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1. Introduction

We open this section with some notations: For a matrix A, M (A), A′, A+, rk(A), tr(A), λ(A) denote
range space, transpose, Moore–Penrose inverse, rank, trace, maximum eigenvalue of matrix A, respec-

tively. The n × n identity matrix is denoted by In. For nonnegative definite matrices A and B, A � B

and A > B stand for the nonnegative and positive definiteness of matrix A − B, respectively.

Consider the following linear model⎧⎨
⎩ y = Xβ + ε,

ε ∼ Nn(0, σ
2V)

(1.1)
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where y ∈ Rn is an observable random vector, ε is a random error vector. X ∈ Rn×p with rk(X) = p is

a known matrix. V ∈ Rn×n is a known nonnegative definite matrix, whereas β ∈ Rp and σ 2 > 0 are

unknown parameters.

For estimating regression coefficient β , we concern ourselves with the minimaxity of linear esti-

mators of β . We denote by £ the class of homogeneous linear estimators of β , i.e.,

£ = {Ly|L is any p × n real constant matrix} .

We denote D by the space of all estimators d(y) of β such that the expected value of the following loss

Lθ is finite. To evaluate estimators d(y) of β in general, for every β ∈ Rp and σ 2 > 0, we define the

loss function as

Lθ (β, σ 2; d(y)) = θ(y − Xd(y))′T+(y − Xd(y)) + (1 − θ)(d(y) − β)′X′T+X(d(y) − β)

σ 2 + β ′X′V+Xβ
,

(1.2)

where θ ∈ [0, 1], T = V + XX′. The numerator of the loss function Lθ which is called balanced loss

functionwas proposed by Hu and Peng [7] using the idea of Zellner’s [19] balanced loss and the unified

theory of least squares formulated by Rao [12].We choose the denominatorσ 2+β ′X′V+Xβ in the loss

function (1.2) in order that the maximum risk function of Ly does not rely on parameters σ 2 and β . on

the other hand, if we choose the denominator σ 2, then the maximum risk function of Ly is dependent

on σ 2 and β . The way of choosing the denominator is similar to the one used by Yu [18].

The balanced loss function takes both precision of estimation and goodness of fit of model into

account, so it is amore comprehensive and reasonable standard. It has received considerable attention

in the literature under different setups. For more details, the readers are referred to Rodrigues and

Zellner [13], Giles et al. [5], Ohtani et al. [9], Ohtani [10,11], Gruber [6], Jozani et al. [8] and Arashi [2].

Moreover, it is well known that the balanced loss function is more sensitive than the quadratic loss

function, which means that if an estimator is admissible under the balanced loss function, it is also

admissible under the quadratic loss function. Therefore, the study about the admissibility under the

balanced loss function are significant. Xu and Wu [16] studied the admissibility of linear estimators

under the balanced loss function in a linear model if its covariance matrix is an identity matrix and

there is no assumption that the underlying distribution is a normal one. Cao [3] proposed a matrix

balanced loss function using Zellner’s idea of balanced loss, and obtained � admissible estimators

for regression coefficient matrix. Hu and Peng [7] extended the result of Xu and Wu [16] to V � 0.

However, no systematic work about the minimaxity of linear estimators in the class of all estimators

under a balanced loss function has been done.

For every β ∈ Rp and σ 2 > 0, we define the risk function of d(y) as

RLθ (β, σ 2; d(y)) = E[Lθ (β, σ 2; d(y))].
If the element is finite, thus the optimality of an estimator d0(Y) ∈ D , such as domination, ad-

missibility, minimaxity and so on, can be evaluated by its risk in the range spaces of the risk function.

Because this paper only deals with the linear minimax estimator of β , we only give the concept of

minimax estimator.

Definition 1.1. d∗(y) is said to be a minimax estimator, if

sup
β∈Rp

σ 2>0

RLθ (β, σ 2; d∗(y)) = inf
d(y)

sup
β∈Rp

σ 2>0

RLθ (β, σ 2; d(y)).

Some results related to linearminimax estimators in linearmodels have been established for scalar

quadratic loss function. For the fixed effectsmodel, Alam [1], Efron andMorris [4] studied theminimax

estimators of the mean of a multivariate normal distribution. Xu [15] obtained the linear minimax

estimators of estimable function of regression coefficient in the class of linear estimators if V > 0. Yu



1230 G. Hu et al. / Linear Algebra and its Applications 436 (2012) 1228–1237

[17] extended the result to V � 0 and obtained theminimax estimators in the subset of homogeneous

linear estimators class. For the stochastic effects linear model, Yu [18] studied the linear minimax

estimator of stochastic regression coefficients and parameters under quadratic loss function.

In this paper, we will study the unique linear minimax estimator of β in D and the linear model

(1.1) under the balanced loss function (1.2).

The rest of this paper is organized as follows. In section 2, we give some important preliminaries.

In section 3, we demonstrate the main theorems concerning the minimax estimators. Concluding

remarks are given in section 4.

2. Some important preliminaries

Suppose rk(V) = r and let Q = (Q1,Q2) be an orthogonal matrix such that

Q ′VQ =
⎛
⎝ � 0

0 0

⎞
⎠ , � = diag(λ1, λ2, . . . , λr) with λi > 0, i = 1, 2, . . . , r.

Obviously, V = Q1�Q ′
1, V

+ = Q1�
−1Q ′

1,Q2Q
′
2 = I − VV+, M (X′) = M (X′Q1) + M (X′Q2).

Let B = X′T+X, S = (1 − θ)B− 1
2 X′T+X . Obviously, Sβ is estimable and

S = (1 − θ)B− 1
2 X′T+Q1Q

′
1X + (1 − θ)B− 1

2 X′T+Q2Q
′
2X � T1Q

′
1X + T2Q

′
2X, (2.1)

where T1 = (1 − θ)B− 1
2 X′T+Q1, T2 = (1 − θ)B− 1

2 X′T+Q2. According to the following lemma, the

decomposition of (2.1) is unique if and only if VXX′(I − VV+) = 0.

Lemma 2.1. M (X′Q1) and M (X′Q2) are orthogonal subspaces of R
p if and only if VXX′(I − VV+) = 0.

The proof of this lemma is omitted here, since it can be verified directly. We suppose that the

singular value decomposition of matrix T1Q
′
1X(X′V+X)+X′Q1�

− 1
2 is

T1Q
′
1X(X′V+X)+X′Q1�

− 1
2 = KFR′, (2.2)

where F = diag(f1, f2, . . . , ft) with f1 � f
2

� · · · � ft > 0, t = rk[T1Q ′
1X(X′V+X)+X′Q1] and

K ′K = R′R = It .

We now denote

Ci =
⎛
⎝ i∑

j=1

(fj − fi)
2 + C2

⎞
⎠

1
2

, i = 1, 2, . . . , t,

m = max
1�i�t

{i : Ci � fi} . (2.3)

and

Jf =
∑m

i=1 f
2
i + C2

∑m
i=1 f

2
i +

√
(
∑m

i=1 fi)
2 − (m − 1)(

∑m
i=1 f

2
i + C2)

,

where C2 = tr(θT+V − θ2T+XB−1X′T+V). Obviously, we have

Ct � Ct−1 � · · · � C1 = |C| > 0 (2.4)

and

C2 +
m∑
i=1

(Jf − fi)
2 = J2f .
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Inequality f1 � f2 � · · · � ft > 0 together with inequality (2.4) implies that the number m defined

in Eq. (2.3) exists iff C2 � f 21 .

Lemma 2.2. If C2 � f 21 , then fm � Jf . Moreover, if m < t, then fm+1 < Jf .

Proof. By Cm � fm, we have

(m − 1)f 2m − 2

⎛
⎝ m∑

i=1

fi

⎞
⎠ fm + C2 +

m∑
i=1

f 2i � 0, (2.5)

then ⎛
⎝ m∑

i=1

fi

⎞
⎠2

− (m − 1)

⎛
⎝C2 +

m∑
i=1

f 2i

⎞
⎠ � 0.

This together with Eq. (2.5) will yield

⎛
⎝C2 +

m∑
i=1

f 2i − fm

m∑
i=1

fi

⎞
⎠2

+ (m − 1)f 2m

⎛
⎝C2 +

m∑
i=1

f 2i

⎞
⎠ − f 2m

⎛
⎝ m∑

i=1

fi

⎞
⎠2

=
⎛
⎝C2 +

m∑
i=1

f 2i

⎞
⎠

⎡
⎣(m − 1)f 2m − 2

⎛
⎝ m∑

i=1

fi

⎞
⎠ fm + C2 +

m∑
i=1

f 2i

⎤
⎦ � 0.

By
∑m

i=1 f
2
i � fm

∑m
i=1 fi, we have

fm

⎡
⎢⎣

⎛
⎝ m∑

i=1

fi

⎞
⎠2

− (m − 1)

⎛
⎝C2 +

m∑
i=1

f 2i

⎞
⎠

⎤
⎥⎦

1
2

� C2 +
m∑
i=1

f 2i − fm

m∑
i=1

fi.

Hence, fm � Jf . Let m < t, if fm+1 � Jf , then

fi − Jf � fi − fm+1 � 0, i = 1, 2, . . . ,m + 1,

This together with the definition of the number m will yield

J2f = C2 +
m∑
i=1

(Jf − fi)
2 � C2 +

m∑
i=1

(fi − fm+1)
2 = C2 +

m+1∑
i=1

(fi − fm+1)
2 > f 2m+1,

which implies Jf > fm+1. This is a contradiction to the inequality fm+1 � Jf . The proof of this Lemma

is completed. �

Lemma 2.3 (Wu [14]). Assume a model y = Xβ + e, e ∼ Nn(0, σ
2In), where β, σ 2 are same as that in

model (1.1), X ∈ Rn×p is a known matrix. Let L and F be known t × n matrices. If L satisfies the following

conditions:

(1) L = LX(X′X)−X′,

(2) LX(X′X)−X′F ′is symmetric and LX(X′X)−X′L′ � LX(X′X)−X′F ′,

(3) rk(LX(X′X)−X′(F − L)′) � rk(L) − 2.

Then the estimator Ly of FXβ is admissible in D under the loss function (d − FXβ)′(d − FXβ).
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3. Main results

Thematrices K and R can be written in the partitioned form: K = (K1, K2), R = (R1, R2), where K1

and R1 are the firstm columns of K and R, respectively. Denote	f = diag(f1 − Jf , f2 − Jf , . . . , fm − Jf )

and H = T2Q
′
2X[X′(I − VV+)X]+X′(I − VV+). Then we have the following theorem.

Theorem 3.1. If VXX′(I − VV+) = 0, then the following statements hold

(1) If C2 � f 21 , then L1y is the unique minimax estimator of β in the class of all estimators under

the model (1.1) and the loss function (1.2). Moreover, the maximum risk is J2f , where L1 = B− 1
2 H +

B− 1
2 K1	f R

′
1�

− 1
2 Q ′

1 + θB−1X′T+;

(2) If C2 > f 21 , then L2y is the unique minimax estimator of β in the class of all estimators under the

model (1.1) and the loss function (1.2). Moreover, themaximum risk is C2, where L2 = B− 1
2 H+θB−1X′T+.

Proof. We first prove (1). According to Eq. (2.2), we have

T1Q
′
1X = T1Q

′
1X(X′V+X)+X′Q1�

− 1
2 �− 1

2 Q ′
1X = KFR′�− 1

2 Q ′
1X. (3.1)

By Eqs. (2.2) and (3.1), we have

t = rk(R′R) � rk(R′�− 1
2 Q ′

1X) � rk(T1Q
′
1X) � rk(KFR′),

hence, t = rk(R′�− 1
2 Q ′

1X) � rk(Q ′
1X), and R′�− 1

2 Q ′
1X is a row full rank matrix. Let a = rk(Q ′

1X), it is
easy to verify that there exist a r × (a − t) matrix R3 and a r × (r − a) matrix R4 such that

(R1, R2, R3, R4)
′(R1, R2, R3, R4) = Ir,

a = rk(R1, R2, R3) = rk[(R1, R2, R3)′�− 1
2 Q ′

1X],
R′
4�

− 1
2 Q ′

1X = 0.

Denote

ỹ = (y′
1, y

′
2, y

′
3, y

′
4)

′,

yi = R′
i�

− 1
2 Q ′

1y, i = 1, 2, 3, 4,

βi = R′
i�

− 1
2 Q ′

1Xβ, i = 1, 2, 3, 4.

Obviously, ỹ ∼ Nr((β
′
1, β

′
2, β

′
3, 0

′)′, σ 2Ir).

LetF1 = diag(f1, . . . , fm), F2 = diag(fm+1, . . . , ft) (m < t). ByQ2Q
′
2 = I−VV+ and the definition

of T2, we have HXβ = T2Q
′
2Xβ . This together with Eq. (2.2) will yield

(H + K1	f R
′
1�

− 1
2 Q ′

1)Xβ − Sβ

= K1	f R
′
1�

− 1
2 Q ′

1Xβ − T1Q
′
1Xβ + HXβ − T2Q

′
2Xβ

= K1	f R
′
1�

− 1
2 Q ′

1Xβ − (K1, K2)F(R1, R2)
′�− 1

2 Q ′
1Xβ

= K1	fβ1 − (K1, K2)F(β
′
1, β

′
2)

′. (3.2)

By direct operation, we have

E[θ(y − XLy)′T+(y − XLy) + (1 − θ)(Ly − β)′X′T+X(Ly − β)]
= E[(B 1

2 Ly − θB− 1
2 X′T+y) − Sβ]′[(B 1

2 Ly − θB− 1
2 X′T+y) − Sβ] + σ 2C2. (3.3)
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By Eqs. (3.2), (3.3) and Lemma 2.2, we have

E[θ(y − XL1y)
′T+(y − XL1y) + (1 − θ)(L1y − β)′X′T+X(L1y − β)]

= E[(B 1
2 L1y − θB− 1

2 X′T+y) − Sβ]′[(B 1
2 L1y − θB− 1

2 X′T+y) − Sβ] + σ 2C2

= σ 2{C2 + tr[(H + K1	f R
′
1�

− 1
2 Q ′

1)
′V(H + K1	f R

′
1�

− 1
2 Q ′

1)]}
+β ′[(H + K1	f R

′
1�

− 1
2 Q ′

1)X − S]′[(H + K1	f R
′
1�

− 1
2 Q ′

1)X − S]β
= σ 2[C2 + tr(K1	f R

′
1�

− 1
2 Q ′

1VQ1�
− 1

2 R1	f K
′
1)]

+(K1	fβ1 − (K1, K2)F(β
′
1, β

′
2)

′)′(K1	fβ1 − (K1, K2)F(β
′
1, β

′
2)

′)

= σ 2[C2 + tr(	2
f )] +

⎡
⎣

⎛
⎝	fβ1

0

⎞
⎠ −

⎛
⎝F1β1

F2β2

⎞
⎠

⎤
⎦

′ ⎡
⎣

⎛
⎝	fβ1

0

⎞
⎠ −

⎛
⎝F1β1

F2β2

⎞
⎠

⎤
⎦

= σ 2J2f + J2f β
′
1β1 + β ′

2F
2
2β2 � J2f (σ

2 + β ′
1β1 + β ′

2β2).

Note that

σ 2 + β ′X′V+Xβ = σ 2β ′X′Q1�
− 1

2 (R1, R2, R3, R4)(R1, R2, R3, R4)
′�− 1

2 Q ′
1Xβ

= σ 2 + β ′
1β1 + β ′

2β2 + β ′
3β3.

Therefore,

RLθ (β, σ 2; L1y) = E[Lθ (β, σ 2; L1y)]
= E[θ(y − XL1y)

′T+(y − XL1y) + (1 − θ)(L1y − β)′X′T+X(L1y − β)]
σ 2 + β ′X′V+Xβ

�
J2f (σ

2 + β ′
1β1 + β ′

2β2)

σ 2 + β ′
1β1 + β ′

2β2 + β ′
3β3

� J2f ,

In particular, if β2 = 0 and β3 = 0, the equality of the above expression holds. Hence

sup
β∈Rp

σ 2>0

RLθ (β, σ 2; L1y) = J2f .

Wenext prove that L1y is the uniqueminimax estimator of β in the class of all estimators. Suppose,

to the contrary, that L1y is not the unique minimax estimator of β in the class of all estimators. Then

there exists an estimator δ such that

sup
β∈Rp

σ 2>0

RLθ (β, σ 2; δ) � sup
β∈Rp

σ 2>0

RLθ (β, σ 2; L1y),

and

P(δ = L1y) < 1 (3.4)

for everyβ ∈ Rp andσ 2 > 0,where P(·) denotes the probability of randomevent. Therefore, ifβ2 = 0

and β3 = 0, we have

RLθ (β, σ 2; δ) � RLθ (β, σ 2; L1y) = J2f ,

which becomes by the definition of RLθ (β, σ 2; d(y))
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E[θ(y − Xδ)′T+(y − Xδ) + (1 − θ)(δ − β)′X′T+X(δ − β)]
� E[θ(y − XL1y)

′T+(y − XL1y) + (1 − θ)(L1y − β)′X′T+X(L1y − β)]. (3.5)

If β2 = 0 and β3 = 0, it follows from Eqs. (3.4) and (3.5) that

E

[
θ

(
y − X

δ + L1y

2

)′
T+

(
y − X

δ + L1y

2

)
+ (1 − θ)

(
δ + L1y

2
− β

)′
X′T+X

(
δ + L1y

2
− β

)]

= 1

2
E[θ(y − Xδ)′T+(y − Xδ) + (1 − θ)(δ − β)′X′T+X(δ − β)]

+ 1

2
E[θ(y − XL1y)

′T+(y − XL1y) + (1 − θ)(L1y − β)′X′T+X(L1y − β)]

− 1

4
E[(B 1

2 δ − B
1
2 L1y)

′(B
1
2 δ − B

1
2 L1y)]

< E[θ(y − XL1y)
′T+(y − XL1y) + (1 − θ)(L1y − β)′X′T+X(L1y − β)] (3.6)

By Eq. (3.3), we have

E

[
θ

(
y − X

δ + L1y

2

)′
T+

(
y − X

δ + L1y

2

)
+ (1 − θ)

(
δ + L1y

2
− β

)′
X′T+X

(
δ + L1y

2
− β

)]

= E

[(
B

1
2
δ + L1y

2
− θB− 1

2 X′T+y − Sβ

)′

(
B

1
2
δ + L1y

2
− θB− 1

2 X′T+y − Sβ

)]
+ σ 2C2. (3.7)

and

E[θ(y − XL1y)
′T+(y − XL1y) + (1 − θ)(L1y − β)′X′T+X(L1y − β)]

= E[(B 1
2 L1y − θB− 1

2 X′T+y − Sβ)′(B
1
2 L1y − θB− 1

2 X′T+y − Sβ)] + σ 2C2 (3.8)

By Eqs. (3.6)–(3.8), we have

E

[(
B

1
2
δ + L1y

2
− θB− 1

2 X′T+y − Sβ

)′ (
B

1
2
δ + L1y

2
− θB− 1

2 X′T+y − Sβ

)]

< E[(B 1
2 L1y − θB− 1

2 X′T+y − Sβ)′(B
1
2 L1y − θB− 1

2 X′T+y − Sβ)]. (3.9)

We next prove that B
1
2 L1y− θB− 1

2 X′T+y is an admissible estimator of Sβ in the class of all estimators

under the loss (d − Sβ)′(d − Sβ) if β2 = 0 and β3 = 0. In fact, if β2 = 0 and β3 = 0, it follows from

Eqs. (2.1), (3.1) and the definition of H that

E[(B 1
2 L1y − θB− 1

2 X′T+y − Sβ)′(B
1
2 L1y − θB− 1

2 X′T+y − Sβ)]
= E[(K1	f R

′
1�

− 1
2 Q ′

1y − T1Q
′
1Xβ)′(K1	f R

′
1�

− 1
2 Q ′

1y − T1Q
′
1Xβ)]

= E(K1	f y1 − K1F1β1)
′(K1	f y1 − K1F1β1).
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To prove that B
1
2 L1y − θB− 1

2 X′T+y is an admissible estimator of Sβ in the class of all estimators

under the loss (d − Sβ)′(d − Sβ), we only need to prove that under the model y1 ∼ Nm(β1, σ
2Im)

and the loss function (d1 − K1F1β1)
′(d1 − K1F1β1), K1	f y1 is an admissible estimator of K1F1β1 in

the class of all estimators. If 	f � 0, Jf > 0, we have 	f < F1 by Lemma 2.2. This together with

Lemma 2.3 will yield K1	f y1 is an admissible estimator of K1F1β1 in the class of all estimators. In

other words, B
1
2 L1y − θB− 1

2 X′T+y is an admissible estimator of Sβ in the class of all estimators. This

is a contradiction to the inequality (3.9). Therefore, L1y is the unique minimax estimator of β in the

class of all estimators. Moreover, the maximum risk is J2f .

We next prove (2). If C2 > f 21 , then K = K2, R = R2, β2 = R′�− 1
2 Q ′

1Xβ , and β1 does not exist.

Furthermore,

|C| > f1 � f2 � · · · � ft > 0. (3.10)

By the same way used to prove (1), we have

HXβ − Sβ = −KFβ2. (3.11)

By Eqs. (3.3), (3.10) and (3.11), we have

E[θ(y − XL2y)
′T+(y − XL2y) + (1 − θ)(L2y − β)′X′T+X(L2y − β)]

= E[(B 1
2 L2y − θB− 1

2 X′T+y) − Sβ]′[(B 1
2 L2y − θB− 1

2 X′T+y) − Sβ] + σ 2C2

= σ 2[C2 + tr(HVH)] + (HXβ − Sβ)′(HXβ − Sβ)

= σ 2C2 + (KFβ2)
′(KFβ2) = σ 2C2 + β ′

2F
2β2 � C2(σ 2 + β ′

2β2). (3.12)

Equation σ 2 + β ′X′V+Xβ = σ 2 + β ′
2β2 + β ′

3β3 together with Eq. (3.12) will yield

RLθ (β, σ 2; L2y) = E[Lθ (β, σ 2; L2y)]
= E[θ(y − XL2y)

′T+(y − XL2y) + (1 − θ)(L2y − β)′X′T+X(L2y − β)]
σ 2 + β ′X′V+Xβ

� C2(σ 2 + β ′
2β2)

σ 2 + β ′
2β2 + β ′

3β3

� C2,

Especially, if β2 = 0 and β3 = 0, the equality of the above expression holds. Hence,

sup
β∈Rp

σ 2>0

RLθ (β, σ 2; L2y) = C2.

Wenext prove that L2y is the uniqueminimax estimator of β in the class of all estimators. Suppose,

to the contrary, that L2y is not the unique minimax estimator of β in the class of all estimators. Then

there exists an estimator δ such that

sup
β∈Rp

σ 2>0

RLθ (β, σ 2; δ) � sup
β∈Rp

σ 2>0

RLθ (β, σ 2; L2y),

and

P(δ = L2y) < 1 (3.13)

for every β ∈ Rp and σ 2 > 0. Therefore, if β2 = 0 and β3 = 0, we have

RLθ (β, σ 2; δ) � RLθ (β, σ 2; L2y) = C2,
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which becomes by the definition of RLθ (β, σ 2; d(y))
E[θ(y − Xδ)′T+(y − Xδ) + (1 − θ)(δ − β)′X′T+X(δ − β)]

� E[θ(y − XL2y)
′T+(y − XL2y) + (1 − θ)(L2y − β)′X′T+X(L2y − β)]. (3.14)

Furthermore, if β2 = 0 and β3 = 0, it follows from Eqs.(2.7), (3.13), (3.14) and the same way used to

prove (1) that

E

[(
B

1
2
δ + L2y

2
− θB− 1

2 X′T+y − Sβ

)′ (
B

1
2
δ + L2y

2
− θB− 1

2 X′T+y − Sβ

)]

< E[(B 1
2 L2y − θB− 1

2 X′T+y − Sβ)′(B
1
2 L2y − θB− 1

2 X′T+y − Sβ)] = 0.

This is a contradiction to the inequality E[(B 1
2

δ+L2y

2
− θB− 1

2 X′T+y − Sβ)′(B 1
2

δ+L2y

2
− θB− 1

2 X′T+y

− Sβ)] � 0. Hence, L2y is the unique minimax estimator of β in the class of all estimators. Moreover,

the maximum risk is C2. This completes the proof of this theorem. �

4. Concluding remarks

In themodel (1.1), the unique linearminimax estimator of regression coefficient under the balanced

loss function (1.2) is obtained in the class of all estimators by the admissibility theory. Furthermore,

we may discuss the admissibility of the linear minimax estimator in the class of all estimators in the

future.
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