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Garvan first defined certain ``vector partitions'' and assigned to each such
partition a ``rank.'' Denoting by NV (r, m, n) the (weighted) count of the vector
partitions of n with rank r modulo m, he gave a number of relations between the
numbers NV (r, m, mn+k) when m=5, 7 and 11, 0�r, k<m. The true crank
whose existence was conjectured by Dyson was discovered by Andrews and Garvan
who also showed that NV (r, m, n)=M(r, m, n) unless n=1, where M(r, m, n)
denotes the number of partitions of n whose cranks are congruent to r module m.
In the case of module 11, a simpler form of Garvan's results have been found by
Hirschhorn. In fact, the Hirschhorn result was derived using Winquist's identity,
but the details were omitted. In this work, from the simpler form we deduce some
new inequalities between the M(r, 11, 11n+k)'s and give the details of Hirschhorn's
result. We also prove some conjectures of Garvan in the case of module 7. � 1998

Academic Press

1. INTRODUCTION

First, we introduce some standard notations

(z; q)�= `
�

n=1

(1&zqn&1),
(1)

[z; q]�=(z; q)� (z&1q; q)� , |q|<1.

Note that

&z[zq; q]�=&z[z&1; q]�=[z; q]�=[z&1q; q]� . (2)

For simplicity, we also write, as in [G1],

P(a) :=[ ya; y11]� ( y11; y11)� , 1�a<11 (3)

P(0) :=( y11; y11)� (4)

Q(b) :=[ yb; y33]� ( y33; y33)� , 1�b<33. (5)

Article No. TA982884

283
0097-3165�98 �25.00

Copyright � 1998 by Academic Press
All rights of reproduction in any form reserved.



File: DISTL2 288402 . By:AK . Date:01:07:98 . Time:12:37 LOP8M. V8.B. Page 01:01
Codes: 2243 Signs: 1031 . Length: 45 pic 0 pts, 190 mm

The variables y and q are always related by y=q11. From (2), we have

P(11&a)=P(a), P(11+a)=&yaP(a)
(6)

Q(33&a)=Q(a), Q(33+a)=&yaP(a)

which we shall use without explicit mention below. We have [G1]

:
t&1

k=0

`k :
�

n=0

M(k, t, n) qn=
(q; q)�

(`q; q)� (`&1q; q)�
, (7)

where t is a prime and `=exp(2?i�t). The main problem is to express the
right-hand side of (7) as a polynomial in q of degree t&1 whose coef-
ficients are power series in y=qt. When t=5, 7 and 11, the expressions
were given in [G1].

Considering the obvious relation

( y; y)�=P(0) P(1) P(2) P(3) P(4) P(5), (8)

Hirschhorn's identity [H] can be stated as follows

(q; q)�

(`q; q)� (`&1q; q)�

=
P(0)
P(1)

+(`+`&1&1)
P(5) P(0)
P(2) P(3)

q+(`2+`&2)
P(3) P(0)
P(1) P(4)

q2

+(`3+`&3&1)
P(2) P(0)
P(1) P(3)

q3+(`4+`&4+`2+`&2+1)
P(0)
P(2)

q4

&(`4+`&4+`2+`&2)
P(4) P(0)
P(2) P(5)

q5+(`4+`&4+`+`&1)
P(0)
P(3)

q7

+(`4+`&4+`3+`&3+`+`&1)
P(1) P(0)
P(4) P(5)

yq8

&(`4+`&4+1)
P(0)
P(4)

q9&(`3+`&3)
P(0)
P(5)

q10. (9)

In the next section, we show how (9) can be derived from Winquist's
identity. We write, as in [G1],

Rij (k) := :
n�0

(M(i, 11, 11n+k)&M( j, 11, 11n+k)) qn. (10)
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By using arguments analogous to that of Section 4 in [G1], (9) allows
calculation of the Rij (k)

Theorem 1.

R01(0)=
(q11; q11)�

[q; q11]�
(11)

&
1
2

R01(1)=R12(1)=
[q5; q11]� (q11; q11)�

[q2; q11]� [q3; q11]�
(12)

R12(2)=&R23(2)=&
[q3; q11]� (q11; q11)�

[q; q11]� [q4; q11]�
(13)

R01(3)=&R23(3)=R34(3)=
[q2; q11]� (q11; q11)�

[q; q11]� [q3; q11]�
(14)

R01(4)=&R12(4)=R23(4)=&R34(4)=R45(4)

=
(q11; q11)�

[q2; q11]�
(15)

R12(5)=&R23(5)=R34(5)=&R45(5)

=
[q4; q11]� (q11; q11)�

[q2; q11]� [q5; q11]�
(16)

R01(7)=&R12(7)=R34(7)=&R45(7)=&
(q11; q11)�

[q3; q11]�
(17)

R01(8)=&R12(8)=R23(8)=&R45(8)

=&q
[q; q11]� (q11; q11)�

[q4; q11]� [q5; q11]�
(18)

R01(9)=&R34(9)=R45(9)=&
(q11; q11)�

[q4; q11]�
(19)

R23(10)=&R34(10)=
(q11; q11)�

[q5; q11]�
(20)

and all other Rb, b+1(d ), 0�b�4, are zero.

This is the simpler form of Theorem (6.7) of [G1]. We prove the following
inequalities, for n�0,
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M(0, 11, 11n)�M(1, 11, 11n) (21)

M(1, 11, 11n+1)�M(0, 11, 11n+1) (22)

M(0, 11, 11n+3)�M(1, 11, 11n+3) (23)

M(0, 11, 11n+4)�M(1, 11, 11n+4) (24)

M(1, 11, 11n+5)�M(2, 11, 11n+5) (25)

M(1, 11, 11n+7)�M(0, 11, 11n+7) (26)

M(0, 11, 11n+9)�M(1, 11, 11n+9) (27)

M(2, 11, 11n+10)�M(3, 11, 11, +10) (28)

M(0, 7, 7n)�M(1, 7, 7n) (29)

M(2, 7, 7n+2)�M(1, 7, 7n+2) (30)

(29) and (30) are conjectures of Garvan, [G1]

2. THE HIRSCHHORN'S RESULT

Our method is completely analogous to that of Garvan [G1]. We need
the Jacobi's triple product identity (Thm. 2.8 in [A])

[z; q]� (q; q)�= :
�

m=&�

(&1)m zmqm(m&1)�2. (31)

Setting m=11n+t, &5�t�5 in (31), we find

[s; q]� (q, q)�= :
5

t=&5

(&1)t ztqt(t&1)�2[z11y5+t; y11]� ( y11; y11)� . (32)

From (32) with the help of (6), we find

[`; q3]� (q3; q3)�

=(1&`) Q(15)+(`2&`&1) Q(12) q3+(`4&`&3) Q(6) yq7

+(`&4&`5) Q(3) y2q8+(`&2&`3) Q(9) q9 (33)
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and

[`q; q3]� (q3; q3)�

=(Q(16)+`4y2Q(5))&`(Q(14)+`2yQ(8)) q

&`&1(Q(13)+`6y3Q(2)) q2&`&3y(Q(7)&`&1yQ(4)) q4

+`2P(0) q5+`&2(Q(10)&`&3y3Q(1)) q7. (34)

Winquist's identity [W, Thm. 1] can be written as

[a; q]� [b; q]� [ab; q]� [ab&1; q]� (q; q)2
�

=[a3; q3]� (q3; q3)2
� [[b3q; q3]�&b[b3q2; q3]�]

&ab&1[b3; q3]� (q3; q3)2
� [[a3q; q3]�&a[a3q2; q3]�]. (35)

If we take ( ym, yn, y11) for (a, b, q) in (35), we have

P(m) P(n) P(m+n) P(m&n) P(0)2

=Q(3m)(Q(3n+11)& ynQ(3n+22))

& ym&nQ(3n)(Q(3m+11)& ymQ(3m+22)). (36)

Taking a=`9 and b=`5 in (35), Garvan [G1] finds

(q; q)�

(`q; q)� (`&1q; q)�

=(1&`3)&1 (1&`4)&1 (1&`5)&1 (1&`9)&1 ( y; y)&1
�

_[[`5; q3]� ([`4q; q3]�&`5[`7q; q3]�)

&`5[`4; q3]� ([`5q; q3]�&`9[`6q; q3]�)](q3; q3)2
� . (37)

By using (33) and (34) together with the replacements, in (36), (m, n)=
(5, 2), (5, 1), (5, 3), (4, 2), (4, 1), (4, 3), (5, 4), (2, 1), (3, 2) and (3, 1)
respectively, and considering (8), we find, after some simplification, that
the right-hand side of (33) reduces to the right-hand side of (9).

3. INEQUALITIES

By using Jacobi's triple product, we find

(q; q)�

[z; q]�
=

[&z; q]� (q; q)�

[z2; q2]�
=

1
[z2; q2]�

:
�

n=&�

znqn(n&1)�2. (38)
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Now, taking z=qa and q11 for q in (38), we see that

(q11; q11)�

[qa; q11]�
(39)

has nonnegative coefficients in q. The equation (5.7) of [G2] also shows
that (39) has nonnegative coefficients in q.

For the rest of the inequalities, we need the quintuple product identity
[Go]

[&z; q]� [z2q; q]� (q; q)�=[[z3q; q3]�+z[z3q2; q3]�](q3; q3)� .

(40)

If we use the obvious relations

[&z; q]� [z; q]� =[z2; q2]� , [z2; q2]� [z2q; q2]�=[z2; q]�

[z3; q]�=[z3q; q3]� [z3; q3]� [z&3q; q3]� (41)

=[z3q2; q3]� [z3; q3]� [z&3q2; q3]�

from (40), we have

[z2; q]� (q; q)�

[z; q]� [z3; q]�
=

(q3; q3)�

[z3; q3]� [z&3q; q3]�
+z

(q3; q3)�

[z3; q3]� [z&3q2; q3]�
.

(42)

From this we see that

[q2a; q11]� (q11; q11)�

[qa; q11]� [q3a; q11]�
(43)

has nonnegative coefficients in q for the values a=1, 2, 3. We also conjecture
that the same holds for a=4 and a=5 (except one).

In the case of modulo 7, we have from Theorem 5.4) of [G1]

R01(0)=
[q3; q7]� (q7; q7)�

[q; q7]� [q2; q7]�
(44)

R12(2)=&R23(2)=&
[q2; q7]� (q7; q7)�

[q; q7]� [q3; q7]�
. (45)
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(42) also states that

[q2a; q7]� (q7; q7)�

[qa; q7]� [q3a; q7]�
(46)

has nonnegative coefficients in q for the values a=1, 2.
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