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a b s t r a c t

Atherosclerosis is an inflammatory disorder of the vasculature that is orchestrated by the action of
cytokines. Macrophages play a prominent role in all stages of this disease, including foam cell forma-
tion, production of reactive oxygen species, modulation of the inflammatory response and the regulation
of the stability of atherosclerotic plaques. The role of the matrix metalloproteinase family in the con-
trol of plaque stability is well established. A disintegrin and metalloproteinase with thrombospondin
motif (ADAMTS) family has been implicated in several diseases and the expression of ADAMTS-4 in
macrophages of atherosclerotic lesions has suggested a potential role for this protease in atherosclerosis.
However, the action of cytokines on the expression of ADAMTS-4 in macrophages is poorly understood.
We have investigated here the effect of transforming growth factor-� (TGF-�) on ADAMTS-4 expression
in macrophages along with the regulatory mechanisms underlying its actions. Consistent with the anti-
atherogenic role of TGF-�, this cytokine decreased the expression of ADAMTS-4 mRNA and protein in

human macrophages. Transient transfection assays showed that the −100 to +10 promoter region con-
tained the minimal TGF-� response elements. Small-interfering RNA-mediated knockdown revealed a
critical role for Smads, p38 mitogen-activated protein kinase and c-Jun in the action of TGF-� on ADAMTS-
4 mRNA expression. These studies show for the first time that TGF-� inhibits the expression of ADAMTS-4
in human macrophages and identifies the signalling pathways underlying this response. The inhibition
of macrophage ADAMTS-4 expression is likely to contribute to the anti-atherogenic, plaque stabilisation

action of TGF-�.

. Introduction

A disintegrin and metalloproteinase with thrombospondin
otifs (ADAMTS) proteases are non-membrane bound enzymes

hat are able to interact with and degrade components of the extra-
ellular matrix (ECM), such as pro-collagen and hyalectans (Salter
t al., 2010; Jones and Riley, 2005; Porter et al., 2005). Of the
DAMTS proteases identified to date, ADAMTS-1 and ADAMTS-4
re the most abundant and consequently have been the subject

f the majority of research on these enzymes (Salter et al., 2010;
ones and Riley, 2005). There has been much focus on the ability
f ADAMTS proteases to cleave aggrecan, a proteoglycan present
n articular cartilage (Salter et al., 2010; Naito et al., 2007; Tang,
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2001). Cleavage of aggrecan in human cartilage contributes to the
pathophysiology of osteoarthritis and rheumatoid arthritis and a
role for ADAMTS-4 in this process has been defined (Salter et al.,
2010; Naito et al., 2007; Tang, 2001).

A possible role for the ADAMTS proteases as contributors to
inflammation and atherosclerosis has only recently come to light
(Salter et al., 2010). Atherosclerosis, the primary cause of coro-
nary heart disease, is an inflammatory disorder orchestrated by
the action of cytokines. The latter stages of this disease are asso-
ciated with the migration and the proliferation of vascular smooth
muscle cells (VSMCs), which leads to the production of the extracel-
lular matrix and the formation of a fibrous cap in the atherosclerotic

Open access under CC BY-NC-ND license.
plaque (Bui et al., 2009). The balance between the synthesis and the
degradation of the ECM by matrix metalloproteinases (MMPs) and
other proteases determines the susceptibility of the plaque to rup-
ture and subsequent thrombosis and myocardial infarction (Li and
Glass, 2002; Lusis et al., 2004).
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The ADAMTS proteases were first associated with inflammation
hen it was shown that administration of lipopolysaccharide (LPS)

n vivo could enhance ADAMTS-1 expression in the heart and in the
idneys (Kuno et al., 1997). ADAMTS-1, -4 and -8 have been found
o be present within atherosclerotic lesions and mice overexpress-
ng ADAMTS-1 crossed with ApoE-deficient mice, an animal model
or atherosclerosis, showed increased thickening of the arterial
ntima (Wight, 2005; Jonsson-Rylander et al., 2005; Wågsäter et al.,
008). ADAMTS-4 is predominantly associated with macrophages
f atherosclerotic lesions and its expression is increased following
oth monocyte–macrophage differentiation and during develop-
ent of atherosclerosis in a mouse model system (Wågsäter et al.,

008). The ability of the ADAMTS proteases to cleave proteoglycans
s likely to be central to any proposed role in atherosclerosis. Both
DAMTS-1 and -4 are able to cleave versican, a proteoglycan similar

n structure to aggrecan but predominantly expressed in the vas-
ulature (Sandy et al., 2001). Versican expression is upregulated in
ascular disease, accumulates in atherosclerotic plaques (Worley
t al., 2003) and can be cleaved by ADAMTS-1 and ADAMTS-4 at
pecific Glu-Ala bonds (Sandy et al., 2001). It has also been shown
hat in the human aorta, versican fragments can be generated
y ADAMTS-1 and ADAMTS-4 digestion of intact human versican
Sandy et al., 2001).

Very few studies have investigated the regulation of ADAMTS
rotease expression in macrophages and further studies are nec-
ssary especially as ADAMTS-4 has been found to colocalize with
acrophages of atherosclerotic lesions (Wågsäter et al., 2008). To

ur knowledge only one study has been carried out that investi-
ated the expression of ADAMTS proteases in response to cytokines
n human macrophages and this demonstrated that ADAMTS-4
xpression was up-regulated by the pro-inflammatory cytokines
nterferon-� (IFN-�) and tumour necrosis factor-� (Wågsäter et al.,
008).

TGF-� is a major anti-atherogenic cytokine and inhibition of its
ctions, using neutralising antibodies or expression of a dominant
egative receptor, has been found to accelerate the development
f atherosclerosis in mouse models of this disease (Singh and
amji, 2006a). The cytokine inhibits foam cell formation and an

nverse relationship has been identified between circulating levels
f TGF-� and the development of atherosclerosis (Singh and Ramji,
006a). In addition, regions in the aorta with low TGF-� expres-
ion have a high probability of developing atherosclerosis (Singh
nd Ramji, 2006a). TGF-� is also known to inhibit the expression of
MPs, which decrease plaque stability via thinning of the fibrous

laque through cleavage of collagens, elastins and other proteogly-
ans in the ECM (Galis and Khatri, 2002; Singh and Ramji, 2006a;
ewby, 2007). In light of such a potent anti-atherogenic role of
GF-�, we examined its action on ADAMTS-4 expression in human
acrophages with a view to further investigating the molecular
echanisms underlying such regulation. We show here that TGF-�

own-regulates ADAMTS-4 expression at the level of mRNA, pro-
ein and promoter activity. In addition, our studies demonstrate

critical role for Smads, p38 mitogen-activated protein kinase
MAPK) and c-Jun in the regulation of ADAMTS-4 by TGF-�.

. Materials and methods

.1. Reagents

The human monocytic leukaemia THP-1 cell line and the human

epatoma Hep3B cell line were obtained from the European
ollection of Animal Cell Cultures (ECACC). Human recombi-
ant TGF-�1 was from Peprotech, validated Smad-2, c-Jun and
xtracellular signal-regulated kinase (ERK) 1/2 small interfering
NA (siRNA) was from Qiagen and validated Smad-3 and p38
hemistry & Cell Biology 43 (2011) 805–811

MAPK siRNA was from Invitrogen. Antibodies were from Affin-
ity Bioreagents (ADAMTS-4), Cell Signaling Technology (Smad2/3,
p38MAPK, ERK1/2), Santa Cruz Biotechnology (c-Jun) and Sigma
(�-actin). SuperfectTM transfection reagent was from Qiagen and
INTERFERinTM from Polyplus Transfection.

2.2. Cell culture

The cell lines were maintained in either DMEM (Hep3B) or RPMI-
1640 (THP-1) supplemented with 10% (v/v) heat-inactivated fetal
calf serum, 100 U/ml penicillin and 100 �g/ml Streptomycin. The
cultures were maintained in a humidified atmosphere at 37 ◦C con-
taining 5% (v/v) CO2. THP-1 monocytes were differentiated into
macrophages using 0.16 �g/ml phorbol 12-myristate 13-acetate
(PMA). For human monocyte-derived macrophages (HMDMs),
Ficoll–Hypaque purification was used to isolate the cells from buffy
coats (McLaren et al., 2010a,b; Li et al., 2010). Blood layered over
LymphoprepTM (Nycomed Pharmaceuticals) in AccuspinTM tubes
(Sigma) was centrifuged and platelets removed from the mononu-
clear cell interface by washing several times with PBS, containing
0.4% (v/v) tri-sodium citrate. Monocytes were plated out in RPMI-
1640 supplemented as described above, except containing 5% (v/v)
fetal calf serum, and left to differentiate into macrophages for 7
days.

2.3. Transfection of siRNA

THP-1 monocytes were transfected with 7.5 nM siRNA using
INTERFERinTM essentially as described by the manufacturer (Poly-
Plus Transfection). The cells were then incubated for 24 h before
differentiation into macrophages using PMA as described above and
subsequent treatment with TGF-� (30 ng/ml). Gene silencing was
measured 48 h after transfection by Western blot analysis.

2.4. Real-time quantitative PCR (RT-qPCR)

RT-qPCR was carried out using primers against ADAMTS-4
or the ribosomal protein L13A (RPL13A) or the glyceraldehyde
3-dehydrogenase (GAPDH) control genes and the SYBR® Green
JumpStartTM Taq ReadyMixTM (Sigma) on a DNA Engine Opticon
2® real-time PCR detection system (MJ Research). The sequences
of the primers were 5′-GGGATAGTGACCACATTGTT-3′ and 5′-
AGGCACTGGGCTACTACTAT-3′ for ADAMTS-4; 5′-CCTGGAGGAGA-
AGAGGAAAGAGA-3′ and 5′-TTGAGGACCTCTGTGTATTTGTCAA-3′

for RPL13A; and 5′-GAAGGTGAAGGTCGGAGTC-3′ and 5′-
GAAGATGGTGATGGGATTTC-3′ for GAPDH. For each transcript
a standard curve was constructed using a recombinant pGEM-T
plasmid containing the PCR product generated for each specific
set of primers. A melting curve was constructed to verify single
product amplification and the comparative Ct method was used
for analysis and normalisation to the control transcript levels.

2.5. Transient transfection assays

Hep3B and U937 cells were transfected using SuperfectTM.
Transfection of U937 cells was carried out as previously described
(Hughes et al., 2002; Irvine et al., 2005). For Hep3B, the cells were
subcultured at a ratio of 1:6 into 12-well plates 24 h prior to trans-
fection and medium replaced with fresh DMEM before transfection.
The DNA:SuperfectTM mix was prepared according to the man-
ufacturer’s instructions (Qiagen) in 50 �l medium containing no

antibiotics or serum. The mixture was incubated at room tem-
perature for 10 min and then diluted with DMEM medium before
being added to the cells. The cells were then left for 30 min and
then treated with vehicle or TGF-� (30 ng/ml) for 24 h. The cells
were then harvested using 1× passive lysis buffer (Promega) and
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Fig. 1. TGF-� inhibits ADAMTS-4 mRNA expression in THP-1 macrophages. THP-1
macrophages were treated for 24 h with the indicated concentration of TGF-� (A) or
with 30 ng/ml of this cytokine for the time points shown (B). Total RNA was isolated
and subjected to RT-qPCR. The Ct method was used for analysis and the values for
ADAMTS-4 were normalised to the control gene GAPDH (A) or RPL13A (B). The data
R.C. Salter et al. / The International Journal o

he luciferase activity measured using a commercially available kit
Promega). The luciferase activity was normalised to total protein
evels as determined using the micro BCA protein assay kit accord-
ng to the manufacturer’s instructions (Pierce).

.6. Western blot analysis

Samples were prepared in Laemmli buffer and size-fractionated
nder reducing conditions using 10% SDS-polyacrylamide gels
nd transferred to a PVDF membrane (Millipore) by Western
lotting (Ali et al., 2010). Incubation with primary and sec-
ndary antibodies and chemiluminescent detection was carried
ut as described previously (Ali et al., 2010). Samples were sub-
ected to electrophoresis alongside comparative molecular weight

arkers (GE Healthcare) to determine the size of the protein
roduct. Membranes were developed using chemiluminescence
etection reagents (GE Healthcare) and Kodak XAR sensitive film
Sigma).

.7. Statistical analysis of data

Statistical comparisons of data were carried out using Stu-
ent’s t test with P < 0.05 considered statistically significant.
emi-quantitative, densitometric analysis of Western blot signals
as performed using the GeneTools software (GRI).

. Results

.1. TGF-ˇ inhibits ADAMTS-4 expression at the mRNA and
rotein level in THP-1 macrophages and HMDMs

The action of TGF-� on the expression of ADAMTS-4 in human
acrophages has not been determined and was therefore investi-

ated. The THP-1 monocytic cell line, which can be differentiated
nto macrophages using PMA, is used extensively to investi-
ate macrophage gene expression in relation to atherosclerosis
ecause of demonstrated conservation of responses with primary
acrophage cultures, in particular gene regulation by cytokines

Auwerx, 1991; McLaren et al., 2010a,b; Li et al., 2010).
Our previous studies on the TGF-�-mediated activation of

polipoprotein E expression showed maximal response at 24 h with
0 ng/ml of the cytokine (Singh and Ramji, 2006b). We therefore
arried out dose–response RT-qPCR experiments on ADAMTS-4
sing the 24 h incubation period. As shown in Fig. 1A, a marked inhi-
ition of ADAMTS-4 mRNA expression was observed with 2 ng/ml
GF-� with maximal suppression using 30 ng/ml of this cytokine.
urther time course experiments using 30 ng/ml of the cytokine
howed that ADAMTS-4 mRNA expression was down-regulated by
GF-� within 1 h of treatment and this response was sustained over
he 24 h time period. Subsequent experiments were carried out
sing 30 ng/ml of TGF-� for an incubation period of 24 h, unless
therwise stated.

To determine whether this down-regulation was accompanied
y a corresponding change in the level of protein, the expression
f ADAMTS-4 was investigated using Western blot analysis. Pre-
iminary experiments showed that the expression of ADAMTS-4
rotein was decreased with delayed kinetics compared to RNA
data not shown) so longer incubation periods were used for West-
rn blot analysis. Fig. 2A shows that ADAMTS-4 protein expression
as significantly down-regulated in THP-1 macrophages by TGF-

treatment. In the light of these results and to confirm that the

GF-�-mediated decrease in ADAMTS-4 expression was not pecu-
iar to the THP-1 cell line, we decided to carry out representative
xperiments in primary cultures of HMDMs. For this, the action of
GF-� on ADAMTS-4 protein expression was determined. Fig. 2B
shows the expression relative to the 0 ng/ml (A) or 0 h (B) (arbitrarily assigned as
1) (mean ± SD from three independent experiments). Asterisks indicate significant
down-regulation of ADAMTS-4 mRNA expression (*P < 0.05, **P < 0.01, ***P < 0.001).

shows that protein expression of ADAMTS-4 was down-regulated
by TGF-� in these primary cultures.

3.2. TGF-ˇ inhibits ADAMTS-4 promoter activity

In order to investigate whether the action of TGF-� was medi-
ated, at least in part, at the transcriptional level through the
regulation of promoter activity, the effect of this cytokine on
ADAMTS-4 promoter activity in transfected cells was determined.
Because of difficulties in transfecting the THP-1 cell line with exoge-
nous DNA, most experiments were carried out using the human
hepatoma Hep3B cell line. These cells are used extensively to inves-
tigate the regulation of gene expression by cytokines in relation to
inflammation (acute-phase response) with demonstrated conser-
vation of responses to primary cultures (Foka et al., 2003, 2009
and references therein). Western blot analysis showed that TGF-�
also inhibits ADAMTS-4 expression in these cells (Fig. 3), thereby
showing that the response was also conserved in hepatocytes. The
48 h time point was chosen for experiments in these cells as it
corresponded to maximal decrease in ADAMTS-4 expression as
identified by preliminary time course analysis (data not shown).

We employed four promoter deletion constructs linked to the
luciferase gene: −726/+406 (p1132-LUC); −383/+406 (p789-LUC);

−100/+406 (p506-LUC); and +11/+406 (p396-LUC) (Fig. 4A) (Mizui
et al., 2000). A TGF-�-mediated decrease in promoter activity was
obtained with the p1132-LUC, p789-LUC and p-506-LUC constructs
but not with the p-396-LUC construct (Fig. 4B). This suggests that
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Fig. 2. TGF-� inhibits ADAMTS-4 protein expression in macrophages. THP-1
macrophages (A) or HMDMs (B) were either left untreated (UT) or incubated with
30 ng/ml TGF-� for the time points indicated. An equal amount of the protein extract
was subjected to Western blot analysis using antisera against ADAMTS-4 and the
c
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Fig. 3. TGF-� inhibits ADAMTS-4 protein expression in Hep3B cells. The cells were
either left untreated (UT) or incubated with TGF-� for 48 h. Equal amounts of pro-
tein were subjected to Western blot analysis using antisera against ADAMTS-4 and
ontrol �-actin, as shown. The relative ADAMTS-4 expression normalised to �-actin,
s determined by densitometric analysis, from three independent experiments is
hown (mean ± SD) with the values from untreated cells arbitrarily assigned as 1
*P < 0.05; **P < 0.01; ***P < 0.001).

he minimal TGF-� response elements reside between the −100
nd the +10 region. Similar results were obtained when representa-
ive experiments were carried out using human U937 macrophages
Fig. 4C) [the luciferase reporter gene activity from the +11/+406
p396-LUC) construct in these cells was negligible and was there-
ore not included for further analysis].

.3. The action of TGF-ˇ on ADAMTS-4 expression requires
mads, p38 MAPK and c-Jun
TGF-� mediates many of its actions through the classical Smad
ignalling pathway with the three MAPK pathways [ERK, c-Jun N-
erminal kinase (JNK) and p38 MAPK] required in the regulation of
ertain genes (Ten Dijke and Hill, 2004). Most of these studies have
the control �-actin, as indicated. The relative ADAMTS-4 expression normalised to
�-actin, as determined by densitometric analysis, from three independent experi-
ments is shown (mean ± SD) with the value from untreated cells arbitrarily assigned
as 1 (*P < 0.05).

been carried out in relation to the TGF-�-mediated induction of
gene expression and very little is currently understood in relation to
the inhibition of gene expression. We therefore analysed whether
the Smad or MAPK pathways had any role in the regulation of
ADAMTS-4 expression by this cytokine. This was investigated using
siRNA-mediated RNA interference assays and RT-qPCR analysis. As
in a number of previous studies, GAPDH siRNA was used as a con-
trol (Ali et al., 2010) and this had no effect on the TGF-�-mediated
inhibition of ADAMTS-4 expression (Fig. 5). Knockdown of Smad-2
plus 3, ERK 1/2, c-Jun, a key downstream target of the JNK path-
way, and p38 MAPK was achieved using commercially validated
siRNA sequences and relative expression of each protein following
siRNA-mediated knockdown was confirmed in THP-1 macrophages
by Western blot analysis (Fig. 5A). The TGF-�-mediated inhibition
of ADAMTS-4 expression was attenuated by knockdown of Smad-
2 plus -3 (Fig. 5B). In addition, the TGF-�-mediated inhibition of
ADAMTS-4 expression was attenuated by knockdown of c-Jun and
p38 MAPK but not ERK1/2 (Fig. 5B). Because the expression of
ADAMTS-4 is induced during monocyte–macrophage differentia-
tion (Wågsäter et al., 2008), the effect of these knockdown on the
constitutive expression of ADAMTS-4 in macrophages, driven by
the differentiation process, was also determined. This was inhibited
by knockdown of only p38 MAPK but not Smad-2 plus -3, ERK1/2
or c-Jun (Fig. 6).

4. Discussion

Several members of the ADAMTS family have been linked
with inflammation but their role in this and in pathophysiologi-

cal inflammatory states including atherosclerosis is only beginning
to be researched (Salter et al., 2010). Although the exact role of the
ADAMTS proteases in atherosclerosis remains unclear it is thought
that the ability of ADAMTS-1 and -4 to cleave versican, the pri-
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Fig. 4. TGF-� inhibits ADAMTS-4 promoter activity. (A) Schematic representation of
the different ADAMTS-4 promoter-luciferase DNA constructs used. Hep3B cells (B)
and U937 monocytes (C) were transfected with the ADAMTS-4 promoter-luciferase
DNA constructs using SuperfectTM. The cells were either left untreated or treated
overnight with 30 ng/ml TGF-� (1 �M PMA was also included for U937 only to ini-
tiate differentiation) and cell lysates were measured for luciferase activity. Data
shown is the ratio of luciferase activity:protein concentration expressed as the fold
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Fig. 5. The effect of siRNA-mediated knockdown of key components of the TGF-�
signalling pathway on the inhibition of ADAMTS-4 expression by this cytokine. THP-
1 monocytes were transfected with validated siRNA against Smad-2 and -3, ERK 1/2,
c-Jun or p38 MAPK as shown. Cells were incubated with siRNA for 24 h before dif-
ferentiation for 24 h with PMA and subsequently being either left untreated (UT)
or stimulated with 30 ng/ml TGF-� for 24 h. Total RNA and protein was then puri-
fied. (A) siRNA-mediated knockdown was verified by Western blot analysis using
antisera against total Smad-2 and -3, ERK 1/2, c-Jun, p38 MAPK (p38) and �-actin,
as indicated. The image shown is representative of three independent experiments.
The histogram shows relative expression (mean ± SD) of each protein normalised
to �-actin, as determined by densitometric analysis, with the values from GAPDH
siRNA-transfected cells being arbitrarily assigned as 1 (*P < 0.05, **P < 0.01). (B) Total

transfection of ADAMTS-4 promoter deletion constructs demon-
hange in activity relative to the equivalent untreated sample (arbitrarily assigned
s 1) and is representative of three independent experiments (NS, not significant,
P < 0.05, **P < 0.01, ***P < 0.001).

ary proteoglycan component of the vasculature, is likely to be
entral to any hypothesised role in the disease (Salter et al., 2010;

orley et al., 2003). The production and secretion of proteases
y smooth muscle cells and by macrophages is a key regulatory
ction during atherosclerosis (Bui et al., 2009). The vulnerability of
he atherosclerotic plaque is determined by the balance between
he synthesis and the degradation of the ECM. This degradation is
chieved through the action of MMPs and other proteases such as
he ADAMTS proteases, which cleave the collagens and proteogly-
ans of the ECM (Galis and Khatri, 2002; Newby, 2007).

We demonstrate for the first time that ADAMTS-4 mRNA and
rotein expression is inhibited by the anti-atherogenic cytokine
GF-� in THP-1 macrophages and HMDMs (Figs. 1 and 2). The
esponse is also conserved in hepatocytes (Fig. 3). This novel
nding is consistent with the work of Wågsäter et al. (2008) who

ound that ADAMTS-4 mRNA expression can be up-regulated
y the pro-inflammatory cytokines IFN-� and TNF-� in THP-1

acrophages. In addition to this, TGF-� has been demonstrated

o inhibit the expression of a number of MMPs, including MMP-1
White et al., 2000), MMP-3 (Kerr et al., 1990) and MMP-9 (Ogawa
t al., 2004). In our studies, down-regulation of ADAMTS-4 mRNA
RNA was subjected to RT-qPCR and the ADAMTS-4 expression was normalised to
the control gene RPL13A and presented as the fold change relative to the untreated
sample for each siRNA, which was arbitrarily assigned as 1. The data shown is
representative of three independent experiments (NS, not significant, **P < 0.01).

expression by TGF-� was observed within 1 h and continued up to
24 h of treatment with this cytokine (Fig. 1).

In addition to characterising the response of ADAMTS-4 to TGF-
�, we also identify the regulatory region of the ADAMTS-4 promoter
involved in this response. We show here that ADAMTS-4 promoter
activity was suppressed by TGF-� treatment (Fig. 4). Transient
strates an involvement of the −100/+10 region in the negative
regulation of the ADAMTS-4 promoter by TGF-� (Fig. 4). Of the
ADAMTS proteases, only the promoters of ADAMTS-4 and ADAMTS-
5 have been characterised (Mizui et al., 2000; Thirunavukkarasu
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ig. 6. The effect of siRNA-mediated knockdown on the constitutive expression of
elative constitutive mRNA expression of ADAMTS-4 (i.e. in the absence of TGF-�)
APDH-transfected sample (assigned as 1) from three independent experiments, is

t al., 2006, 2007). Mizui et al. (2000) have identified the −383 to
10 sequence of the ADAMTS-4 promoter as the region required for
ull promoter activity. In addition, analysis of the promoter activity
f various deletion constructs suggested that the region between
726 and −384 was likely to contain silencer elements (Mizui et al.,
000).

We also show that the Smad pathway is required in the action of
GF-� on ADAMTS-4 expression. The Smads are the classical trans-
ucers of the TGF-� signal (Ross and Hill, 2008) and Smad-2, -3
nd -4 are expressed in macrophages and foam cells of atheroscle-
otic lesions (Kalinina et al., 2004). Following siRNA-mediated
nockdown of Smad-2 plus -3, the TGF-�-mediated inhibition of
DAMTS-4 mRNA expression was no longer significant (Fig. 5).
mads have been implicated in the repression of a number of
enes by TGF-� including monocyte chemoattractant protein-1,
nvolved in the recruitment of monocytes in inflammatory vascular
isease states (Feinberg et al., 2004), and the scavenger receptor
D36, which has been shown to be regulated by a reduction in
eroxisome proliferator-activated receptor-� activity mediated by
GF-� through Smad-3 and the activator protein-1 (AP-1) family
Fu et al., 2003). In addition, our data suggest an involvement of

APKs as the TGF-�-mediated inhibition of ADAMTS-4 was no
onger significant following siRNA-mediated knockdown of p38

APK and c-Jun (a key downstream target for JNK pathway) (Fig. 5).
n contrast, the ERK pathway was not involved (Fig. 5). TGF-� is
ble to activate the MAPK pathways (Ten Dijke and Hill, 2004)
ut whether this acts independently or in conjunction with the
lassical Smad pathway is unclear. Smads have been shown to
nteract with the c-Jun and c-fos proteins, components of the AP-

transcription factor complex (Verrecchia and Mauviel, 2002),
nd the TGF-�-mediated inhibition of MMP-1 expression has been
hown to be dependent on the interaction between Smads and
he AP-1 site present within the MMP-1 promoter (Hall et al.,
003).

Several cytokines are present in atherosclerotic lesions and
he action of combinations of cytokines on gene expression and
ellular changes is likely to be more profound than that pro-
uced by a single cytokine. For example, our previous studies have
hown that there is a synergism between IFN-� and TNF-� in

he regulation of macrophage lipoprotein lipase gene expression
Tengku-Muhammad et al., 1998). On the other hand, IFN-� antag-
nises the action of TGF-� (Ulloa et al., 1999). Future studies should
herefore investigate the action of combinations of cytokines on
DAMTS-4 expression.
TS-4 in THP-1 macrophages. The experiments were carried out as Fig. 5 and the
alised to the control gene RPL13A and presented as a fold change relative to the

n (NS, not significant, *P < 0.05).

In conclusion, we have shown that ADAMTS-4 is negatively
regulated by TGF-� in human macrophages and that this regu-
lation requires Smads, p38 MAPK and c-Jun. We have identified
the minimal regulatory promoter region involved in this response.
These findings are likely to be important for atherosclerosis given
the potent anti-atherogenic action of TGF-�, as demonstrated by
numerous studies in vitro and in vivo, and the demonstrated crucial
role of proteases in the regulation of plaque stability. It is therefore
essential that the role of ADAMTS-4 in the regulation of atheroscle-
rosis in mouse model systems is determined.
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