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A Note on Least-Squares Estimates from 
Likelihood Ratios* 

THOMAS I~kILATH 

Department of Electrical Engineering, Stanford University, 
Stanford, California 94805 

In  another paper we have shown that the likelihood ratio for 
detecting the presence of a finite-variance signal in additive white 
Gaussian noise can be expressed in terms of the causal least-squares 
estimate of the signal. In this paper a converse relation is derived. 
Comparisons are made with some related but nontrivially different 
results in the discrete-time case that were recently discussed in this 
journal by Esposito. 

1. INTRODUCTION 

This brief note complements a recent article [1] by Esposito that ob- 
tains a relation between likelihood ratios and least-squares estimates 
for discrete-time processes. The formula in [1], which was motivated by 
a result [2] of the present author, is here shown to have a nontrivially 
different analog for continuous-time processes. A detailed comparison 
is made in Section 4. The result in [2] is that the likelihood ratio for the 
detection of a random signal in additive white Gaussian noise can be 
expressed in terms of the causal least-squares estimate of the signal. 
Here we show that conversely the causal least-squares estimate can be 
obtained from the likelihood ratio. The case of a narrowband random- 
phase signal is worked out as an example. 

We first describe the major result of [2]. Consider the two hypotheses 

H1 : ~(t) = z(t) + ~(t)~ 
Ho : 2(t) w(t) ~' 0 -- t -< T (1) 

where ¢ ( .  ) is zero-mean white Gaussian noise with covariance function 

w(t )w(~)  = ~( t  - 8) ( 2 )  
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[In other words, w(. ) is the so-called Wiener process.] The signal process 
z(- ) is a random process, not necessarily Gaussian, that has integrable 
variance over [0, T] and that is independent of w(. ). Then the likeli- 
hood ratio c~n be written [2] 

fT 1 I t) dt (3) L ( T )  = exp To 2(tl t) dx(t) -- 

where 

~(t 1 t) = theleast-squares estimate of z(t) given x(r),  0 =< r -<_ t, 
(4) 

and assuming H1 is true. 

and f denotes a special kind of stochastic integral known as the It6 in- 
tegral [3]. The It5 integral has some special properties that derive 
basically from the so-called L~vy property that the increments dw(t) of 

Wiener process are of the order of ~¢/~, and not O(dt) ~ they would 
be for a smoother random process. This means that second-order 
terms (dw) 2 cannot be neglected in the It6 stochastic calculus. This 
will be brought out strikingly by the It5 differential rule, which we shall 
briefly describe here since it will be needed below. In fact, the major 
result of this note is that, if the likelihood ratio L(T)  is known, then 
~(t I t) can be obtained from it by the formula 

dL(t) 
2(t l t) - L(t) dx(t) (5) 

where d(. ) denotes the Itb differential. 

2. THE ITO DIFFERENTIAL RULE 

We say {x(t), 0 = t < T} is an ItO process if it can be written in the 
form 

~ t f t  x(t) = a(s) ds + ]o b(s) dw(s), 0 <= t <= T (6) 

where a(.  ) and b(. ) are stochastic processes that depend at most on 
past values of w(. ) and that satisfy 

T ~ ,  for fo a T ~  ds < ds < ~ (7) l b(s) P 

It  is usual to write (6) symbolically in differential form as 

dx(t) = a(t) dt + b(t) dw(t) (8) 
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Note t h a t  in this notation d( .  ) and F ( "  ) are inverse operations, as in 
the usual calculus. 

Now suppose f (u,  t) is a function of two variables with continuous 
second-order partial derivatives in u and t, which we shall denote by 
f t ,  fu ,  f ~ ,  etc. Then It6 's  differential rule [3], p. 24, states that  f (x  (t), t), 
where x ( t ) i s  the I t  6 process (6) will also be an It6 process defined by 

df(x, t) = fi(x,  t )d t  + f ~ ( x ,  t )dx  + ½f~(x, t)b2(t) dt (9) 

This formula c~n be heuristically- obtained by a formal :Taylor expan- 
sion of f ( x  -I- dx, t q- dt) and use of the symbolic relations 

dt dw = 0 = dx dw ; ( dw ) 2 = dt 

We note that  it is the L4vy property of w(. ) that  makes (9)different 
from the  ordinat\¥ formula :for the differential in that.  (9) contains the 
Second-order term ½fx~(xi t)b:(t) tit. Of course, if b(t) ~ O, then the 
I t 6  formula  coincides ~dth the  usual one. 

There will sometimes be a need to consider vector I t6 processes 

dx(t) = a(t) dt -t- B(t) dw(t) (10) ! 

where a, and xa re  vectors, B is a matrix, and w is a vector of independ- 
ent Wiener processes. Let f (u ,  t) be a scalar function of u and t and let 
f~ denote the vector of first-partial derivatives and f ~  the matrix of 
second-partials. Then the It6 rule is 

dr(x, t) = ft(x, t) dt q- f~'(x, t)[a(t) dt q- B(t) dw(t)] 

' f -5 ½ tr [B (~) ~(x, t)B(t)] at (11) 

where the prime denotes transpose. 

EXAMPLE 

Let 

Then 

f (L ,  t) = l n L ( t ) ,  where dL(t) = a(t) dt + b(t) dw(t) (12) 

d In L(t)  - dL(t) 1 1 b2(t) dt (13) 
L(t) 2 L~(t) 

or equivalently 

~" dL(t) dt In F L(T)-]  1 r b~(t) 

which shows well the difference from the usual integration rules. 

(14) 
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3. THE ESTIMATION FORI~tULA 

If by some means we have been able to directly determine the likeli- 
hood ratio L (T) for the problem (1), then the formula (3) suggests that  
we should be able to determine 2(f I t) from it. This is true, because direct 
application of the I t6  differentiM rule to the formula (3) yields 

Therefore 

dL(t) = L(t).~(t l t ) .dz(t) 

~(t i O --- cm(t) i (15) 
L(t) dx(t) 

where elL(t) and dx(~) aze the it& differentials of L(~) and x(t), re- 

speetiveiy. We stress that (cf. Eq. (14)) in the it5 calculus dL(t)/L(t) 
is not equal to d ]n L(t ) .  

AN Exa_~ PLS 

The formula (t5) can be applied in any problem where L(t) can be 
easily determined. A rather trivial case is where z(t) = c~m(t), with 
re(t) a known signal but e a Gaussian random variable. Here we shall 
treat the somewhat less obvious ease of a "narrowband" signal of random 
phase: we consider 

H~ : ~2(t) = A(t) cos (o~0t q- 0) + w(t), H,  : ¢(t) = @(t) (15) 

where A ( . )  and c~0 are known but 0 is a random variable with a uIfiform 
distribution over [-~r, ~r]. We ~Jsh to find the least squares estimate of 
the nonGaussian process z(. ) by use of the formula (5). The likelihood 
ratio for the problem (15) is well known (see e.g., Helstrom [4], See. 
VI.2) to be 

L(t) -- fo(V(t))  exp -- ~ A2(T) dT (16) 

where io(" ) is the modified ]3essel function and 

]2 t [Sin ~Cos ~0 :} ~.,o dx(,) ~/'(~) = v f ( t )  + <~(0 ,  v{:} (t) = A(~) 

To apply our formula (5) we first calculate (cf., Eq. (14)) 

dC(t) _ dIo(V(t)) 1 A2(f) dt ( t7)  
L(t) io(V(t)) 4 

Furthermore, after some a!gebra and use of the narrowband assumption, 
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viz., that "terms in 2~o" can be dropped, we obtain 

dr(t)  = Vc(t) dV, 4- V~(t) dV.(t) 1 A~(t) dt 
v ( o  + ~ 

1 AS(t) 
= A(t )  Cos(wo t + ¢(t))  dx(t) "k ~ V(t--~ dr, 

where 

Then (dV(t)) ~ --- (½)A~(t) dt 4-o(dt) and 

dlo 1 d'Io 1A,( t )  d t 
d h C V ( t )  ) = -dy d V  + -~ . ~ • -2 

= I~(V).A(t) .Cos(~ot  ÷ ¢(t))  dx ÷ 1 A2(t___) (18) 
4 V(t) 

dI17 
• [ I I (V)  + V-dv~dt.  

Finally, by using the Bessel function identity 

dI1 = VI~(V) I i (V)  + V- fV  

and combining (18) and (17) we obtain 

~(tl t) dL(t) 1 I~(V) 
= L(t) dx(t) = Io(V-----) A(t)  Cos [~0 t -k ¢(t)] (19) 

This formula can be directly verified, e.g., by use of Bayes' rule. 

4. THE DISCRETE-TIME CASE 

A discussion of the likelihood ratio formuJa (1) with R. Esposito led 
him to develop [2] a relation in the discrete-time case between the likeli- 
hood ratio and the noncausal estimate of a random signal in Gaussian 
noise. Thus consider the hypotheses 

H I : x  = z + n ,  H o : x  = n  (20) 

where n is a (zero-mean) Gaussian vector with identity covariance 
matrix and z is an independent random vector with density function 
p,(.  ), say. 
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Then the likelihood ratio is readily seen to be 

A(x) = f e x p  Iu r x -  ½u 'u}  p~(u) du (21) 

The least-squares estimate of z given the whole vector z + n = x is well 
known to be the conditional mean. 

f u exp x -- 1/2 x} {u' U r p~(u) du 
= ( 2 2 )  

f x -- 1/2 u} expIu' U l p~(u) du 

The expressions in (21) and (22) seem closely related; in fact, by direct 
differentiation of A(x) with respect to x we have 

Vx (x) = f u e x p  { u ' x - - ½ u ' u }  p~(u) du = z A ( x )  (23) 
d 

so that 

_ V~(x)  _ Vx In A ( x )  ( 2 3 )  A(x) 
This is Esposito's relation, which he derived somewhat less directly. 
There is some similarity between (23) and our continuous-time formula 
(5). However, note that in discrete time there is no It5 rule and V~L/L 
can be written Vx In L. But the important difference is that there is no 
discrete-time formula for the L.R. corresponding to our general con- 
tinuous-time formula (4). From (23) all we can conclude is that 

L(x) = exp [i' dx + constant] (24) 

The formula (24) uses noncausal estimates and is not as explicit as (4) ; 
moreover, unless an analytical expression is available for ~, so that the 
integral can be evaluated analytically, it does not seem possible to imple- 
ment (24) for any given observation x. On the other hand, in (4), the 
integrations are with respect to time and moreover (4) yields a receiver 
structure into which suboptimum estimates for z(. ) can be easily intro- 
duced. However, it shonld be of value to study the relationships between 
the discrete-time and continuous-time analyses in more detail and in 
particular to see how to carry one over into the other. 

In conclusion we note that the above results can be extended to the 
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case of colored additive Gaussian noise by use of a noise-white_~fing filter; 
the results can also be easily extended to the vector case. 

liECmVED: AUgUSt 7, 1968; revised October I0, 1968 
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