obtained by applying the involution o to Sl

so and

setting the variables znþ1 ¼ znþ2 ¼ ? ¼ 0: As before it is also a sum whose
summands consist of hook Schur polynomials with coefficients 71: By Theorem 5.2
and Lemma 6.2 we then obtain the following theorem.

Theorem 6.3. Let l be a diagram of Theorem 5.2 and let V
lþd

1
2

ospð2mj2nÞ be the irreducible

ospð2mj2nÞ-module corresponding to V l
SpðdÞ under the Howe duality. Here 1

2
is the
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ðm þ nÞ-tuple ð12;y; 12;	1
2;y;	1

2Þ: Then

ch V
lþd

1
2

ospð2mj2nÞ ¼ ðxz	1Þ
d
2

HSl
soðx; zÞ

Q
i;l ð1þ yizlÞQ

1piojpm ð1	 xixjÞ
Q

1plpkpn ð1	 zlzkÞ
;

where xz	1 denotes the product x1x2?xmz	11 z	12 ?z	1n :

Remark 6.6. We actually have Howe dualities of the dual pairs ðOðdÞ; gðCNÞÞ and
ðSpðdÞ; gðDNÞÞ on the space SðCd#CNÞ: Here the infinite-dimensional Lie algebras
gðCNÞ and gðDNÞ are Kac–Moody algebras corresponding to the infinite affine
matrices CN and DN; respectively [16]. From these dualities one can show that,
using similar arguments as we have given here, the corresponding characters of those
irreducible representations of gðCNÞ- and gðDNÞ-modules are given by certain
infinite sums of symmetric functions. Applying the involution o to these characters
one obtains the characters for our spoð2mj2nÞ- and ospð2mj2nÞ-modules. Thus the
characters of the representations of gðCNÞ (respectively gðDNÞ) that appear in these
dualities determine the characters of the representations spoð2mj2nÞ (respectively
ospð2mj2nÞ).

7. The group W
kþd

1
2

Throughout this section l ¼ ðl1; l2;y; lsÞ is a partition of non-negative integers
of length spd: We shall describe the groups W m

lþd
1
2

and W m

lþd
1
2

ðkÞ for the Hermitian

symmetric pairs ðSpð2mÞ;UðmÞÞ and ðSO�ð2mÞ;UðmÞÞ:
Recall that the group W m

lþd
1
2

is defined as the subgroup of the Weyl group of

spð2mÞ or soð2mÞ generated by reflections corresponding to aADðuÞ satisfying
conditions (i)–(iii) given in Section 6. We will simply refer to them as conditions (i)–
(iii) in what follows.

7.1. The case of OðdÞ � spð2mÞ-duality for d even

In the case when d is even W m

lþd
1
2

is the subgroup of the Weyl group of spð2mÞ;

which is isomorphic to the sign permutation group SmrZm
2 : The positive roots Dþ

of spð2mÞ are generated by the simple roots 	2e1; e1 	 e2; e2 	 e3;y; em	1 	 em: We
have r ¼ 	e1 	 2e2 	?	 mem; which we write as

r ¼ ð	1;	2;y;	mÞ:

We have the condition that l01 þ l02pd: Now DþðkÞ is generated by the simple roots

e1 	 e2;y; em	1 	 em; while DðuÞ consists of roots of the form 	ei 	 ej ; 1pipjpm:
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Let us first consider the case s ¼ d
2
: In this case

lþ d
1

2
þ r ¼ l1 þ

d

2
	 1; l2 þ

d

2
	 2;y; ld

2
	1

þ 1; ld
2

;	1;	2;y;	m þ d

2


 �
:

We see that lþ d1
2
þ r has no zero coefficient, and hence condition (iii) is vacuous. It

follows that for each i ¼ 1;y; d
2
with mXli þ d 	 i we have

lþ d
1

2
þ r;	ei 	 eliþd	i


 �
¼ 0: ð7:1Þ

On the other hand if moli þ d 	 i; i ¼ 1y; d
2
; we have for all t ¼ 1;y;m

lþ d
1

2
þ r;	ei 	 et


 �
o0: ð7:2Þ

This implies by condition (ii) that if a ¼ 	ek 	 el is such that saAW m

lþd
1
2

; then neither

k nor l can be in the index set J ¼ f1;y; d
2
; l1 þ d 	 1; l2 þ d 	 2;y; ld

2

þ d
2
g: Let

I0 ¼ f1;y;mg\J: Let a ¼ 	ek 	 el with k; lAI0: Clearly we have

lþ d
1

2
þ r; $a

� �
AN;

and hence condition (i) is satisfied for such an a: This implies that W m

lþd
1
2

is generated

by the reflections sa with a ¼ 	ek 	 el ; k; lAI0: Hence W m

lþd
1
2

is the sign permutation

group on the index set I0: Therefore W m

lþd
1
2

ðkÞ is equal to the permutation group of

the index set I0 and hence D
lþd

1
2

ðkÞþ consists of ek 	 el with kol and k; lAI0:

Next consider the case sod
2
: In this case we have

lþ d1
2
þ r ¼ l1 þ

d

2
	 1;y; ls þ

d

2
	 s;

d

2
	 s 	 1;y; 0|{z}

d
2

;	1;	2;y;	m þ d

2

0
BB@

1
CCA:

Since ðlþ d1
2
þ r; 2ed

2

Þ ¼ 0; condition (iii) implies that if aADðuÞ is such that

saAW m

lþd
1
2

; then a is a short root. As in the previous case (7.1) and (7.2) hold in this

case as well with i ¼ 1;y; s: In addition we have for j ¼ s þ 1;y; d
2

lþ d
1

2
þ r;	ej 	 ed	j


 �
¼ 0: ð7:3Þ
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Let J ¼ f1;y; d 	 s 	 1; l1 þ d 	 1;y; ls þ d 	 sg and I	 ¼ f1;y;mg\J: Simi-
larly as in the previous case conditions (i) and (ii) now tell us that aADðuÞ is such that
saAW m

lþd
1
2

if and only if a ¼ 	ek 	 el with k; lAI	 and kal: Clearly W m

lþd
1
2

is equal to

the even sign permutation group (i.e. permutations with an even number of sign
changes) in the index set I	: Therefore W m

lþd
1
2

ðkÞ is the permutation group on the

index set I	 and hence D
lþd

1
2

ðkÞþ consists of ek 	 el with kol and k; lAI	:

Finally consider the case when s4d
2
: In this case we have

lþ d
1

2
þ r ¼ l1 þ

d

2
	 1;y; ld	s 	

d

2
þ s|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

d	s

; s 	 d

2
;

0
BB@

y; 1|{z}
d
2

; 0;y; 1þ d

2
	 s|fflfflfflfflfflffl{zfflfflfflfflfflffl}

s

;	1þ d

2
	 s|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

sþ1

;y;	m þ d

2

1
CCA:

Then (7.1) and (7.2) hold for i ¼ 1;y; d 	 s and we have in addition

lþ d
1

2
þ r;	ej 	 ed	jþ2


 �
¼ 0; j ¼ d 	 s þ 2;y;

d

2
;

lþ d
1

2
þ r;	2ed

2
þ1


 �
¼ 0: ð7:4Þ

Let Iþ ¼ fd 	 s þ 1; s þ 1; s þ 2;y;mg\fl1 þ d 	 1;y; ld	s þ d 	 ðd 	 sÞg: Then

W m

lþd
1
2

is generated by sa; where a ¼ 	ek 	 el with k; lAIþ and kal: This implies

that W m

lþd
1
2

is the even sign permutation group on the index set Iþ and hence

W m

lþd
1
2

ðkÞ is the permutation group on the index set Iþ and hence D
lþd

1
2

ðkÞþ consists

of ek 	 el with kol and k; lAIþ:

7.2. The case of OðdÞ � spð2mÞ-duality for d odd

Suppose that s ¼ dþ1
2
: We have

lþ d
1

2
þ r ¼ l1 þ

d

2
	 1;y; ld	3

2

	 3

2
;
3

2
;
1

2|{z}
dþ1
2

;	3
2
;y;	m þ d

2

0
BBBB@

1
CCCCA:

Therefore (7.1) and (7.2) hold for i ¼ 1;y; d	3
2

and also

lþ d
1

2
þ r;	ed	1

2

	 edþ3
2


 �
¼ 0:
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Note that the coefficients of lþ d1
2
þ r are all half integers. Hence if bADðuÞ is a

long root, then

lþ d
1

2
þ r; $b

� �
A
1

2
þ Z:

Thus the long roots are eliminated from the consideration of W m

lþd
1
2

by condition (i).

Now let J ¼ f1;y; d	1
2
; dþ3

2
; l1 þ d 	 1;y; ld	s þ d 	 ðd 	 sÞg and let I0 ¼

f1;y;mg\J: Then W m

lþd
1
2

is the even sign permutation group on the index set I0

so that W m

lþd
1
2

ðkÞ is the permutation group on I0:

Now suppose that sodþ1
2

so that

lþ d
1

2
þ r

¼ l1 þ
d

2
	 1;y; ls þ

d

2
	 s;

d

2
	 s 	 1;y;

1

2
; 	1

2|{z}
dþ1
2

;	3
2
;y;	m þ d

2

0
BBBB@

1
CCCCA:

Thus (7.1) and (7.2) hold for i ¼ 1;y; s: Furthermore (7.3) holds for j ¼
s þ 1;y; d	1

2
: As before the long roots in DðuÞ are eliminated from considera-

tions of W m

lþd
1
2

: Set J ¼ f1;y; d 	 s 	 1; l1 þ d 	 1;y; ls þ d 	 sg and let

I	 ¼ f1;y;mg\J: Then W m

lþd
1
2

is the even sign permutation group on the

index set I	 so that W m

lþd
1
2

ðkÞ is the permutation group on I	:

Finally consider the case when s4
d þ 1

2
so that we have

lþ d
1

2
þ r ¼ l1 þ

d

2
	 1;y; ld	s 	

d

2
þ s|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

d	s

; s 	 d

2
;

0
BB@

y; 1
2|{z}

dþ1
2

; 	1
2|{z}

dþ3
2

;y; 1þ d

2
	 s|fflfflfflfflfflffl{zfflfflfflfflfflffl}

s

;	1þ d

2
	 s|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

sþ1

;y;	m þ d

2

1
CCCCA:

Thus (7.1) and (7.2) still hold with i ¼ 1;y; ðd 	 sÞ and also (7.4) holds with j ¼
1;y; dþ1

2
: Again the long roots are eliminated from the consideration of W m

lþd
1
2

: Let

J ¼ f1;y; ðd 	 sÞ; ðd 	 sÞ þ 2;y; dþ1
2
; l1 þ d 	 1;y; ld	s þ d 	 ðd 	 sÞg and let
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Iþ ¼ f1;y;mg\J: Then W m

lþd
1
2

is the even sign permutation group on the index set

Iþ so that W m

lþd
1
2

ðkÞ is the permutation group on Iþ:

7.3. The case of SpðdÞ � soð2mÞ-duality

In this case W m

lþd
1
2

is a subgroup of the Weyl group of soð2mÞ; which is isomorphic

to the even sign permutation group SmrZm	1
2 : The positive roots Dþ is generated by

the simple root 	e1 	 e2; e1 	 e2; e2 	 e3;y; em	1 	 em; and hence r ¼ 	e2 	 2e3?	
ðm 	 1Þem; which we write as

r ¼ ð0;	1;	2;y;	m þ 1Þ:

Let l ¼ ðl1; l2;y; ld
2

Þ be a partition so that

lþ d
1

2
þ r ¼ l1 þ

d

2
; l2 þ

d

2
	 1;y; ld

2

þ 1; 0|{z}
d
2
þ1

;	1;	2;y;	m þ d

2
þ 1

0
BB@

1
CCA:

The set DðuÞ consists of roots of the form 	ek 	 el ; with kal:
We have in the case mXli þ d 	 i þ 2

lþ d
1

2
þ r;	ei 	 eliþd	iþ2


 �
¼ 0; i ¼ 1;y;

d

2
: ð7:5Þ

On the other hand if moli þ d 	 i þ 2; then for every t ¼ 1;y;m we have

lþ d
1

2
þ r;	ei 	 et


 �
o0: ð7:6Þ

This implies by condition (ii) that if a ¼ 	ek 	 el with saAW m

lþd
1
2

; then k; l cannot be

one of the indices in (7.5) and (7.6). On the other hand set J ¼ f1;y; d
2
; l1 þ d þ 1;

l2 þ d;y; ld
2

þ d
2
þ 2g and let I ¼ f1; 2;y;mg\J: Clearly if a ¼ 	ek 	 el with k; lAI ;

then

lþ d
1

2
þ r;	ek 	 el


 �
AN;

and so condition (i) is satisfied. Of course here (iii) is irrelevant, as D is simply-laced.
Thus W m

lþd
1
2

is equal to the even sign permutation group on the index set I and hence

W m

lþd
1
2

ðkÞ is the permutation group on I :

From our explicit description of W m

lþd
1
2

we have the following.
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Proposition 7.1. Let l ¼ ðl1;y; lsÞ and let W m

lþd
1
2

be the corresponding group of

either sign or even sign permutation group on the index set IDf1;y;mg: Write m ¼
lþ d1

2
þ r ¼ ðm1; m2;y; mmÞ for the generalized partition with either all integral or

half-integral row lengths.

ðiÞ We have jmijajmjj; for i; jAI with iaj:

ðiiÞ For wAW m

lþd
1
2

the rows of the generalized composition wðlþ d1
2
þ rÞ are all of

different length.
ðiiiÞ In the case spd

2
we have mip0; for iAI :

ðivÞ In the case s4d
2

we have mi40 and iAI if and only if i ¼ ðd 	 s þ 1Þ and md	sþ1 ¼
s 	 d

2
:

ðvÞ For all mAN we have W m

lþd
1
2

DW mþ1
lþd

1
2

:

8. Consequences for the character formula

In this section we will use the result of Section 7 to study the character formulas of

Section 6. In Section 7 we gave a description of W k

lþd
1
2

: However, in the character

formula we actually need to have a description of W k;k

lþd
1
2

:

Let wAW k

lþd
1
2

: From Section 7 we know that w is either a sign permutation or an

even sign permutation on an index set I :

Recall the decomposition W k

lþd
1
2

¼ W k

lþd
1
2

ðkÞ � W k;k

lþd
1
2

: As W k

lþd
1
2

is the sign or the

even sign permutation group on I and W k

lþd
1
2

ðkÞ is the permutation group on I ; it

follows that the elements of W
k;k

lþd
1
2

are in one-to-one correspondence with either the

sign or the even sign changes of the index set I : This correspondence can be made
explicit as follows. Let I ¼ fj1oj2o?ojtg and set r ¼ ðr1; r2;y; rkÞ and rI ¼
ðrj1

; rj2
;y; rjt

Þ: Let t be either a sign change or an even sign change of I : Let s be the
unique permutation on I which permutes the rows of the generalized composition

tðrI Þ so that stðrIÞ is a generalized partition. Set wt ¼ st; then wtAW k;k

lþd
1
2

is the

element corresponding to t under the above-mentioned one-to-one correspondence.
More explicitly, if t changes the signs of rI at the rows i1oi2o?oil ; then s is the
permutation that moves il to j1; il	1 to j2;y; i1 to jl : After that the remaining indices
jlþ1;y; jt are then assigned from the indices I\fi1;y; ilg in increasing order.

We are now in a position to describe wðlþ d1
2
þ rÞ with wAW

k;k

lþd
1
2

: For this it is

convenient to identify W k;k

lþd
1
2

with either a sign change or an even sign change of the
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index set I ¼ fj1oj2o?ojtg: Set

lþ d
1

2
þ r ¼ m ¼ ðm1; m2;y; mkÞ:

Let wAW
k;k

lþd
1
2
þr

and let tw be the corresponding sign change. Let us suppose that tw

corresponds to sign changes of the subset IwDI : Suppose that Iw ¼ i1; i2;y; il :
Then

tw lþ d
1

2
þ r


 �
¼ ðm1; m2;y;	mi1

;y;	mi2
;y;	mil

;yÞ:

That is, twðmÞ is obtained from m by replacing all the rows indexed by Iw with its
negative. Set sw equal to the unique permutation on f1; 2;y; kg that permutes the
rows of generalized composition twðmÞ so that the resulting is a generalized partition.
We denote by Lwðlþ d1

2
þ rÞ the partition swtwðlþ d1

2
þ rÞ 	 r	 d1

2
:

The following proposition is an easy consequence of the correspondence between

sign changes of the index set I and W k;k

lþd
1
2

:

Proposition 8.1. With the notation introduced above we have

Lw lþ d
1

2
þ r


 �
¼ w lþ d

1

2
þ r


 �
	 r	 d

1

2
:

Using Proposition 8.1 we can now prove the following corollary for the characters

of V
lþd

1
2

spoð2mj2nÞ and V
lþd

1
2

ospð2mj2nÞ: Recall the character formulas given in Theorems 6.2 and

6.3. In these formulas the expression HS
wðlþd

1
2
þrÞ	r	d

1
2

is the hook Schur function

associated to the partition wðlþ d1
2
þ rÞ 	 r	 d1

2
: Due to Proposition 8.1 we will

from now on write HS
Lwðlþd

1
2
þrÞ for HS

wðlþd
1
2
þrÞ	r	d

1
2

:

The next corollary shows that in general the character formulas involve an infinite
sum of hook Schur functions.

Corollary 8.1. Fix a diagram l corresponding to V
lþd

1
2

spoð2mj2nÞ or V
lþd

1
2

ospð2mj2nÞ of length

lðlÞ ¼ s:

ðiÞ Suppose that m4s þ 2 and n41: Then HSl
so and HSl

sp are infinite sums of non-

zero hook Schur polynomials.
ðiiÞ Suppose that s ¼ m and ls4n: Then HSl

so and HSl
sp are finite sums of non-zero

hook Schur polynomials.
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Proof. Take any k4l1 þ d so that both k and k 	 1 lie in the index set I associated

to W k

lþd
1
2

of spð2kÞ or soð2kÞ: Let wAW
k;k

lþd
1
2

correspond to tw; the even sign

permutation that permutes the indices k 	 1 and k and changes the signs of them. It

is then easy to see that Lwðlþ d1
2
þ rÞ is a partition with 2 from the ðs þ 3Þth row on.

Since n41; it follows that the partition associated to Lwðlþ d1
2
þ rÞ lies in the ðmjnÞ-

hook and thus its corresponding hook Schur polynomial is non-zero. This proves (i).

To prove (ii) let k4l1 þ d and consider any wAW k;k

lþd
1
2

corresponding to a sign

change involving k: Then Lwðlþ d1
2
þ rÞ is a partition with the first m þ 1 rows

exceeding n: But then the corresponding hook Schur polynomial is zero. &

Let C½½y; z�� denote the ring of power series in the variables y and z: We have a
natural filtration of ideals determined by the leading term.

C½½y; z�� ¼ F0*F1*F2*?*Fl*?:

The formulas of Theorems 6.2 and 6.3 involve in general an infinite number of
hook Schur polynomials. However, for a fixed monomial that appears in the
character formula we can use a finite number of hook Schur polynomials to compute
its coefficient. This follows from the following proposition.

Proposition 8.2. Let l be a partition with lðlÞ ¼ s and l01 þ l02pd: Let k4d:

ðiÞ If s4d
2

we let l ¼ 2k þ jlj 	 2s 	 1: If spd
2

we let l ¼ 2k þ jlj 	 d: Then we have

HSl
spðy; zÞ �

X
wAW

k;k	1
lþd

1
2

ð	1ÞlðwÞ
HS

Lwðlþd
1
2
þrÞðy; zÞ ðmod FlÞ:

ðiiÞ Let l ¼ 2k þ jlj 	 d 	 1: Then

HSl
soðx; zÞ �

X
wAW

k;k	1
lþd

1
2

ð	1ÞlðwÞ
HS

Lwðlþd
1
2
þrÞðx; zÞ ðmod FlÞ:

Proof. The theorem follows rather easily from Proposition 8.1. We will only prove (ii), as
(i) is quite similar. We may assume without loss of generality that kAI : Consider

wAW
k;k

lþd
1
2

such that weW
k;k	1
lþd

1
2

: This means that tw changes the sign of k: We consider

the partition Lwðlþ d1
2
þ rÞ: It is not hard to see that the size of this diagram is at least

2k 	 d þ
Ps

i¼1 li 	 1: But this means that the hook Schur polynomial determined by

Lwðlþ d1
2
þ rÞ contains only monomials of degree l ¼ 2k 	 d þ

Ps
i¼1 li 	 1: Thus the

hook Schur polynomials associated to Lwðlþ d1
2
þ rÞ with wAW k;k	1

lþd
1
2

contain all

monomials of HSl
so of degree less than or equal to l 	 1: &
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We now compute the functions HSl
so and HSl

sp explicitly in the case of l ¼
ð0; 0;y; 0Þ; the trivial partition.
Let us first consider the case of HSl

sp with l being the trivial partition. We will

write in this case simply HSsp for HSl
sp: In this case W k

lþd
1
2

is the group of the even

sign permutations in the indices d;y; k: Let wAW
k;k

lþd
1
2

and let tw be the

corresponding sign changes. Let us suppose that tw changes signs at the following
l rows: i1oi2o?oil	1oil : Here i1Xd and l is an even non-negative integer. Then it

is not hard to see that Lwðd1
2
þ rÞ is the following partition:

il 	 d þ 1; il	1 	 d þ 2;y; i1 	 d þ l; l;y; l|fflfflffl{zfflfflffl}
i1	1

;

0
B@

l 	 1;y; l 	 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
i2	i1	1

;y; 1;y; 1|fflfflffl{zfflfflffl}
il	il	1	1

; 0;y

1
CA: ð8:1Þ

That is, the first l entries are il 	 d þ 1; il	1 	 d þ 2;y; i1 	 d þ l; followed by i1 	 1

entries of l; etc. The length of Lwðd1
2
þ rÞ is il : For a sequence of positive integers

I ¼ fi1oi2o?oilg with i1Xd denote by mI partition (8.1). Furthermore we let jI j
denote l þ

Pl
j¼1 ij:

Proposition 8.3. We have

HSspðy1;y; ym; z1;y; znÞ ¼
X

I

ð	1ÞjI jHSmI
ðy1;y; ym; z1;y; znÞ;

where the summation is over all tuples I ¼ ði1; i2;y; ilÞ with l even and

dpi1oi2o?oil satisfying one of the following conditions.

ðiÞ In the case when nXm we have lpn and at most m of the ij’s exceed d þ n 	
m 	 1:

ðiiÞ In the case when m4n we have lom: If in addition we have l þ it 	 t þ 1pm þ
1pl þ itþ1 	 t 	 1; for some t ¼ 0; 1;y; l 	 1; then l 	 tpn: (Here by definition

i0 ¼ 0:)

Proof. First we note that if wAW
k;k

lþd
1
2

and tw its corresponding sign changes at the

rows i1oi2o?oil	1oil ; then ð	1ÞlðwÞ ¼ ð	1ÞjI j:
(i) Obviously if l4n; then the corresponding partition mI cannot lie inside the

ðm; nÞ-hook. Thus the corresponding hook Schur polynomial is zero. Also clearly if
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lpm; then mI lies in the ðm; nÞ-hook. Now suppose that molpn and we have

i1oi2o?oil	moil	mþ1o?oil :

Then mI lies in the ðm; nÞ-hook if and only if il	m 	 d þ ðm þ 1Þpn; which happens if
and only if il	mpd 	 m þ n 	 1:
(ii) Clearly, if lXm; then mI does not lie in the ðm; nÞ-hook. Now if lom and ilom;

then it is easy to see that mI lies in the ðm; nÞ-hook. On the other hand if mpil ; we let
t ¼ 0; 1;y; l 	 1 be such that

l þ it 	 tom þ 1pl þ itþ1 	 t 	 1:

It follows from (8.1) that the ðm þ 1Þth row of mI is l 	 t: Thus mI lies in the ðm; nÞ-
hook if and only if l 	 tpn: &

Consider now the case of HSl
so; where l is the trivial partition. We will again write

in this case simply HSso for HSl
so: Here W k

lþd
1
2

is the group of the even sign

permutations in the indices d=2þ 1; d þ 2; d þ 3;y; k: Let wAW k;k

lþd
1
2

and let tw be

the corresponding sign changes, which changes signs at the following l rows:
i1oi2o?oil	1oil :

First suppose that i1ad=2þ 1: In this case Lwðd1
2
þ rÞ is the partition

il 	 d 	 1; il	1 	 d;y; i1 	 d þ l 	 2; l;y; l|fflfflffl{zfflfflffl}
i1	1

;

0
B@

l 	 1;y; l 	 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
i2	i1	1

;y; 1;y; 1|fflfflffl{zfflfflffl}
il	il	1	1

; 0;y

1
CA: ð8:2Þ

Now if i1 ¼
d

2
þ 1; then Lwðd1

2
þ rÞ is

il 	 d 	 1; il	1 	 d;y; i2 	 d þ l 	 3; l 	 1;y; l 	 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
i2	1

;

0
B@

l 	 2;y; l 	 2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
i3	i2	1

;y; 1;y; 1|fflfflffl{zfflfflffl}
il	il	1	1

; 0;y

1
CA: ð8:3Þ

Note that (8.3) is just (8.2) corresponding to the sequence i2oi3o?oil ; with
d þ 2pi2:
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For a sequence of positive integers J ¼ fi1oi2o?oilg with i1Xd þ 2 we let nJ be

the partition (8.2). Let jJj ¼ l þ
Pl

j¼1 ij:

Proposition 8.4. We have

HSsoðy1;y; ym; z1;y; znÞ ¼
X

J

ð	1ÞjJjHSnJ
ðy1;y; ym; z1;y; znÞ;

where the summation is over all tuples J ¼ ði1; i2;y; ilÞ with d þ 2pi1oi2o?oil
satisfying the following conditions.

ðiÞ In the case when nXm we have lpn and at most m of the ij ’s exceed d þ n 	
m þ 1:

(ii) In the case when m4n we have lom: If in addition we have l þ it 	 t þ 1pm þ 1
pl þ itþ1 	 t 	 1; for some t ¼ 1;y; l 	 1; then l 	 tpn: (Here again i0 ¼ 0:)

Proof. As the proof is analogous to that of Proposition 8.3, we omit it. &

The module V l
spoð2mj2nÞ (respectively V l

ospð2mj2nÞ) with l being the trivial partition is

the OðdÞ-invariants (respectively SpðdÞ-invariants) inside SðCd#CmjnÞ: Thus our
computations of HSsp and HSso give character formulas of these invariants. On the

other hand we can describe the invariants, denoted by SðCd#CmjnÞOðdÞ and

SðCd#CmjnÞSpðdÞ; in the following different way. Since glðmjnÞ commutes with OðdÞ
and SpðdÞ; SðCd#CmjnÞOðdÞ and SðCd#CmjnÞSpðdÞ are modules over glðmjnÞ: We
have the following analogue of classical invariant theory.

Proposition 8.5. We have the following isomorphisms of glðmjnÞ-modules

(i) SðCd#CmjnÞOðdÞD
P

l Vl
mjn; where the summation is over all partitions l with

even row lengths, lðlÞpd and lmþ1pn:
(ii) SðCd#CmjnÞSpðdÞD

P
m V

m
mjn; where the summation is over all partitions m with

even column lengths, lðmÞpd and mmþ1pn:

Proof. The proof is in the same spirit as the one in the classical case given in [14].
The ðglðdÞ; glðmjnÞÞ-duality gives (3.1) and hence taking the OðdÞ-invariants on both
sides of (3.1) gives

SðCd#CmjnÞOðdÞ ¼
X
l

ðV l
d Þ

OðdÞ#V l
mjn:

But it is known that Vl
d has only OðdÞ-invariants if and only if l is an even partition,

i.e. all rows have even length. Furthermore in this case the dimension of OðdÞ-
invariants in V l

d equals 1. This proves (i).
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For (ii) we note that V l
d has SpðdÞ-invariants if and only if l has even columns, in

which case the dimension of the invariants is again 1. &

As the character of the glðmjnÞ-module V l
mjn is given by the hook Schur function

associated to l we obtain the following corollary.

Corollary 8.2. As glðmjnÞ-modules we have

ch SðCd#CmjnÞOðdÞ ¼
X
l

HSlðy1;y; ym; z1;y; znÞ;

ch SðCd#CmjnÞSpðdÞ ¼
X
m

HSmðx1;y; xm; z1;y; znÞ;

where the summations over l and m are as in Proposition 8.5.

From these two descriptions of the OðdÞ-invariants inside SðCd#CmjnÞ; in the
case when d is odd, we have the combinatorial identity

X
l

HSlðy1;y; ym; z1;y; znÞ

¼
X

I

ð	1ÞjI jHSmI
ðy1;y; ym; z1;y; znÞ

�
Q

1pipm;1plpn ð1þ yizlÞQ
1pipjpm;1plokpn ð1	 yiyjÞð1	 zlzkÞ

 !
;

where l is summed over all partitions with even row lengths, lðlÞpd and lmþ1pn;
and I is summed over all I as in Proposition 8.3 with mI as in (8.1).
Similarly from the descriptions of the SpðdÞ-invariants we have

X
m

HSmðx1;y; xm; z1;y; znÞ

¼
X

J

ð	1ÞjJjHSnJ
ðx1;y; xm; z1;y; znÞ

�
Q

1pipm;1plpn ð1þ xizlÞQ
1piojpm;1plpkpn ð1	 xixjÞð1	 zlzkÞ

 !
;

where m is summed over all partitions with even column lengths, lðmÞpd and
mmþ1pn; and J is summed over all J as in Proposition 8.4 with nI as in (8.2).
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9. Tensor product decomposition

As another application of Theorems 5.1 and 5.2 we derive in this section formulas
for the decomposition of tensor products of two representations of either spoð2mj2nÞ
or ospð2mj2nÞ that appear in the decomposition of SðCd#CmjnÞ:
We first recall two Howe dualities involving the dual pairs ðOðdÞ; soð2kÞÞ and

ðSpðdÞ; spð2kÞÞ on the space LðCd#CkÞ:

Theorem 9.1 (Howe [14]). The pairs ðOðdÞ; soð2kÞÞ and ðSpðdÞ; spð2kÞÞ form dual

pairs on the space LðCd#CkÞ: Furthermore with respect to their joint actions we have

the following decompositions:

LðCd#CkÞD
X
l

Vl
OðdÞ#V

l0	d
1
2

soð2kÞ ; ð9:1Þ

LðCd#CkÞD
X
m

V
m
SpðdÞ#V

m0	d
1
2

spð2kÞ ; ð9:2Þ

where in the first sum l is summed over all diagrams with lðlÞpd; l01 þ l02pd and

l1pk; while in the second sum m is summed over all diagrams with lðmÞpd=2 and

m1pk:

Remark 9.1. We regard soð2kÞDospð2kj0Þ and spð2kÞDspoð2kj0Þ and hence the
labellings of their highest weights are as in Section 2.4.

Consider for positive integers d and r the decompositions SðCd#CmjnÞDP
m V

m
OðdÞ#V

mþd
1
2

spoð2mj2nÞ and SðCr#CmjnÞD
P

g V
g
OðrÞ#V

gþr
1
2

spoð2mj2nÞ: We have

SðCd#CmjnÞ#SðCr#CmjnÞ

D
X
m

V
m
OðdÞ#V

mþd
1
2

spoð2mj2nÞ#
X
g

V
g
OðrÞ#V

gþr
1
2

spoð2mj2nÞ

D
X
m;g

ðVm
OðdÞ#V

g
OðrÞÞ#ðVmþd

1
2

spoð2mj2nÞ#V
gþr

1
2

spoð2mj2nÞÞ:

Now writing V
mþd

1
2

spoð2mj2nÞ#V
gþr

1
2

spoð2mj2nÞD
P

l c
mg
l V

mþðdþrÞ1
2

spoð2mj2nÞ we have therefore

SðCd#CmjnÞ#SðCr#CmjnÞD
X
l;m;g

c
mg
l ðVm

OðdÞ#V
g
OðrÞÞ#V

mþðdþrÞ1
2

spoð2mj2nÞ: ð9:3Þ
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On the other hand we have

SðCd#CmjnÞ#SðCr#CmjnÞDSðCdþr#CmjnÞ

D
X
l

V l
OðdþrÞ#V

lþðdþrÞ1
2

spoð2mj2nÞ:

If we let Vl
OðdþrÞ ¼

P
m;g bl

mgV
m
OðdÞ#V

g
OðrÞ; that is, we regard V l

OðdþrÞ as an

OðdÞ � OðrÞ-module in the obvious way, then we have

SðCd#CmjnÞ#SðCr#CmjnÞD
X
l;g;m

bl
mgðV

m
OðdÞ#V

g
OðrÞÞ#V

lþðdþrÞ1
2

spoð2mj2nÞ: ð9:4Þ

Combining (9.3) and (9.4) we see that c
mg
l ¼ bl

mg:

This connection between the branching coefficients and the tensor product
coefficients, which may be regarded as a special case of Kudla’s seesaw pairs [21], is
of course known [14].
Now the same argument applied to the first dual pair of Theorem 9.1 tells us that

bl
mg ¼ a

mg
l ; where

V
m0	d

1
2

soð2kÞ#V
g0	r

1
2

soð2kÞD
X
l

a
mg
l V

l0	ðdþrÞ1
2

soð2kÞ :

Taking account the fact that the OðdÞ-, OðrÞ- and Oð2dÞ-modules that appear in the
various decompositions may not be identical we have proved the following theorem.

Theorem 9.2. Let m and g be diagrams lying in the ðmjnÞ-hook and satisfying the

conditions m01 þ m02pd and g01 þ g02pr: Let V
mþd

1
2

spoð2mj2nÞ#V
gþr

1
2

spoð2mj2nÞD
P

l c
mg
l V

lþðdþrÞ1
2

spoð2mj2nÞ:

Let kXmaxðm1; g1Þ and V
m0	d

1
2

soð2kÞ#V
g0	r

1
2

soð2kÞD
P

l a
mg
l V

l0	ðdþrÞ1
2

soð2kÞ : Then for l lying in the

ðmjnÞ-hook with l01 þ l02pd þ r we have c
mg
l ¼ a

mg
l : Otherwise c

mg
l ¼ 0:

We can derive the following theorem for ospð2mj2nÞ-modules in a completely
analogous fashion.

Theorem 9.3. For d and r even let m and g be diagrams lying in the ðmjnÞ-hook with

lðmÞpd=2 and lðgÞpr=2: Let V
mþd

1
2

ospð2mj2nÞ#V
gþr

1
2

ospð2mj2nÞD
P

l c
mg
l V

lþðdþrÞ1
2

ospð2mj2nÞ: Let

kXmaxðm1; g1Þ and V
m0	d

1
2

spð2kÞ#V
g0	r

1
2

spð2kÞD
P

l a
mg
l V

l0	ðdþrÞ1
2

spð2kÞ : Then for l lying in the

ðmjnÞ-hook with lðlÞpðd þ rÞ=2 we have c
mg
l ¼ a

mg
l : Otherwise c

mg
l ¼ 0:

Remark 9.2. Of course the computation of the coefficients a
mg
l are in general rather

difficult. There are combinatorial algorithms that in principle can be used to
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compute them. See for example [19,23] and references therein. It turns out that the
coefficients can be computed once the usual Littlewood–Richardson coefficients (for
the general linear group) are known. The precise formulas are given in [20].

Remark 9.3. The tensor product decompositions of the spoð2mj2nÞ-modules and the
ospð2mj2nÞ-modules that appear in the decomposition of SðCd#CmjnÞ are stable in
the following sense. The coefficients c

mg
l are independent of m and n for nX1 and

mXd=2: This follows from a minor modification of our argument above.

Remark 9.4. The above method for computing the tensor product decomposition
using Howe duality appears to be quite general and could have further applications.
For example, using the glðdÞ � glðmjnÞ-Howe duality of Section 3 one can derive
rather easily the fact that the multiplication rule of the Hook Schur functions is the
same as that of ordinary Schur functions. This was derived earlier in [29] using
purely combinatorial methods.
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