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ALGEBRAIC FUNCTIONS AND 
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81. INTRODUCTION 

LET f(z, W) = fo(z)w” + f,(z)w”-’ + * * * + f”(r) E C[z, 

CLOSED BRAiDS 

w]. Classically, the equation 

f(z, w) = 0 was said to define w as an (n-valued) algebraic function of z, provided that 
fo(z) was not identically 0 and that f(z, w) was squarefree and without factors of the 
form z-c. Then, indeed, the singular set B = {z: there are not n distinct solutions w to 
f(z, w) = 0) is finite; and as z varies in any simply-connected open set avoiding B, the 
n distinct solutions w,, . . . , w, of f(z, w) = 0 will be analytic functions of z. Now let y 
be a simple closed curve in C-B. In the open solid torus y x C C C’, the set 

K, = V, fl y x C (where V, = {(z, w):f(t, w) = 0)) is evidently a closed l-manifold, as 
smooth as ‘y, on which the projection to y is an n-sheeted (possibly disconnected) 
covering map. A l-manifold in a solid torus, which projects as a covering onto the 
circle factor, is called a closed braid. When the torus is embedded (in the standard 
way) in a 3-sphere (as y x C will be, shortly), the closed braid becomes a knot or link 
in that sphere; if the circle factor is oriented, there is a natural way to orient that 
knot or link. Which such oriented links, we may ask, arise from algebraic functions 
(when y is oriented counterclockwise)? 

The points z. E B are of two kinds (some may be of both). If, for some w. such 
that f(zo, wo) = 0, it also happens that (~Yflaw)(z,, wo) = 0, we call z. a singular point of 
the algebraic function. (Either (zo, wo) is a singular point, in the usual sense, of the 
algebraic curve V,, or it is a regular point at which the tangent line is the vertical line 
z = zo.) At a singular point zO, some solution w to f(zo, w) = 0 has multiplicity greater 
than 1. On the other hand, z. may be a root of fo(z); then there are not n solutions, 
even counting multiplicities, to f(zo, w) = 0. A root of fo(z) is a pole of the algebraic 
function. 

The set K, being compact, actually lies in some closed solid torus y x D, = 
{(z, w):z E y, ) WI S r}. Let B4 be the bicylinder D X D, where D is the bounded 
region in c with aD = y; then B4 is homeomorphic to a 4-ball, and its boundary 
3-sphere is decomposed in the usual way into two solid tori, 7 x D, and D x 6’D, If no 
pole of f(z, w) lies in D, then K, is the entire intersection of V, with 8B; that is, V, 
does not meet D x D, (This may be seen by an appeal to the maximum modulus 
principle.) Below (except in 03, Remark 2) we will assume fO(z) is a (non-zero) 
constant, that is, that there are no poles. This is only for convenience; everything 
would work as well just assuming that no poles lie in D. 

In 92 we recall the definition of positive closed braids, and define a strictly larger 
class, the quasipositive closed braids. The definition is purely braid-theoretic. Several 
mathematicians (including Murasugi, Stallings [9], and Birman [ 11) have observed 
that many positive closed braids, in particular all those which are knots (rather than 
links), are fibred links; there are quasi-positive closed braids which are knots and not 
fibred. 
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In 93 we give one proof that the closed braid K, is quasipositive. The proof is real 
semi-algebraic geometry, and gives a method (which is, alas, far from practicable in 
most cases) of explicitly calculating the braid type of K, in terms of one’s knowledge 
of y and f(z, w). 

In 94 we briefly discuss those loops in A4 - V, where M is a simply-connected 
algebraic variety and V is an algebraic subset, which are freely homotopic to loops 
which bound analytic (possibly singular) disks in all of M. In many cases, the free 
homotopy classes of “analytic boundaries” turn out to be precisely those classes 
which are “quasipositive” in an appropriate sense. When M is the space of unordered 

* n-tuples of (not necessarily distinct) complex numbers, and V is the so-called 
“discriminant locus” of n-tuples with not all members distinct, the theory applies (to 
check one hypothesis, I use the method of 33), and we have the following theorem. 

THEOREM. The closed braids K, that arise from algebraic functions without poles 
are precisely the quasipositive closed braids. 

Here are some consequences of the theorem. Many more fibred links occur as K, 
than just those associated to singular points of curves (as in [6])-these “links of 
singularities” may be recovered as a special case (y is a small circle enclosing a single 
point of B, for suitable f(z, w)). Many non-fibred knots and links occur as K,‘s. And 
in each concordance class of links that appears at all, infinitely many distinct links 
occur; for instance (even for f(z, w) as special as w3 - 3w + 2z”, m = 1, 2, 3,. . . ), 

infinitely many distinct slice knots occur-a marked contrast to the links of sin- 
gularities. 

Remarks and examples conclude the paper. 

52. POSITIVE AND QUASIPOSITIVE BRAIDS AND CLOSED BRAIDS 

A general reference for the braid theory used here is [I] (where a polyhedral 
approach is taken). 

For n Z 2 the algebraic n-string braid group B, is generated by n - 1 standard 

generators ul, . . . , an-l subject to the relations o;ai+rUi = oi+laia;+l (i = 1,. . . , n - 2), 
Oi~j = aiai if Ii - jl > 1. A word u$;\ * * * u$), (each e(j) = -+ 1) in the generators and 
their inverses is positive if each e(j) = + 1, strictly positive if.also every index from 1 
to n - 1 occurs as some k(j); an element p of B,, is (strictly) positive if it can be 
represented as a (strictly) positive word. 

Let K C y x C be a closed braid in an open solid torus, with K, the simple closed 
curve 7, and C all oriented, and the projection from K to y smooth and orientation 
preserving of degree n. It is well-known that the isotopy classes of such K (say, 
ambient isotopy preserving the product structure of the solid torus) are in l-l 
correspondence with conjugacy classes in B,. The correspondence is implemented by 
the choice of a diffeomorphism (preserving orientations) h: y X C + S’ X W X BP of the 
form h(z, w) = (h,,(z), h,(z, w), hZ(z, w)) together with a basepoint exp i& on S’. Any 
such h can be changed by an arbitrarily small isotopy, if necessary, to make it yield a 
“good” braid diagram d(K) in the half-open rectangle [f&, 0, + 27r] X W (project onto S’ 
and take logarithms for the first coordinate, project onto the first R factor for the 
second coordinate, and at multiple points use the second R factor to determine under- 

and over-crossings)-“good” in the sense that: d(K) is the union of n properly 
embedded arcs, on each of which the projection to [O,,, &+2~] is a diffeomorphism; 
there are no triple points of d(K); there are only finitely many double points, all 
interior to the rectangle, and at each of which the tangent lines to the two arcs are 
distinct; and the 8 coordinates of distinct double points are distinct. From such a good 
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braid diagram d(K) a word in the letters gi and their inverses may be read off, as 
follows. Let the 0 coordinates of the double points be 8, < 6* < . * . < 8,. For each 

j=l,..., m, there are precisely n - 1 points in {ej} x R n d(K). Let the double point 
be the k(j)th among them, in increasing order of R coordinate. Let 1+4,(e) and &(f3) 

parametrize the two arcs that cross at the double point in question, so labelled that 
$;(e,) > $;(ej). Near 0, there are smooth functions p,(e), cpZ(0) so that eH(exp i0, +,I,(@, 
cp,(e)) (I = 1,2) parametrize intervals on h(K). Let E(j) = sgn (cpz(Oj) - cpi(ej)). Then the 

word to be read off from d(K) is fi a$),. 
j=l 

A closed braid is positioe if its corresponding conjugacy class in B, contains a 
positive braid. If K has a braid diagram d(K), as above, in which each exponent e(j) 
is 1, certainly K is positive. 

Let wI, . . . , w, be arbitrary words in ul,. . . , a,, CT-‘, . . . , a,,-‘. We will say that the 
word w,~~,,,w,-‘w~~~~~~w~- * . . w,,P~~,,,~w,,- is quasipositive, and that 4 E B, is 

quasipositive if it can be represented as a quasipositive word. 
A closed braid is quasipositiue if the corresponding conjugacy class in B, contains 

a quasipositive braid. 
Now let y x C be embedded in S3 as a tubular neighborhood of an unknotted circle, 

and let K be a closed n-string braid in that neighborhood. Corresponding to any good 
braid diagram d(K), in which there are m double points, there is a natural Seifert 
surface S C S3 for K (i.e. an oriented surface with aS = K) made up of n disks 
connected by m bands-the disks are “stacked” (they may be taken to be meridional 
disks of the complementary solid torus to y x C) and each band connects two adjacent 
disks in the stack, with a half-twist in one sense or the other depending on the sign 
E(j) of the corresponding double point. (This construction by “bands”, following 
Murasugi, is expounded in Stallings’s paper[9]. A general “band representation” 
which constructs “Seifert ribbons” instead of Seifert surfaces, is discussed in [7].) As 
in [93, when K is positive and so displayed by d(K), any connected component SO of S 
has the property that the push-off map r,(S,)+ I~~(S~\&) (defined by taking a 
nowhere-zero normal vectorfield on SO and using it to push any loop on S, into the 
complement of SO) is a bijection. It then follows from a theorem of Neuwirth and 
Stallings that the boundary of SO, a union of components of the link K, is a jibred link. 
In particular, K is fibred if either K is a knot or S is connected, which last happens if 
and only if the word of d(K) is strictly positive. Details of the proof appear in [2]. 

$3. THE CLOSED BRAIDS K, ARE QUASIPOSITIVE 

Until further notice, our algebraic functions will not have any poles. 
Let 7r = pr,l V,: V, +C. We begin by observing that there is no loss of generality, 

for the purposes of studying all the braids K,, in assuming that V, is a non-singular 
curve and that for each z. E B, the fibre ?T-‘(.z~) consists of n - 1 distinct points, at 
one of which V, has a vertical tangent. Indeed, if this is not so already, any 
sufficiently small change in the constant term of f.-,(z) will make it so; while the 
closed braids lying over a fixed y on the two curves V, and V,,,, are surely isotopic 
(by a vertical isotopy) for all sufficiently small l . 

Now suppose that ‘y. and yI are isotopic in the complement of B. The differential 
DT is surjective off r-‘(B); so the isotopy lifts to an isotopy of embeddings between 
K,4 y. x C and K,, 4 y, x C. In the special case that ‘y. and - yI cobound an annulus 
A in the complement of B, then the union of annuli r-‘(A) C V, is the trace of an 
isotopy between the closed ,braids. 
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To show that K, is quasipositive we will isotope y to a more-or-less normal form 
for which the conclusion will be obvious. (All the unbridgeable gap between positive 
and quasipositive lies in that “more-or-less”!) 

We will begin by constructing an oriented graph (smoothly embedded in the plane) 
with vertices including all the points of B. Let z,, . . . , z, be the points of B, and for 
j = 1,. . . , I let Wj.1,. . . , w~,._~ be the n - 1 distinct roots of f(zi, w) = 0. Then for all but 
finitely many 8 E [0,27r] the n - 1 real numbers Re((exp ie)wj,k), k = 1, . . . , n - 1, are 
pairwise distinct, for each i = 1, . . . ,1. Changing the w-coordinate by a rotation, then, 
we may assume without loss of generality that 0 = 0 works, that is, that at each point 
Zj the n - 1 real parts Re wi,k are pairwise distinct. Let B’ = B U {z E C_ - B: for 
some two distinct solutions w,, w2 of f(z, w) = 0, Re w, = Re wz}. Then B’ is the 
projection of a real algebraic set, so on general principles it is a real semialgebraic set, 
evidently of dimension 1, and so a graph; we will see this directly in the course of 
establishing its local structure. We will find a locally-finite (actually finite) subset B. of 
B’, containing B, so that C is stratified by Bo, B’ - B,,, C - B’. Let us consider the 
intersection of B’ with a disk around an arbitrary point of C. If this point z. does not 
belong to B, let E > 0 be sufficiently small that the disk D,(zo) is disjoint from B. Then 
on this disk there are analytic functions wi(z) so that a-‘(D,(zo)) is the union of the 
graphs of the functions wP Thus B’ fl 0, is the union of sets Ai.k = {z E DE(zo): 
Re(wj(z) - wk(z)) = 0). Each difference wi - wk is analytic, not identically 0, and so 
near any point of D,(z,J Wj - Wk is a branched cover of its image; so the real analytic 
set Aj,k is a l-complex, smoothly embedded near its manifold points, and near its 
finitely many non-manifold points (which we assign to B,) smoothly equivalent to a 
union of diameters in a disk. Likewise, distinct sets Aj.k, Ag.h cross only finitely often; 
put their intersections in B. too. 

If we look near a point Zj of B the situation is slightly different. Here, for small 
E > 0, a-I(D,(Zj)) consists of not n but n - 1 smooth disks. There are n - 2 functions 
wk(i!) analytic on D,(Zj) whose graphs are n -2 of these disks; the last disk is 
parametrized by tH(Zj + t2, w(t)), where It]’ < 6, w(t) is analytic, and w’(0) # 0 (we are 
at a simple vertical tangent). Since we have assumed Re Wl(Zj), . . . , Re wm_2(Zj), Re, 
w(0) are distinct, after possibly shrinking E we can guarantee that B’ II D,(Zj) has no 
contributions from the interaction of any of the wk(z) with each other or with w(t): 
we will have simply B’ n D,(Zj) = {Zj + t2: ltl2 < E, Re(w(t)- W( - t)) = 0). But, like 
w(t), w(t) - w( - t) has non-zero derivative at t = 0, so (shrinking again if necessary) 
we see that {t: It)* < E, Re(w(t)- w( - t)) = 0) is smoothly (and equivariantly) 
equivalent to a diameter of the t-disk, and its image in B’ is smoothly equivalent to a 
radius Of Df(Zj). 

We now orient B’, at the same time labelling each edge with one of the symbols 

Ul,. . ., CT_]. Let A be an arc in B’ - Bo. Then anywhere in the interior of A, one may 
find a short transverse arc which intersects A only in one point, and B’ nowhere 
else. Over such an arc the n branches of w(z) are distinct, and even their real parts 
are distinct except where the transverse arc crosses A: at that point, for some k, 
P 5 k 5 n - 1, the branches with real parts kth-greatest and (k + l)st-greatest among all 
the branches have equal real part; label A with uk. (Clearly this label is independent of 
the transverse arc.) Orient A so that, when the orientation of the transverse arc, 
following the orientation of A, gives the complex orientation of C, the braid diagram 
over the transverse arc is one for uk (rather than for f%‘). 

Let y be a smooth simple closed curve in 4: - B, oriented counterclockwise, and 

bounding the bounded region D. Let zl, . . . , z, be the points of B fl 0, let Oj = D,(z~), 

and let Cj = aDj oriented counterclockwise, for i = 1,. . . , s. For sufficiently small e 
the disks Dj lie in D and are pairwise disjoint. By a traditional construction of the 
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theory of algebraic functions, there is a disk Do = D,(z,J C D - 6 Dj with boundary 
j=l 

Co (oriented counterclockwise), and pairwise disjoint smooth emb:ddings aj: [O, l]+ 

D (j=l,..., S) with ai E Co, aj( 1) E Cj, u~(]O, l[) C D - U Dk, and ai per- 
k=O 

pendicular to Co and Cj at its ends, all so that y is isotopic in D - B to assimple +osed 

curve y’ which “follows the arcs and circles.” Formally, y’ = ~(Do u jy, Nj u ,Ir, Dj>v 

where the sets Nj are “strips”- pairwise disjoint product neighborhoods of the arcs 
Uj([O, l]), say Nj = vj([ - 1, l] X [0, l]), where Vj is an embedding such that Vj(O, t) = 

Uj(t) (t E [0, l]), etc. 
Now we involve B’. Without loss of generality, we assume that Dj (j = 1,. . . , s) 

intersects B’ only in an arc that joins zj to Cj, and that Do is disjoint from D’. It is 
clear that, in performing the traditional construction, we may so arrange things that 
the embeddings aj are transverse to the stratification-they miss Bo and cross the 
manifold points of B’ transversely in the ordinary sense-and then make the product 
neighborhoods Nj SO narrow that JVj f~ B’ is itself a product [ - 1, I] x 

(aj([O, 11) n B’). 
Let ho: y’ + S’ be a diffeomorphism so that hO-‘( 1) is a point on Co; define h: 

y’ x C + S’ x Fp x R by h(z, w) = (h,(z), Re w, Im w). I claim that applying the con- 
struction of 42 to this h (with base-point 1 on S’) yields a good braid diagram d(&) 

for which the braid word is already in the form fi a,ck(jjaj-‘; so that K,, and K, are 
j=l 

quasipositive. Indeed, the diagram d(K,) is the “product” in an obvious sense of 
diagrams for the (non-closed) braids which correspond to the successive arcs vj(l) 
((1) X [0, l]), Cj,l, - vjcr)(] - 1, l[ X {l}), Vj(r)({ - 1) X [0, l]), . . . of y’ (where the order in 
which the points of B fl D are gone around is Zj(r), . . . , Zj(s), and where the arcs 
ujck,({ - 1) X [0, I]) are of course traversed from the 1 end to the 0 end). Each arc 
contributes, in turn, the word in the symbols vi,. . . , v,_~, CT-‘, . . . , a,!, which is 
given by its successive crossings of the labelled arcs of B’- B0 (a crossing which, 
following the orientation of the arc, gives the wrong orientation to C, is what merits 
the exponent - 1). Obviously, by our construction, the two edges of a strip Nj give 
(up to orientation) the same word as the central arc aj([O, l]), call it ai. So the claim of 
quasipositivity is proved once one sees that the diagrams corresponding to the arcs on 
the circles Cj (j = 1,. . . , s) contribute exactly a generator gk(j), and not the inverse of 
a generator. (Certainly by construction each such arc meets B’ in just one point.) The 
exponent is seen to be + 1 in all cases; it suffices to study just one example, for 

instance f(z, w) = w* + z, where B = {O}, B’ is the non-negative real numbers, and the 
conclusion is obvious. 

We have proved that if f(z, w) has no poles inside y, the closed braid K, is 
quasipositive. A converse will be proved in the next section. 

Remarks. (1) The exponent sum e(w) of a braid word w = I? o;$\ is i E(j). From 
j=l j=l 

the form of the relations in B,, this is actually defined on braids; clearly it is 
conjugation invariant, so it is an isotopy invariant of closed braids. The exponent sum 
of a quasipositive braid is non-negative. The proof above actually shows that the 
exponent sum of K, is the number of points of B enclosed by y (counting multiplicities 
appropriately if f(z, w) is not restricted to simple vertical tangents and no sin- 
gularities). It is easy to see that the exponent sum of a closed braid K equals sw(K), 
the se/f-winding defined by Laufer [4]. The proof above readily generalizes to analytic 
(rather than simply algebraic curves), and some theorems of [4] can be recovered 
quickly. 
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(2) We have excluded from consideration simple closed curves y enclosing poles 
of our algebraic function. This is because, on the one hand, if y does enclose any 
poles of f(z, w) then the closed braid K, is not the whole intersection of V, with 
a(D x 0,‘) for any r-there are always components in D x aD, corresponding to the 
poles; while, on the other hand, if we allow poles then every isotopy class of closed 
braid can be realized as the braided part K, of that intersection, for appropriate 
f(z, w) and 7. The proof is by the theory of rational approximation. Let y = 
{z: Iz( = 1). Let K0 C y X C be a closed braid, not necessarily smoothly embedded, 
with components C,, . . . , Cd of degrees nl, . . . , nd. For a suitable large constant M, 
the polynomial p(z) = M(z - 1)“’ . . . (z - d)“d is such that the compact set P = 
{z: Jp(z)] S 1) is the union of d components, each diffeomorphic to a disk, on the 
boundaries of which p(z) has degrees nl, . . . , nd respectively. Evidently, there iS a 
unique continuous function q,,(z) defined on aP such that the pair (p. &: aP --, y x C 

parametrizes K,. According to the Hartogs-Rosenthal Theorem[31, on any compact 
subset of C with measure 0 (e.g. JP) the rational functions with poles off the compact 
set are uniformly dense in the continuous functions. Let q(z) be a rational ap- 
proximation to Q(Z) so close that K = (p, q)(aP) lies inside a tubular neighborhood of 
K,, in y x C (which exists, even though K,, may not be smooth, because K0 is a closed 
braid); then K and K,, are isotopic (by a vertical isotopy). But (p, q)(C) = V is an 
algebraic curve in Cz (generally with many singularities), that is, V = V, for some 

f(z, w). 
Of course, when 4 has poles interior to P as well as in C - P, there will be poles of 

f(z, w) enclosed by 7. 
(3) For later use, and intrinsic interest, we give some calculations of sets B’ in 

particular examples. 

Example 3.1. f(z, w) = w* - z. Here wl = Y/(Z), w2 = -V/(z), and Re w, = Re w2 iff 
w, and w2 are pure imaginary iff z is negative real; thus B’ is the ray ] - x, 0] ending in 

0, the only point of B; the ray is oriented away from 0, and labelled (T,. More 
generally, if f(z, w) = w* - z” - 1, then B’ = {z: z” + 1 is negative real} is the union of n 
rays, oriented outward, emanating from the nth roots of 1, all labelled u,. Of course, 
in the 2-string braid group, which is infinite cyclic, quasipositive is the same as 
positive. 

Example 3.2. f(z, w) = w3 - 3 w + 2~“. If wl, w2, and w3 are the three roots of 
f(z, w) = 0, then w, + wZ+ w3 = 0, wI w2 + wl w3 + wZw3 = - 3, and w,wTw3 = - 2~“. 
Eliminating w3 between the first two equations, we get the quadratic relation w2* + 
w, w* + (WI* - 3) = 0, whence {W*, wj} = {i( - WI + V( - 3 WIZ + 12)), f(-w,- 

v’( - 3w,* + 12))). The indices are irrelevant; there is perfect symmetry, and 
we see that B’ = {z: Re w2 = Re w3} = {z: d( - 3w,* + 12) is pure imaginary} = 
{z: -3w,* E ]-CQ, - 121). For n = 1, B’ is thus the two rays ] - 50, - l] and [l, m[; in 
general, B’ is the union of 2n rays, oriented outward, emanating from the 2nth roots 
of 1, and labelled alternately u2 and u,. For n = 4, we get an example of a quasiposi- 
tive, not positive, knot K, for the curve pictured in Figure 1; the braid word here is 

Qa23alf12 -3. This knot is 820 of the Alexander-Briggs table; it is slice-indeed, 
ribbon-and non-trivial; it cannot be positive because, for instance, according to [8] a 
non-trivial positive closed braid has signature greater than 0. 

Example 3.3. (This example will be used in the next section to establish that all 
quasipositive closed braids occur as K,‘s.) Consider the reducible polynomial 
f(z, w) = P(w)( w - z), where P is a polynomial in w without double roots. Here 
B = {z: P(z) = 0) is just the set of roots of P, and B’ will either be all of C (in the 
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Fig. 1 

unfortunate case, ruled out in the discussion above by a rotation of w when 
necessary, that some two distinct roots of P have equal real part) or, generically, the 
union of n straight (real) lines Re z = r; (j = 1,. . . , n), where ri is the real part of a 
(unique) root of P: B,, here is just B. Now suppose P has real coefficients, and 
consider, for E# 0 small and real, the set B,’ corresponding to f(z, w) + l , and its 
distinguished subset B,. Evidently these sets are invariant under complex conjugation 
of the variable z. One sees that, in fact, the points of the original B were “to be 
counted twice” and that as E moves away from 0 these points of multiplicity two 
alternately (with increasing ri) bifurcate to two real points and to two conjugate, 
non-real points. Further, it is not much harder to see that the interval of the real line 
between the points of a real pair itself lies entirely in B,‘. Only in the simplest case, 
when P is linear, have I been able to get an explicit description of the full set B,‘; but 
this suffices to give an adequate qualitative description in the general case. Namely, if 
P(w) = w, say, then B,’ = {z: wz - wz + l has two real roots with equal real parts} = 
{z: .\/(z* - 4~) is pure imaginary} = {z: z* E ] - ~,4e]}. When E < 0, this is the union of 
two rays lying on the imaginary axis, oriented outward; when E > 0, however, it is a 
cross, containing the whole imaginary axis and a short interval of the real axis-the 
short arms oriented towards the crossing point, the long arms out to infinity. Now for 

a polynomial P of higher degree, there is a neighborhood N of B which is a union of 
disjoint disks around the roots of P, so that for l sufficiently small (and real) the set 
B,’ looks like B’ outside N (that is, it consists of two proper arcs leaving each disk of 
N and going to infinity without crossing) while inside alternate disks of N (from left to 
right) B,’ looks like the case P(w) = w, with an l of the same or opposite sign. So the 
whole set B,’ is, qualitatively, a sequence of alternate crosses and double-rays; Figure 
2 gives a sketch in case P(w) = w(w - l)(w + 1). The orientations are as in the linear 
model, and from left to right the arcs of B,’ are labelled uI,. . . , a, (where n is the 
degree of P) in batches. For later use note that, from an arbitrary basepoint * (off B’) 
for each j a loop can be drawn whose word in the labels oi and 0;’ is freely equal (in 
the free group on the labels) to ui. For instance, for * to the far left in Fig. 2, a loop 
for oI is obvious; a loop for u2 can slip between the two rays labelled cl, do the 
obvious, and slip back; a loop for CT? will have to intersect the cross labelled u2, but if 
it goes through the gap between the two ends of the short arm it will pick up 
successively u2 and u2-‘; and so on. 

84. ANALYTIC LOOPS IN THE CONFIGURATION SPACE 

Throughout this section let D be the closed unit disk in C, S’ = CD its boundary 
oriented counterclockwise. 
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Fig. 2. 

If X is a complex analytic space, an analytic disk in X is a map i: D+ X which is 
the restriction to D of a complex analytic map on some slightly larger open disk; an 
analytic loop is the oriented boundary of an analytic disk. Suppose X is simply 
connected, and V C X is a closed analytic subset such that X-V is connected but no 
longer simply connected. We may ask, which non-trivial homotopy classes of loops in 
X-V contain representatives which are analytic loops in X? 

Even when the question is asked in such generality, partial answers can be given. 
For our present purposes, however, it is enough to have the answer with X and V 
considerably restricted. So, let X = 43” be affine space, and let V C 43” be an algebraic 
hypersurface V = V, = {z, E C”: f(z,) = 0}, possibly singular and/or reducible (but 
without multiple components). The complex manifold R(V) of regular points of V is 
of (real) codimension 2 in C”, and is everywhere dense in V; let its connected 
components be R,, . . . , R,. For some arbitrary point on each Ri, let Di be an oriented 
normal 2-disk intersecting V only at that point, and there positively (with respect to 
the complex orientations of R(V) and C”); for some fixed basepoint * not on V, let ai 
be an arc in C”-V from * to a point on aDi; let Ii be a loop which runs from * along ai 
to aDi, once around aDi countercloskwise, and back along Ui to *; and let [Ii] be the 
class of Ii in 7rI(C”-V); all for i = 1,. . . , s. For later use, in the particular case that 
n = 1 and V is a finite set of points, each one a component Ri, let us demand further 
that the disks Di be pairwise disjoint from each other and from *, and that the arcs Ui 
be simple, pairwise disjoint except for their common endpoint *, and outside the 
union of the Di (except for their other endpoints). 

An element of w,(C”-V; *) which can be written as a product 6 Wi[lj(;)]wi_’ of 
i=l 

conjugates of the classes [lj] will be called a quasipositive element of the fundamental 
group. Quasipositivity is invariant under conjugation, and thus is really a property of 
free homotopy classes of loops. 

LEMMA 1. An analytic loop in Q7” - V represents a quasipositive conjugucy class in 

?T,(Q3” - v; *). 

Proof. Let i: D -j C” be an analytic disk in C” with i(S’) fl V = 0. Replacing i by a 
sufficiently close approximation (for instance, a high-order Taylor polynomial at 0) we 
may assume i is the restriction to D of a (vector-valued) complex polynomial p(t) of a 
single complex variable t, without changing the (free) homotopy class of i(S’) in the 
complement of V. In C x C” x C” let 2 be the set {(t, 5 z,): z, = p(t) + E, belongs to 
S(V)}, where S(V) = V - R(V) is the singular set of V, an algebriic set of complex 
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dimension no greater than n - 2. Then 2 is an algebraic subset of C*“+‘. Its complex 
dimension is no greater than n - 1, for z, varies in a set of dimension at most n - 2, 
p(t) is on a curve, and 5 is determined by 4 and p(t). Then the projection of 2 onto 
t=he second factor, pr2(Z) C C”, is again an algebriic set of dimension at most n - 1. 
Then almost any 5 in particular, almost any 5 sufficiently,close to Q, is not in pr2(Z). 
Translating i(D) by an appropriate small 5 will not change the free homotopy class of 
the analytic loop i(S) while ensuring that p(C) and its subset the new analytic disk 

meet S(V) nowhere. Now the whole interse;tion of the analytic disk and V is in the 
manifold R(V) and it is a simple matter to make the intersection transverse, when it 
will appear that each point of intersection counts + 1 because p(C) and R(V) are 
complex manifolds. Since the boundaries of two normal disks (pogitively oriented) at 
any two points of a component R; are freely homotopic, the analytic loop is a product 
of conjugates of the loops 1;. n 

LEMMA 2. Conversely, when n = 1, every quasipositive conjugacy class in T,(C - 

{z,, . . . , 2,)) is represented by an analytic loop in C. 

I do not know if Lemma 2 is true when n # 1. However, the following immediate 
consequence of Lemma 2 suffices to replace the putative stronger version for our 
purposes. 

COROLLARY. If there is a proper analytic map L of C into C” so that the induced 
homomorphism P,(C - L-‘( V)) + T,(C” - V) is surjectiue, then every quasipositive 
conjugacy class in r,(C”-V) is represented by an analytic loop (which in fact bounds 
an analytic disk lying on L(C)). n 

Proof of Lemma 2. Let (Y = ii wi[ljci,]w;’ E ?r,(C -{z,, . . 
i=I 

. , z,},*> be quasipositive. 

LetthedisksDj(j=l,..., s) be as above, let Do be a disk centered at * and disjoint 
from all the other Dj, and suppose for neatness that for each j = 1,. . . , s the arc aj 
intersects Do in a radius of Do, and comes into Dj normally. Let c(j) 20 be the 
number of times the index j appears as j(i) in the given presentation of a, as i runs 
from 1 to m. Let & (j= l,..., s, c= l,..., c(j)) and 0; be 2-disks which we think 
of as (2-dimensional) O-handles, and let Ni (i = 1,. . . , m) be strips, each homeomor- 
phic to [ - 1, 11 x [0, 11, which we think of as l-handles. Fix orientations on all the 
handles. Take m disjoint closed intervals, successive in the cyclic order, on a&, and 
one closed interval on each of the aDj,, (of which there are m all together). We form 
an identification space from the disjoint union of all the 0- and l-handles as follows: 
orientedly, attach one end [ - 1, l] x (0) of Ni to the ith chosen interval on a&,, and 
the other end [ - 1, 11 x (1) to the chosen interval on Dxi,,c (where c is the number of k 
with k S i, j(k) = j(i)). Then this identification space D” is homeomorphic to a disk. 
We will map D” into C handle by handle. First each & is mapped homeomorphic- 
ally, preserving orientation, onto Di so that the image of the chosen interval on a& 
is centered at the end of aj on 8Dj; and 0; is mapped homeomorphically, preserving 
orientation, onto Q. For each conjugator Wi, find an immersed arc in C which begins 
(outward normal) in the image on a&, of the ith chosen interval on a& and represents 
Wi in 7rl(C - {Zl, . . . , z,}, Do); then map the center line (0) x [O, I] of ZVi to an arc which 
follows the arc representing Wi from 6Q back to Do, then in Do to *, and then along 
aj(i) to Djci,. Because the exponent of [licij] in Q is + 1 and not - 1, the map on this 
center line can be extended over all of Ni to give an immersed tubular neighborhood 
of the image of the centerline, which respects the identifications at both ends. The 
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map so constructed is an immersion on the interior 8”, and on the boundary 
represents (Y. By “transport of structure” the interior of D” becomes a Riemann 

surface, and by the Riemann Mapping theorem there is an analytic homeomorphism 

B,*, + 8,,, where B,_F = {z: (zl < 1 + E}, for any E > 0. For appropriately small E, if i is 

the composite D C 61+,+8’r+C, then i is an analytic disk whose boundary i(S’) 
represents (the conjugacy class of) (r. (A tiny bit more juggling could assure that i(S’) 
passed through *.) W 

Presumably the hypothesis of the corollary is always true, even with L a linearly 
parametrized straight line in sufficiently general position (see [S], p. 331). In any case. 
consider the following example. 

Example 4.1. The group B, may be defined topologically as the fundamental group 
of the configuration space of unordered n-tuples of distinct points in R’. Reading C 
for R*, one may recognize that, first, the space C”/9’* (where Y”, the symmetric group 
on n letters, acts by permuting the coordinates) of unordered n-tuples of complex 
numbers (distinct or not) is in a natural way equal to C” again, by the theorem on 
symmetric polynomials; and, second, that the so-called “multi-diagonal” or discriminant 
locus, consisting of unordered n-tuples of which two (at least) are equal, is an algebraic 
hypersurface VA in the affine space C”/.Yfi. I claim that Example 3.3 provides one with a 
line L in C”/9’” satisfying the hypothesis of Corollary 2. For, what “is” an element of C”/§, 
but the manic polynomial of degree n, in one complex variable w, whose roots are the 
unordered n-tuple in question? Under this identification, the affine coordinates in C”I9’” 
are precisely the significant coefficients of that polynomial (to wit, up to sign, the 
elementary symmetric functions of the roots). Now, if the polynomial P(w) in Example 
3.3 is chosen manic of degree n - 1, then the assignment L: z I-+ P( w)( w - z) + E E C[ w] 
of a manic polynomial of degree n is clearly a linear parametrization of a straight line in 
C”/.Y,,. The work done in the example shows that n,(L(C) - VA)+ rr,(C”/9’R T V,) = B, is 
surjective. Further, the two uses of the word “quasipositive” coincide here. 

According to this example and the corollary, every quasipositive element of B,, 
when considered as a homotopy class in the configuration space, contains an analytic 
loop in C”/9’,,. But an analytic disk i: D +C”/9’” is nothing more nor less than an 
n-valued analytic function on 0, that is, an analytic subset of D x C which projects 
properly and n-to-l (counting multiplicities) to D. Without changing the free homo- 
topy class of i(S’) in C”IY’n-V,, one may (as in the proof of Lemma 1) replace the 
analytic function by (the restriction to D of) a vector-valued polynomial; and a 
polynomial map from C to Cn/SPn is precisely an n-valued algebraic function without 
poles. We have proved the following. 

THEOREM. The closed braids that arise from algebraic functions without poles are 
precisely the quasipositive closed braids. n 

Remarks. (1) Which classes in m,(X- V;*) are represented by analytic loops 
depends not only on X-V but very strongly on X as well. For instance, the natural 
way to complete the affine space C”/Y’” is to (CP’)“/Y”, which is canonically CP”. Let 
VA be the completion of V, in CP” and let CP,“-’ be CP”-C”, that is, the unordered 
n-tuples of extended complex numbers one at least of which is 03. Then certainly 
(C”/Y”) - v, = ((CP’YIY”) - (V, u CP,“_’ ). But the loops in this space, which are 
boundaries of analytic disks in the whole projective space, fall into every homotopy 
class: everything is quasipositive. Indeed, an analytic disk in the projective space is an 
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h-valued analytic function with poles allowed; the poles correspond to intersections 
of the disk with CP,“-‘. Then by Remark 2 of §3 we actually have that any loop at all 
can be perturbed by an arbitrarily small amount, to become the boundary of an 
analytic disk (probably crossing infinity). In general, it appears that there will be more 
analytic disks in a projective variety than in a comparable affine one. 

(2) If X is a simply connected complex manifold, and V is a non-singular analytic 
subset with finitely many components, with the components of complex codimension 
1 being RI,.. ., R,, then it is general knot theory that rl(X - V;*) is normally 

generated by the classes of loops li, i = 1,. . . , s, defined as in the case studied earlier 

of X = C”. In fact, even when V is singular (without multiple components) and the Ri 
are the complex-codimension-1 components of its regular set, the same conclusion 
holds-one need only observe that the union of the singular set S(V) and the regular 
components of complex codimension 2 or more, as an analytic variety in its own right, 
has a resolution which is a smooth map of a smooth manifold into X; then any loop in 
X-V may be made to bound a smooth 2-disk in X transverse to the resolution, and 
therefore disjoint from its image. Note however that this argument depends on the 
ambient space X being a smooth manifold with its given structure as analytic space. 
In this connection it is worth contemplating the example of X = {z,, z2, z3, zq) E 
C4: 2,2 + 223 + z35 = 0). This is the product of C (the z4 factor) with the cone on the 
dodecahedral space [6], and by the celebrated Double Suspension Theorem, X is 
homeomorpic to C3. The singular set S(X) is a straight complex line, with real 
codimension 4. Of course r,(X-S(X)) has 120 elements. (It can be shown that each of 
them is, in fact, represented by analytic loops.) 

(3) It was asserted in the introduction that not all quasipositive knots were fibred. 
Indeed, the first non-fibred knot in the Alexander-Briggs table, S2, can be represented 
as the closure of the quasipositive braid a,*~r~(a~a~a~-~). 

(4) For each n, there is an analytic curve V, in C*, smooth, and n-sheeted over the 
z-axis, such that all quasipositve n-string closed braids occur as K, for this f(z, w) 
and an appropriate ‘y. For n = 3, one may take f(z, w) = w3 - 3w + 2 exp z. Here, the 
points of B are the integral multiples of ?ri, and B’ is a union of horizontal rays. 

(5) Every oriented link has infinitely many representations as a closed braid (see 
[ll). It would be interesting to have purely knot-theoretical necessary and/or sufficient 
conditions that one of the representations be quasipositive. Presumably not every 
knot or link has such a representation. I hope to return to this and related questions in a 
future paper. 
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