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SUMMARY

The pore site in microtubules has been studied with
the use of Hexaflutax, a fluorescent probe derived
from paclitaxel. The compound is active in cells
with similar effects to paclitaxel, indicating that the
pore may be a target to microtubule stabilizing
agents. While other taxanes bind microtubules in
a monophasic way, thus indicating a single type of
sites, Hexaflutax association is biphasic. Analysis
of the phases indicates that two different binding
sites are detected, reflecting two different modes of
binding, which could arise from different arrange-
ments of the taxane or fluorescein moieties in the
pore. Association of the 4-4-20 antifluorescein
monoclonal antibody-Hexaflutax complex to micro-
tubules remains biphasic, thus indicating that the
two phases observed arise from two different poses
of the taxane moiety.
INTRODUCTION

The clinical success of paclitaxel and docetaxel has triggered

the search for compounds with a similar mechanism of action

but without their inconveniences (low solubility and develop-

ment of resistances). This has resulted in the discovery of

many compounds with very different chemical structures, epo-

thilones, discodermolides, dyctiostatins, eleutherobin, sarco-

dyctins, cyclostreptin, laulimalide, and peloruside. These

compounds bind to at least three different binding sites. Lauli-

malide and peloruside reversibly compete among them for

a binding site whose location is yet unknown (Pryor et al.,

2002; Gaitanos et al., 2004) but not with taxanes, epothilones,

discodermolides, dyctiostatins, and eleutherobin, which revers-

ibly compete among them for binding to microtubules (Buey

et al., 2005). It has been proven that taxanes and epothilones

bind to a site in the luminal face of microtubules (Nogales

et al., 1998; Nettles et al., 2004), whereas cyclostreptin, which

irreversibly competes with taxane and ‘‘taxane binding site’’

drugs, shares its binding between two locations, the same

luminal binding site described for taxanes and epothilones and

a site in the external surface of microtubules located in the
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type I pore (Diaz et al., 2003; Buey et al., 2007), making binding

to both sites mutually exclusive.

Taxanes can not directly bind to the internal luminal site;

however, they bind very fast to preformed microtubules (Diaz

et al., 2003, 2000), thus they have to transiently bind to an easily

accessible binding site in their way to the luminal site. Since

binding of cyclostreptin to microtubules completely inhibits

paclitaxel binding (Buey et al., 2007), the external site of cyclo-

streptin can be assigned as the initial external binding site for

taxanes.

It is not yet known to which one of the sites discodermolides,

dyctiostatins, eleutherobin, and sarcodyctins bind: only to the

luminal, only to the external, or to both. However, it is easy to

observe NMR TR-Noesy of discodermolide and dyctiostatin

bound to microtubules (Canales et al., 2008), which indicates

a fast kinetic rate of the release step, pointing toward necessary

binding to a site different from the slow dissociating luminal

site, which could be the pore site. It is possible as well to observe

TR-Noesy of docetaxel bound to microtubules (Matesanz et al.,

2008), which suggests that taxane dissociation proceeds

similarly.

Although it is relatively straightforward to measure and model

the interactions of the taxanes and taxane-site binding

compounds with the inner luminal binding site (Matesanz et al.,

2008; Snyder et al., 2001), almost nothing is known about the

nature of the external binding site, just its location in the type I

pore and one of the amino acids (Thr220) that is labeled by cyclo-

streptin on its way to the inner site (Buey et al., 2007). The reason

for this is that the equilibrium methods normally used to charac-

terize MSA-microtubule interactions (Buey et al., 2005; Li et al.,

2000) cannot provide information about the transient binding to

the external site or easily distinguish between binding to the

external or the luminal site.

The possible conformations of the external binding site have

been recently studied using molecular modeling techniques.

The models propose different interactions: in the model of

Freedman et al. (2009) the binding site involves both protofila-

ments of the pore, with the taxane core bound to both b subunits

and the side chain bound to the a subunit involved. In the models

of Magnani et al. (2009) only one protofilament is involved in the

interaction, with the taxane core bound to the b subunit and the

side chain bound the a subunit.

A feasible way to study the interactions of ligands with tran-

sient sites like the microtubule pore is the kinetic approach
43–253, March 26, 2010 ª2010 Elsevier Ltd All rights reserved 243

https://core.ac.uk/display/82758043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:fer@cib.csic.es


Figure 1. Chemical Structures of the Compounds Used and Effect on Cellular Microtubules

(A–H) Effect of Hexaflutax as compared to Flutax1 and paclitaxel on microtubule network (A, C, E, and G) and nucleus morphology (B, D, F, and H). A549 cells were

incubated for 24 hr with DMSO (A and B), 200 nM paclitaxel, 1 mM Flutax-1 (E and F), or 5 mM Hexaflutax (G and H). Microtubules were immunostained with

a-tubulin monoclonal antibodies and DNA was stained with Hoechst 33342. Insets are mitotic spindles from the same preparation. The scale bar represents

10 mm. All panels and insets have the same magnification.
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(Diaz et al., 2003, 2000). The kinetics of binding and dissociation

of ligands to microtubules should provide information about the

interaction of the compound with the pore site. In this work the

interaction of taxanes with microtubules has been characterized

using two probes labeled at different parts of the molecule

(Figure 1), C7 in the north face and the C13 side chain, which

has a large contribution to the energy of binding (Matesanz

et al., 2008). The first probe is Hexaflutax (Diaz et al., 2005),

a fluorescent taxane derivative tailored to have a separation

between the fluorescein and the taxane moieties allowing

binding of a monoclonal antibody [4-4-20 (Kranz and Voss,

1981)] directed against the fluorescein moiety, as long as the tax-

ane moiety is bound to an external site, but not if the taxane is

bound to the internal site. It has been proven that this compound

either bound or not to the antibody remains at the external site

when bound to microtubules (Diaz et al., 2005). The other

compound studied was 30-N-m-aminobenzamido-30-N-deben-

zamidopaclitaxel (N-AB-PT) (Li et al., 2000), a taxane derivative

that carries a fluorescent aminobenzamido group at the C13

side chain. The results indicate that both fluorescent taxanes

bind to the pore site with an affinity of the order of micromolar.

While N-AB-PT binds in a single type of site similar to C7 fluores-

cent-labeled paclitaxel analogs, i.e., Flutax-1 and Flutax-2, the

presence of the long aliphatic chain in Hexaflutax allows

a second possibility of binding of the compounds to this site,

which results in the observation of a biphasic binding kinetics.
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RESULTS

Paclitaxel-like Cellular Effects of Hexaflutax
In previous work (Diaz et al., 2005) we had found that Hexaflutax

binds to the external site of microtubules. Thus we wanted to

characterize its cellular effects in tumor cells to detect any

possible differential effect between binding to the pore and the

luminal sites. First, cytotoxicity in A2780 and A2780AD as

compared to paclitaxel and the two other fluorescent taxanes,

Flutax-1 and Flutax-2, was determined. Hexaflutax is less active

with IC50 in A2780 cells of 2.3 mM as compared with the other

fluorescein-labeled compounds, Flutax-1 and -2 (IC50 0.26 mM

and 0.8 mM, respectively), all fluorescent taxanes being signifi-

cantly less active than paclitaxel (IC50 1.1 nM). The three fluores-

cent taxanes are inactive against P-glycoprotein-overexpressing

A2780AD cells at the highest concentration (20 mM) tested (IC50

paclitaxel 1.1 mM).

We also studied the effect of Hexaflutax on cellular microtu-

bules. Treatment of A549 cells for 24 hr with either paclitaxel

(200 nM), Flutax-1 (1 mM), or Hexaflutax (5 mM) gave rise to

the characteristic cytoplasmic microtubule bundles as well

as to aberrant mitosis (monopolar spindles) and to micro-

nucleated cells (Figure 1), as expected from the microtubule-

stabilizing agent activity observed for the ligand. Hexaflutax is

able to in vitro induce tubulin assembly in conditions in which

tubulin itself is unable to assemble, i.e., in 10 mM phosphate
r Ltd All rights reserved



Figure 2. Effect of Taxanes in Morphology and Cell Cycle of A549 Cells

(A–D) Morphology of A549 cells after treatment with paclitaxel, Flutax-1, and Hexaflutax. A549 cells were incubated for 20 hr with either DMSO (A), 20 nM Taxol

(B), 2 mM Flutax-1 (C), and 4 mM Hexaflutax (D).

(E–L) Effect on A549 and A2780 cell cycle of Hexaflutax as compared with Taxol and Flutax-1. A549 cells were incubated for 20 hr with DMSO (E), 20 nM Taxol (F),

2 mM Flutax-1 (G), and 4 mM Hexaflutax (H) and A2780 cells with DMSO (I), 30 nM Taxol (J), 2 mM Flutax-1 (K), and 10 mM Hexaflutax (L).
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buffer, 1 mM EDTA, 6 mM MgCl2, and 0.1 mM GTP (pH 7.0)

(Evangelio, 1999).

We next studied whether Hexaflutax was able to accumulate

cells in the G2+M phase of the cell cycle as paclitaxel and the
Chemistry & Biology 17, 2
other two fluorescent derivatives do. A549 lung carcinoma cells

as well as A2780 ovarian carcinoma cells were incubated for

20 hr in the presence of these three drugs and their cell

morphology was examined by DIC microscopy (Figures 2A–2D)
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before processing cells for the cell cycle experiment. Most A549-

treated cells and A2780 cells (data not shown) were rounded

mitotic cells as compared to the control cells that were spread

epithelial-like adherent cells with few mitotic cells. 20 nM Taxol,

2 mM Flutax-1, and 4 mM Hexaflutax and 30 nM Taxol, 2 mM

Flutax-1, and 10 mM Hexaflutax accumulate cells in the G2+M

phase of the cell cycle in both A549 and A2780 cells, respectively

(Figures 2E–2L), demonstrating that the binding of taxanes to

the pore and to the lumenal sites produce the same biological

effect in cells.

Equilibrium of Binding of Fluorescent Taxoids
to Stabilized Microtubules
The binding constant of Hexaflutax to the taxoid site in cross-

linked microtubules was measured by the increase of fluores-

cence anisotropy upon binding (rfree 0.06 and rbound 0.18)

(Figure 3A and Table 1) and by centrifugation (data not

shown). The results indicate 1:1 stoichiometry and a micromolar

order affinity K25�C of 1.13 ± 0.01 3 106 M�1 (anisotropy

measurements) and K25�C of 2.1 ± 0.3 3 106 M�1 (centrifugation

measurement).

The binding is exothermic with both favorable enthalpic

(DHapp = �25 ± 2 kJ mol�1) and entropic (DSapp = +31 ± 7

J mol�1 K�1) contributions to the free energy of binding

(DGapp 35�C = �34.8 ± 0.5 kJ mol�1) (from data in Table 1).

Binding of N-AB-PT to crosslinked microtubules indicates

a single site with an equilibrium binding constant of K25�C,

5.0 ± 0.6 3 106 M�1, independently of the method used (data

not shown).

Kinetics of Binding and Dissociation of Fluorescence
to the Taxoid Site
Binding of Hexaflutax to the taxoid site is accompanied by a 40%

decrease in the intensity of the fluorescence of the probe (Diaz

et al., 2005), thus the kinetics of binding (Figures 3B–3D) and

dissociation (Figure 3E; see Figure S1 available online) was

studied using stop-flow techniques.

Opposite to what has been previously observed for the closely

related fluorescent taxoids Flutax-1 and Flutax-2, the kinetics of

association of Hexaflutax to the taxoid site were inhomogeneous

(Figure 3B) [c2 (1 phase) = 113.17; c2 (2 phases) = 17.01; c2

(3 phases) = 17.00]. The kinetics of association shows a

majoritarily fast and a minoritarily slow phase (Figure 3C) whose

amplitude decreases with the concentration of sites to become

negligible at the higher concentrations of sites studied (Fig-

ure 3D). The values of the observed kinetic rate constants are

linearly dependent on the observable range (note that the slow

phase disappears at high binding site concentration) of the total

concentration of sites, which indicates pseudofirst order bimo-

lecular reactions (Table 1 and Figure 3C).

The observation of two different kinetic constants (two kinetic

phases) for the process can be due to two different reasons.

Either we are observing two simultaneous reactions with

different kinetic rates or two subsequent reactions. In the first

case, the two simultaneous reactions are bimolecular reactions,

which is reflected in the fact that both kinetic rates observed are

linearly dependent on the site concentration. In the second, one

of the reactions is a monomolecular reaction and one of the

kinetic rates observed will follow a non-linear dependence on
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the site concentration (Gutfreund, 1995). The fact that two bimo-

lecular reactions are observed in this case indicates that two

simultaneous binding reactions of Hexaflutax to microtubules

are observed.

The kinetics of dissociation of Hexaflutax from the site are also

inhomogeneous, showing two kinetic rates similar in amplitude

(Figure 3E and Table 1; Figure S1).

The fact that the slow phase of the association kinetics

disappears at high site concentrations indicates that the inhomo-

genity arises from two different classes of binding sites, some

easily accessible and others more difficult to access. The

proportion between amplitudes of the slow and the fast phases

of the dissociation kinetics indicates that the proportion of both

sites is equal.

The thermodynamic analysis of the interaction shows that

both putative binding sites would have very similar thermody-

namic behavior (Table 1) with similar activation energies kinetic

for the association and dissociation, the kinetically determined

binding enthalpy (DHfast = �33 ± 9 kJ mol�1; DHslow = �38 ±

9 kJ mol�1) being close to the value determined from equilibrium

measurements (DHapp = �25 ± 2 kJ mol�1).

Although it is difficult to determine the affinities of both binding

sites by equilibrium binding assays, the value can be deduced

from kinetic measurements of dissociation in condition of excess

of binding sites, since the compound will preferentially bind to

the sites with higher affinity. The kinetics of dissociation of

3 mM 7-Hexaflutax from 10 mM binding sites have been

measured at 25�C and 35�C (Table 2). The ratio between the

amplitudes of the fast and the slow phase increases from 1:1

to 2:1, implying that fast binding site have a higher affinity. The

binding affinities can be calculated from the ratio of the phases

and the apparent equilibrium binding constant (Table 1) and

are in very good agreement with those that can be calculated

from the kinetic binding data (Table 1), thus supporting the one

step model of binding to two overlapping binding sites and the

absence of a second binding step.

The kinetics of association and dissociation of Hexaflutax

were followed using fluorescence anisotropy measurements

(Figure S2) to detect a second step of the reaction without

change of fluorescence intensity as is observed for Flutax-1

and Flutax-2 (Diaz et al., 2000). Although the noise of the signal

does not allow distinguishing between monophasic and biphasic

kinetics, the observed kinetic rate constant is very similar to that

simultaneously measured by fluorescence intensity, thus indi-

cating that the same process is observed using both techniques,

as would be expected if the compound is not internalized toward

the inner site.

The kinetics of binding of another fluorescent taxane deriva-

tive, 3-N0-aminobenzoyl paclitaxel (Li et al., 2000), in which the

fluorescence probe is the benzoyl side chain modified by

the introduction of an amine group, were also used to explore

the structure of the paclitaxel external binding site. Since the

compound has been reported to have two different kinds of

binding sites depending on the nucleotide bound to the

exchangeable site (Li et al., 2000), all experiments were done

with crosslinked stabilized microtubules that contain GDP in

the exchangeable site.

Contrary to binding of 7-Hexaflutax and similarly to Flutax-1

and Flutax-2, N-AB-PT shows a single type of binding site.
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Figure 3. Binding of Hexaflutax to Microtubules
(A) Titration curve of 100 nM Hexaflutax with taxoid sites in stabilized microtubules at 35�C. Solid line, fit of the data to a single binding site model.

(B) Kinetics of association of Hexaflutax to its site in microtubules at 35�C. In the stopped flow device a solution containing 200 nM Hexaflutax was mixed with

10 mM taxoid sites, final concentrations. The curve (black line) is fitted either to a single exponential (red line) or to a double exponential (green line). Inset residuals

of the fitting to a single (red line) and a double exponential (green line).

(C) Dependence on the concentration of taxoid sites of the two observed rate constants for Hexaflutax binding at 35�C for the binding reaction.

(D) Dependence on the concentration of taxoid sites of the amplitude at 35�C of the two observed kinetic phases of the binding reaction.

(E) Kinetics of dissociation of Hexaflutax from its site in microtubules at 35�C. In the stopped flow device a solution containing 4 mM Hexaflutax bound to 5 mM

taxoid sites was mixed with 100 mM docetaxel, final concentrations. The curve (black line) is fitted either to a single exponential (red line) or to a double exponential

(green line). Inset residuals of the fitting to a single (red line) and a double exponential (green line). Error bars are standard errors of the measurement.
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Although the observed kinetics are biphasic as was observed for

Flutax-1 binding to MAP-containing microtubules (Diaz et al.,

2003), the second kinetic phase has a non-linear concentration

dependence with the site concentration (Figures 4A and 4B). A

biphasic kinetics with a kinetic rate linearly dependent on the

site concentration and a second kinetic rate with a non-linear
Chemistry & Biology 17, 2
dependence as described, can be explained by a scheme of

coupled reactions with comparable rate constants (Strehlow

and Knoche, 1977; Diaz et al., 1997). The first reaction can be as-

signed to the bimolecular binding of the ligand to the site, which

has a kinetic rate constant at 35�C of 3.9 ± 0.7 3 105 M�1 s�1

while the second one should be the monomolecular
43–253, March 26, 2010 ª2010 Elsevier Ltd All rights reserved 247



Table 1. Equilibrium, Kinetic, and Thermodynamic Parameters of Binding of Hexaflutax to Its Site in Microtubules

Equilibrium Constants 25�C 27�C 30�C 32�C 35�C 37�C 40�C 42�C

K (3105 M�1)a 11.3 ± 0.1 9.6 ± 1.2 9.2 ± 1.2 8.4 ± 1.3 7.2 ± 1.1 7.2 ± 1.3 6.4 ± 1.3 6.6 ± 1.3

K (3105 M�1)b 20.6 ± 2.2 ND 19.5 ± 2.5 ND 11.9 ± 0.6 14.0 ± 1.7 ND 11.0 ± 0.9

K (3105 M�1)c 6.5 ± 3.2 ND 6.1 ± 4.0 ND 3.4 ± 2.0 3.8 ± 1.7 ND 3.1 ± 1.4

Kinetic Constants 25�C 30�C 35�C 37�C 42�C

Association fast

k+ (3105 M�1 s�1)

4.12 ± 0.28 6.35 ± 0.75 7.35 ± 0.30 10.37 ± 1.10 13.90 ± 1.00

Association slow

k+ (3105 M�1 s�1)

0.36 ± 0.15 0.51 ± 0.23 0.59 ± 0.29 0.75 ± 0.32 1.01 ± 0.43

Dissociation fast

k�1 (310�1 s�1)

2.00 ± 0.07 3.25 ± 0.03 6.20 ± 0.08 7.39 ± 0.08 12.60 ± 0.09

Dissociation fast

Amplitude %

49 ± 3 52 ± 1 52 ± 1 56 ± 1 61 ± 1

Dissociation slow

k�1 (310�1 s�1)

0.55 ± 0.03 0.83 ± 0.1 1.69 ± 0.08 1.97 ± 0.03 3.25 ± 0.03

Dissociation slow

Amplitude

51 ± 3 48 ± 1 48 ± 1 44 ± 1 38 ± 1

Eak+fast = 55 ± 6 kJ mol�1; Eak+slow = 46 ± 4 kJ mol�1; Eak�fast = 86 ± 3 kJ mol�1; Eak�slow = 84 ± 5 kJ mol�1; DHfast = �33 ± 9 kJ mol�1; DHslow =

�38 ± 9 kJ mol�1; DHapp = �25 ± 2 kJ mol�1 (from equilibrium measurements). Error bars are standard errors of the measurement.
a Data from equilibrium measurements.
b Data from kinetic measurements, fast phase.
c Data from kinetic measurements, slow phase.
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rearrangement of the complex formed with a rate constant of

3.0 s�1. This two step reaction is similar to that observed for

Flutax-1 and Flutax-2 binding to microtubules (Diaz et al.,

2000) and different to the one observed for Hexaflutax in

this work.

Kinetics of Association and Dissociation
of 4-4-20-Bound Hexaflutax
Hexaflutax, 4-4-20 antibody, and microtubules form a ternary

complex with the taxane moiety of Hexaflutax bound to an

external exposed site (Diaz et al., 2000) and the fluorescein

moiety quenched by the antibody. The kinetics of binding and

dissociation of the binary 4-4-20-Hexaflutax complex to its site

in the microtubules have been measured at 35�C and compared

with Hexaflutax kinetics.

The presence of the 4-4-20 antibody bound to Hexaflutax

does not modify the existence of two phases for the binding

reaction (Figure 4C) although it slows down both the two

observed phases of association and dissociation (k+fast 35�C

Hexaflutax 7.35 ± 0.30 3 105 M�1 s�1, k+fast 35�C 4-4-20-Hex-
Table 2. Kinetics Constants of Dissociation of Hexaflutax

Complex from Crosslinked Microtubules in Conditions of Excess

of Binding Sites

25�C 35�C

Fast phase k�1 (310�1 s�1) 2.6 ± 0.3 5.1 ± 0.2

Fast phase amplitude 65 ± 3 67 ± 2

Slow phase k�1 (310�1 s�1) 0.60 ± 0.05 1.1 ± 0.1

Slow phase amplitude 35 ± 4 32 ± 2

Kbfast
a (M�1) 25 ± 3 3 105 11 ± 2 3 105

Kbslow
a (M�1) 7.1 ± 1.2 3 105 4.3 ± 0.8 3 105

a Calculated from the ratio of phases.
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aflutax complex 0.67 ± 0.16 3 105 M�1 s�1, k+slow 35�C Hexa-

flutax 0.59 ± 0.30 3 105 M�1 s�1, k+slow 35�C 4-4-20-Hexaflutax

complex 0.16 ± 0.02 3 105 M�1 s�1). It can be observed that the

ratio between the two kinetic phases decreases more slowly

than in the case of Hexaflutax, which indicates that the difference

in accessibility of the two binding sites should be smaller.

The dissociation kinetics of the 4-4-20-Hexaflutax-microtu-

bule complex are biphasic with approximately equal fast and

slow phases (51 ± 1% fast phase and 49 ± 1% slow phase) as

was the case for the Hexaflutax microtubule complex. The

velocity of the observed phases is approximately three times

slower than that of the Hexaflutax-microtubule complex

(k-fast 35�C Hexaflutax 6.20 ± 0.08 3 10�1 s�1, k-fast 35�C 4-4-

20-Hexaflutax complex 2.78 ± 0.05 3 10�1 s�1, k-slow 35�C

Hexaflutax 1.69 ± 0.08 3 10�1 s�1, k-slow 35�C 4-4-20-Hexaflu-

tax complex 1.27 ± 0.06 3 10�1 s�1).
Molecular Modeling
In a previous work we modeled the possible binding sites for

paclitaxel in the type I pore of the microtubule (Magnani et al.,

2009). Within this region, constituted by four subunits of tubulin

belonging to different heterodimers (Figure S3), two possible

ligand binding sites were identified due to the rearrangement

of the loop between helixes H6 and H7. Accordingly, two binding

modes for taxanes were proposed, in close neighborhood,

allowing for exchange between them.

In this work we used molecular modeling procedures to study

binding of Hexaflutax within the type I pore. Direct docking of the

compound to the site leads to ambiguous results due to the large

conformational freedom of the spacer; thus we carried out a frag-

ment-based approach to model the possible binding conforma-

tion of Hexaflutax, starting from the docking poses of paclitaxel

already described (Magnani et al., 2009).
r Ltd All rights reserved



Figure 4. Binding of N-AB-PT and 4-4-20-Hexaflutax Complex to Microtubules

(A and B) Kinetics of dependence on the concentration of taxoid sites of the fast (A) and slow (B) observed rate constants for N-AB-PT binding to crosslinked

stabilized microtubules at 35�C.

(C) Comparison between the kinetics of association of Hexaflutax and the 4-4-20-Hexaflutax complex to its site in microtubules at 35�C. In the stopped flow

device, a solution containing 500 nM Hexaflutax (solid line; average of two shots) or 500 nM Hexaflutax and 750 nM 4-4-20 antibody (dashed line; average of

ten shots) was mixed with 10 mM taxoid sites, final concentrations.

(D) Kinetics of dissociation of Hexaflutax from its site in microtubules at 35�C. In the stopped flow device a solution containing 2 mM Hexaflutax (solid line; average

of two shots) or 2 mM Hexaflutax plus 2.5 mM 4-4-20 (dashed line; average of ten shots) bound to 2.5 mM taxoid sites was mixed with 100 mM docetaxel, final

concentrations. Note that the curves are scaled to 100 since the fluorescence of the free Hexaflutax is five times larger than that of the 4-4-20 Hexaflutax complex.
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The first tested hypothesis was that the inhomogenity

observed of the binding was due to possible differences between

the most common isotypes of human b-tubulin, namely, bI and

bIII. Thus, we modeled paclitaxel on each subtype obtaining

a total of four complexes (two possible binding modes and two

isotypes). The two binding modes previously found were kept

unchanged, which was expected due to the highly conserved

sequences of the binding site among isotype bI and bIII.

Then, in order to study the possibility that the inhomogenity

observed arises from different binding poses of the fluorescein

moiety in the binding site, a preliminary mapping of the whole

pore region with only the fluorescent moiety of Hexaflutax mole-

cule was performed by means of the blind docking approach

(Hetenyi and van der Spoel, 2002). In a preliminary investigation,

carried out toward the free protein, we found two possible

binding modes. The most representative binding mode for the

fluorescent moiety of Hexaflutax was found in the inner wall of

microtubules, between two b subunits. No differences between

the bI and bIII isotypes were found in this region. A second alter-

native binding site for the fluorescent moiety of Hexaflutax was

found in the outer wall of microtubules.

The docking of the fluorescein moiety in the binding site was

then repeated toward the four paclitaxel/tubulin complexes

previously determined, keeping the paclitaxel molecule frozen
Chemistry & Biology 17, 2
in the binding conformations already described. The binding

modes for the fluorescent moiety were approximately the

same as obtained without paclitaxel in the pore site. Two large

clusters of conformations were found, collecting a significant

proportion of the total conformations docked. The highly popu-

lated clusters were generally at the lowest free energy of binding

(Figure S4A) and were representative for the interaction of the

fluorescent moiety in the inner wall of the type I pore. On the

contrary, lower populated clusters described the interaction

with the outer side of the pore.

The well defined inner binding cavity used by fluorescein is

constituted by residues Lys216, Thr218, and Gly277 of subunit

b1 and Arg77, Pro87, Asp88, and Phe90 of subunit b2; a differ-

ence in amino acid composition between bI and bIII isotypes

can be found in the loop H6-H7, changing Thr218 to Ala218.

This difference, however, does not affect the ligand binding

conformation. On the contrary, the outer side of the pore lacks

a defined interaction groove that results in a large scattering of

binding poses for the fluorescent moiety.

Interestingly, the analysis of the docking-based binding pose

calculated for the fluorescent moiety toward the paclitaxel/

tubulin complexes shows, in all cases, a close proximity between

the two moieties allowing a direct linkage that could reproduce

the whole Hexaflutax by means of this fragment-based strategy.
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Figure 5. Docking-Based Binding Modes of Hexaflutax in the

Binding Site

These conformations were obtained by a fragment-based approach starting

from two conformations of the taxane moiety (binding mode 1 and binding

mode 2) toward isotypes bI and bIII of tubulin. The two top panels show the

bI complexes, whereas the bottom panels show the bIII complexes, all viewed

from the inside of the microtubule. a and b subunits are colored in cyan and

yellow, respectively; the hexaflutax molecule is shown in green sticks. The

residues mostly involved in the interaction with the fluorescent moiety of hex-

aflutax are highlighted by red surfaces.
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In order to do so the linker between paclitaxel and the fluores-

cent moiety was docked in the ternary complexes (paclitaxel,

fluorescein, and tubulin) calculated in the previous step, after

defining two anchor positions for covalent bonding on each

substructure (Figure S4B). A slight energy minimization process

was then performed for all the complexes to relax the linker

within the whole Hexaflutax, resulting in the models presented

in Figure 5 when the ternary complex used was that with the fluo-

rescein placed in the inner wall of the microtubule and those pre-

sented in Figure S5 when the ternary complex used was that with

the fluorescein placed in the outer wall of the microtubule.

However, it should be pointed out that the contribution of the

fluorescein moiety to the free energy of binding should be very

low, because the equilibrium binding constant of the 4-4-20 anti-

body-Hexaflutax to microtubules is three times higher than those

of Hexaflutax (Diaz et al., 2005) (although an exact calculation of

its contribution cannot be done since the close proximity of

tubulin and antibody residues will result in unspecific interac-

tions). Thus, it is very likely that the fluorescein moiety is distrib-

uted between the unbound state and the inner and outer bound

positions as indicated by the fact that microtubule-bound Hexa-

flutax fluorescence is rapidly quenched by the antibody.

Free energies of binding of Hexaflutax with the fluorescein

moiety placed in the two different possibilities were further calcu-

lated with the local search algorithm implemented on AutoDock4.

A mean difference of 13.96 KJ/mol between internal and external

binding modes was found (Table S1). This difference was prob-

ably due to the most favorable Van der Waals interactions ex-

ploited by Hexaflutax in the unique inner site, with respect to

the scattered conformations observed in the outer region.

DISCUSSION

Hexaflutax is a fluorescent probe of the pore site of microtu-

bules, which is not internalized to the luminal site. The compound

is cytotoxic with similar cellular effects to the other taxanes

studied, indicating that compounds binding to the external site

have the same microtubule stabilizing activity and they kill cells

through the blocking of microtubule dynamics. Thus the external

binding site can be the target of specifically designed antitumor

drugs. This compound has 35 times less affinity than the

compound with a shorter spacer between the taxane and the

fluorescein group (Flutax-1) (Diaz et al., 2000), suggesting

a free energy of around �9 kJ/mol for the internalization of the

taxanes.

Hexaflutax Binds Inhomogeneously to the Pore Site
of Microtubules
The main difference observed between the binding of Hexaflutax

to microtubules and that of other taxanes, Flutax-1 and Flutax-2,

is the existence of biphasic behavior in both the association and

dissociation of each compound from/to its site. This biphasic

behavior arises from the interaction of the compound with the

external site and not from any possible simultaneous binding

with both the internal and the external sites, since this is also

observed when any possible interaction with the internal site is

blocked with an antibody.

Kinetic analysis indicates that the inhomogenity arises from

two kinds of binding sites, which may be proposed to be: (a)
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different overlapping binding sites (either from the paclitaxel or

the fluorescein moiety), (b) sites formed by different tubulin iso-

forms, or (c) two different pores of microtubules. However,

hypothesis c would be very unlikely since the observed stoichi-

ometry is very close to 1. A fourth, alternative hypothesis would

be (d) the existence of two different types of binding sites in

microtubules, a high affinity one in GTP tubulin and a low affinity

one in GDP-bound tubulin as previously described by Li et al.

(2000) for N-AB-PT. This possibility can be discarded because

with the stabilized microtubules used, which have GDP bound

to the exchangeable nucleotide site, we can only observe a single

type of binding site with binding affinity of the order of 107 M�1 for

N-AB-PT.

It can then be assumed that the inhomogenity of Hexaflutax

arises from either two binding modes to the same site (with

one of the modes not allowed in the case of Flutax-1 and Flu-

tax-2) or from binding to two different tubulin isoforms, with

binding parameters similar for Flutax-1 and Flutax-2, but not

for Hexaflutax. Since the kinetic constant of the fast phase

from association is very similar in the case of all compounds

studied (k+1 35�Flutax-1 6.12 ± 0.22 3 105 M�1 s�1, Flutax-2

5.66 ± 0.50 3 105 M�1 s�1, N-AB-PT 3.9 ± 0.7 3 105 M�1 s�1,

Hexaflutax 7.35 ± 0.30 3 105 M�1 s�1) and the taxane moiety

of Hexaflutax and Flutax-1 and Flutax-2 are identical, it is

straightforward to assign this fast phase of association to the

interaction that Flutax-1 and Flutax-2 have in their association.
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The remaining possibilities were studied using molecular

modeling techniques. Docking studies described two possible

binding poses for the paclitaxel moiety of Hexaflutax located

on the inner surface on the type I pore of tubulin, at the interface

of two b subunits [similar to those previously described by Mag-

nani et al. (2009)] and two possible binding poses for the fluores-

cein moiety located in the inner and the outer surface of the

microtubule wall. The small differences in the sequences of the

bI and bIII tubulin in this area resulted in identical dockings irre-

spective of the tubulin isoforms forming the pore and suggest

that this possibility (b) may be discarded.

Since blocking of the fluorescent moiety with a large molecule

does not result in changes of the inhomogeneous kinetic

behavior, the only remaining hypothesis would be that the two

observed bimolecular reactions correspond to the two different

binding modes of the paclitaxel moiety. While N-AB-PT,

Flutax-1, and Flutax-2 bind in only one possible way, the long

aliphatic side chain of Hexaflutax placed at position 7 may stabi-

lize the second, less energetically favored, possible binding pose

through interactions with the a subunit of the pore (binding mode

II in Figure 5 and Figure S5), making it observable.

SIGNIFICANCE

This work presents for the first time a new pharmacological

target in microtubules, the pore site of microtubule stabi-

lizing agents, to which taxanes transiently bind on its way

to the luminal site. The use of a fluorescent analog, Hexaflu-

tax, designed to exclusively bind to this pore site has shown

that binding of a taxane to this pore site results in cytotoxic

effects and cell cycle arrest, identical to those produced by

classical taxanes, e.g., paclitaxel and docetaxel, which bind

to the luminal site of the microtubule.

The interaction of Hexaflutax with the site has been

studied using fast kinetic techniques, allowing the observa-

tion of two different possibilities of interaction of drugs with

the pore binding site. This pore binding site might be an

intermediate site to which a large number of paclitaxel

biomimetics with similar microtubule stabilizing agent

activity but completely different chemical structures, e.g.,

paclitaxel, epothilone, discodermolide, and cyclostreptin,

bind. While paclitaxel and epothilone are known to be inter-

nalized, cyclostreptin labels both the pore and the luminal

site and it is not known whether dyctiostatin and discoder-

molide are internalized. Thus, the pore site could provide

additional binding possibilities to microtubule stabilizing

agents that may justify the apparent promiscuity of the

previously thought single paclitaxel site in microtubules.

EXPERIMENTAL PROCEDURES

Tubulin, Taxoids, and Antibodies

Purified calf brain tubulin and chemicals were as described previously (Andreu,

2007; Diaz and Andreu, 1993). Stabilized mildly crosslinked microtubules were

prepared as previously described (Diaz et al., 2000, 2003); their nucleotide

content was measured by HClO4 extraction of microtubule pellets and quan-

tified by FPLC using a Vydac 320IC4 ion exchange column developed at

2 ml/min with a 20 min sodium phosphate (pH 2.8 adjusted with acetic acid)

gradient from 25 to 125 mM in an Äkta purifier (GE Healthcare) and was found

to be 100% GDP.
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Paclitaxel was provided by the National Institutes of Health, Docetaxel

(Taxotere) was provided by Aventis, and 7-Hexaflutax (Diaz et al., 2005) was

provided by F. Amat-Guerri. N-AB-PT (Li et al., 2000) was newly synthesized

in milligram scale as described in supplemental information. Its 1H and 13C

NMR spectra were recorded on Varian VNS-600 (600 MHz), Varian Mercury-

400 (400 MHz), and Varian Mercury-300 (300 MHz) NMR instruments. Mass

spectrometry data were recorded on Agilent 1100 LC/MSD (ESI) LC-MS or

US LCQ MS instruments. 1H and 13C NMR and mass spectrometry data

were found to be coincident with data previously published (Li et al., 2000).

Thin layer and flash column chromatography were performed with silica gel

GF254 and H (300–400 mesh), respectively, both of which are products from

Qing Dao Oceanic Chemical Engineering Factory. All reagents are commer-

cially available and used without further purification. HPLC analysis of

the compound was performed in an Agilent 1100 series instrument using

a Supercosil, LC18 DB, 250 3 4.6 mm, 5 mm bead diameter column devel-

oped in a gradient from 50%–80% (v/v) acetonitrile in water at a flow rate of

1 ml min�1, following absorbance at l = 220 nm. Its purity was found to be

more than 98%.

Taxoids were dissolved in DMSO and their concentrations were measured

spectrophotometrically as described previously (Diaz and Andreu, 1993;

Diaz et al., 2000, 2003; Evangelio et al., 1998; Li et al., 2000).

4-4-20 antifluorescein monoclonal mouse IgG (Kranz and Voss, 1981) was

a gift from E.W. Voss Jr. (University of Illinois at Urbana-Champaign). It was

prepared for use as described previously (Diaz et al., 2005).
Fluorescence Spectroscopy and Anisotropy Measurements

Corrected fluorescence spectra were acquired with a photon-counting Fluoro-

log-3-221 instrument (Jobin Yvon-Spex), using 1 nm excitation and 5 nm emis-

sion bandwidths, at 25�C. Fluorometric concentration measurements were

made with a Shimadzu RF-540 spectrofluorometer. Anisotropy values were

collected in the Fluorolog T-format mode with vertically polarized excitation

and corrected for the sensitivity of each channel with horizontally polarized

excitation (Lakowicz, 1999).
Binding of Taxoids to Microtubules

Binding constants of Hexaflutax to microtubules were obtained using anisot-

ropy and centrifugation titration measurements. For the anisotropy measure-

ments, 100 nM of Hexaflutax in 3.4 M glycerol, 10 mM sodium phosphate,

1 mM EGTA, and 0.1 mM GTP (pH 6.5) (GAB) was incubated for 30 min with

increasing concentrations of binding sites in stabilized crosslinked microtu-

bules (from 0 to 20 mM) at the desired temperature and the anisotropy of the

solution was measured in a POLARSTAR BMG plate reader in the polarization

mode, using the 480-P excitation filter and the 520-P emission filters. The

bound fraction of Hexaflutax was calculated after correction for the different

quantum yield of the bound and the free compound (Lakowicz, 1999). For

the centrifugation measurements, 1 mM of binding sites in GAB were incubated

for 30 min with increased concentrations of Hexaflutax (from 0 to 10 mM) in the

presence and absence of 50 mM docetaxel. The samples were centrifugated

for 20 min at 50,000 rpm in a TLA100 rotor in a Beckman Optima TLX centri-

fuge. The supernatants were taken and the pellets were resuspended in

50 mM phosphate buffer (pH 7.0) containing 1% SDS. The pellets and super-

natants were diluted 1:5 in the same buffer and their fluorescence was

measured using a Shimadzu RF-540 spectrofluorimeter (excitation wave-

length 484 nm, emission wavelength 520 nm, 5 nm excitation and emission

slits). The concentration of Hexaflutax in the samples was calculated using

Hexaflutax spectrophotometric concentration standards. The bound concen-

tration of Hexaflutax was considered to be that of the Hexaflutax in the pellets

after correcting for the amount displaced by 50 mM docetaxel.

Binding constants of N-AB-PT to crosslinked stabilized microtubules were

both measured using the Flutax-2 displacement method as described in

Buey et al. (2005) and also by the change in their fluorescence intensity

upon binding to microtubules (lexc 312 and lems 450 nm), in that case

200 nM of the compound was incubated with growing concentrations of cross-

linked microtubules. The fractional saturation of the compound was estimated

from the increase in their fluorescence intensity measured in a Fluorolog-3-221

instrument (Jobin Yvon-Spex).
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Kinetics of Binding of Taxanes to Microtubules

The kinetics of binding and dissociation of taxanes to stabilized microtubules

was measured by the change of intensity of fluorescence or the change in

anisotropy of the fluorescence using a Bio-Logic SF300S stopped flow device

equipped with a fluorescence detection system with an excitation wavelength

of 495 nm and a filter with a cut-off of 520 nm in the emission pathway for Hex-

aflutax and the 4-4-20-Hexaflutax complex and with an excitation wavelength

of 312 nm and a filter with a cut-off of 380 nm in the emission pathway for

N-AB-PT paclitaxel, with polarizers in the optical pathways when the anisot-

ropy change was measured. Appropriate photo bleaching controls were

done. The fitting of the kinetic curves was done with a non-linear least-squares

fitting program based on the Marquardt algorithm (Bevington, 1969).

Cell Biology Studies

Human A549 non-small lung carcinoma cells and human ovarian carcinomas

A2780 and A2780AD (MDR overexpressing P-glycoprotein) were cultured as

previously described (Buey et al., 2007).

Indirect immunofluorescence and cell cycle analysis was performed as

described before (Buey et al., 2005). Cytotoxicity assays were performed

with the MTT assay modified as described in Yang et al. (2007).

Homology Modeling

Sequences of human bI and bIII isotypes of tubulin were retrieved from the

UniProt online database (UniProt-Consortium, 2009). Three dimensional

models were thus generated from the 1JFF structure through homology

modeling approaches by means of the Modeller9v5 python library (Sali and

Blundell, 1993; Martı́-Renom et al., 2000; Fiser et al., 2000; Eswar et al., 2006)

according to the method already described to model the 3D structure of tubulin

(sus scrofa sequence) (Magnani et al., 2009). A very_fastalgorithm was used due

to the high similarity showed by the selected human sequences (86%).

Each model was then refined by means of the ‘‘Protein Preparation Wizard’’

protocol of the Maestro suite (Mohamadi et al., 1990), selecting the most prob-

able state at pH 7.0 ± 2 for protein residues. The position of each atom of the

protein was relaxed through an energy minimization step carried out on the

basis of the OPLS2005 force field (Jorgensen and Tirado-Rives, 1988; Kamin-

ski et al., 2001), allowing for atom movements up to root mean square devia-

tion displacement below 0.3 Å.

Docking Studies

All docking studies were performed with the AutoDock4 programs (v4.2.1)

(Morris et al., 1998). Interaction grids were calculated for all the atom types

of selected ligands with AutoGrid4 (v4.2.1) and were centered within the center

of the so-called type I pore constituted by subunit a4, a3, b1, and b2

(Figure S3). Potential grid maps were of 25 3 25 3 35 Å dimensions, with

a point spacing of 0.375 Å. Possible conformations of global energy minimum

for tested molecules were generated toward the receptor surface, using

a Lamarckian genetic algorithm (LGA), whereas free energies of binding

were further calculated using the local search algorithm.

All LGA parameters were kept at the default values with the only exception

being the maximum number of energy evaluations that was increased to 5 M,

whereas the initial population for each generation step was enhanced to

250 individuals and the number of docking runs was set to 250.

For local search methods we performed 100 runs for each calculation, start-

ing with an initial population constituted by 150 individuals. Coordinates of the

ligand mass center, torsional dihedrals, and initial orientation were retained as

those obtained by the docking results of the LGA methods.

Docking poses were clustered using a root mean square deviation tolerance

of 2.0 Å.

Energy Minimization

All docking results were minimized with the MacroModel (Mohamadi et al.,

1990) application of the Maestro Suite, using the AMBER* force field (Ferguson

and Kollman, 1991; McDonald and Still, 1992) in implicit water solvent. The

convergence criteria was set to the energy gradient of 0.01 kJ/Åmol or

a maximum of 5000 iterations. An energy minimization step was further per-

formed for each ligand and for all protein residues included within 3 Å from

each ligand’s atom, whereas an additional shell of residues (5 Å from the first

shell) was restrained with a force constant of 200 kJ$Å�2$mol�1.
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