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ABSTRACT 

In this paper, we introduce a geometric structure called top, which is a trivialized bundle of plane pencils 
over a Riemannian 3-manifold, defined as the set of kernels of a circle of l-forms (e.g., of contact and 
integrable forms) with particular properties with respect to the metric. We classify the manifolds which 
admit tops and we describe the associated metrics. 

l ,  DEFINITIONS AND MAIN RESULTS 

The  central  objec t  o f  this paper  are tops. 1 These  new structures  are def ined as 

t r iv ia l ized plane penci l  bundles  over  a 3 -d imens iona l  R i e m a n n i a n  man i fo ld  wi th  

s o m e  regular i ty  proper t ies  wi th  respect  to the metr ic .  M o r e  precisely,  we def ine  

them as the set o f  kernels  o f  a c i rc le  o f  1-forms. 

There  are two different  mot iva t ions  for  this work. First, t r iv ia l ized  plane  penci l  

bundles  appear  as the geome t r i c  s t ructures  assoc ia ted  to contac t  circles,  that is, to 

c i rc les  o f  contac t  forms,  in the same way as contac t  s t ructures  are assoc ia ted  to 

contac t  forms.  We present  these s t ructures  in the con tex t  o f  R i e m a n n i a n  man i fo lds  

and charac ter ize  certain fami l ies  o f  contac t  c i rc les  which  have special  metr ic  

proper t ies .  

MSC: 57M50, 53D10, 53C21 
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t Here a top is not the integrable system from Hamiltonian mechanics, as it is in the usual sense. We 
use the same terminology, because this word describes so well the structure we introduce. 
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The second aim is to answer the following question: In which extent can the 
properties of a particular example on S 3 (see Examples 13 and 15) with the usual 
metric be found on other manifolds and in relation with other metrics? 

Under some additional coorientability assumptions, we associate a circle of 
differential 1-forms to a trivialized plane pencil bundle on a 3-manifold M, 
that is, a family SI{eel, O92} ~--- {COS0eel -}-sin0ee2, 0 E [0, 2zr[} generated by two 
1-forms eel and o92 which are linearly independent in every point of M. Given a 
two-dimensional subbundle S2 of the space of differential 1-forms on M, the kernels 
of the non-zero elements of fa define a plane pencil in the tangent space at any point 
x ~ M. Moreover, all multiples of a given form by a positive function have the same 
kernel. So it is enough to consider the unit circle of S'2 to realize all the planes of the 
plane pencil as kernels of elements of this family of 1-forms. 

For example, a trivialized pencil bundle can be defined by a contact circle (see 
Section 2 for a precise definition). In that case, the pencil bundle is given by the set 
of the contact structures associated to the elements of the contact circle. 

All objects in this paper are supposed to be smooth. 

Let 5 c be a plane pencil bundle obtained as the set of kernels of a circle of 1-forms 
SI{o ) I ,  092} • {ee0 1• COS 0eel "Jr sin0ee2, 0 E [0, 2zr[}. Then the map 

r:  f" > M x p l ( R ) ,  

ker(eex°) i > (x,0modzr) 

is a trivialization o f f .  The plane bundles ~0 = ker(ee °) are obtained by the "inverse 
map" 

01 >~0 

such that 7 r 2 ( r ( ~ 0 ) )  = 0. This family is double-covered by the Sl-family of plane 
bundles obtained as the kernels of the defining circle of 1-forms. 

Definition 1. A trivialized plane pencil bundle which is defined by the set of 
kernels of the elements of a circle of 1-forms S J {o91, o)2} will be called an indexed 
pencil bundle. 

An indexed pencil bundle is called contact pencil bundle if for all 0 E ~l (R), the 
plane bundle ~0 is a contact structure, and integrable pencil bundle if all these plane 
bundles are integrable. 

The line bundle Lx = ~']OC~I(~)(~O)X is called the axis bundle of the indexed 
pencil bundle. 

Remark.  If 5 t" is an indexed pencil bundle, then every plane bundle which is 
obtained as the kernel of some element of the defining circle of 1-forms is 
coorientable. On the other hand, a trivialized plane pencil bundle with the property 
that all plane bundles ~0 with rr2(r(~0)) = 0 are coorientable can be obtained via 
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a circle of  l-forms, given by w ° = g(Xo, .), where Xo is a differentiable family of  

vector fields such that (Xo)xl(~o)x, Yx E M, V0 6 [0, 7r], and where g is a metric 
on M. 

A trivialized plane pencil bundle on a Riemannian manifold can have a certain 
number of  geometric regularity properties. In particular, we can consider the way 
the plane bundles ~0 rotate about the axis bundle with respect to the parallel 
transport along some particular curves. To make this more precise, we first need 
to define a appropriate compatibility condition between a trivialized pencil bundle 

and a metric. 

Definition 2. A metric on a manifold M is called compatible with an indexed 
pencil bundle if the angle between two given plane bundles se0~ and ~0~ is constant 
on M. 

A moving flame (Xi, X2, X3) is said to be adapted to an indexed pencil bundle 
if X3 is parallel to the axis of  the pencil and if there are forms COl and w2 in the 
defining family of 1-forms with wl (X2) = ~o2(Xj ) = 0 everywhere on M. 

Remark. A metric for which a moving frame (Xj, X2, X3) adapted to some 
indexed pencil bundle is orthonormal is compatible with the indexed pencil bun- 

dle whose trivialization is induced by the family Sl{c01,co2}, with wl(X2) -- 

co2(Xl) = 0. 

The rotation speed of a vector field about some other vector field along a given 
curve is defined as follows: 

Definition 3. Let (M, g) be an oriented Riemannian manifold, Y and Z unit vector 
fields and F a curve on M. We will call the quantity 

R×(Y, Z) = g(Vf, Y, Z × Y) 

the rotation speed of  Y about Z along F with respect to the parallel transport. 

We choose this terminology, because g(V~ Y, Z x Y) can be seen as the com- 
ponent of the projection of the covariant derivative of Y along ?, onto the plane 
orthogonal to Z which is orthogonal to the projection of Y onto this same plane. 

Definition 4. Let 5 be an indexed pencil bundle on an oriented Riemannian 

manifold (M, g). The spinning direction of 5 c is defined to be an orientation of 
the axis bundle such that the rotation speed of  X1 about X3 along every integral 
curve of this axis bundle is non-negative for a positively oriented adapted moving 

flame (X i, X2, X3) such that X3 is positively oriented on the axis bundle. 

The following definition has been modeled on the properties of  the fundamental 
example on ~;3 developed below (see Examples 13 and 15). 
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Definition 5. Let (M, g) be an oriented Riemannian manifold of dimension 3. An 
indexed pencil bundle on M is called a top if there is an orthonormal moving frame 
(X1, X2, X3) adapted to the pencil bundle such that 

(i) Along any geodesic F, the angle between ~ and X3 is constant. 
(ii) Along any geodesic y which is transverse to the axis bundle, the rotation speed 

of X3 about ~ is constant with respect to the parallel transport. 
(iii) Along any geodesic y, the rotation speed of XI about X3 is constant with 

respect to the parallel transport. 
(iv) Along any pair of geodesics ×l and Y2 such that the angles between ¢1 and 

X3 and between 2)2 and X3 are equal, the rotation speed of XI about X3 is the 
same. 

All geodesics are supposed to be parameterized by arc length. 
If every plane bundle defined by the trivialization is a contact structure, the top 

will be called a contact top; if all these plane bundles are integrable, it will be called 
an integrable top. 

Remarks. 

1. A top is completely determined by a moving frame satisfying the four condi- 
tions above. 

2. If a top is determined by an orthonormal moving frame (X1, X2, X3), the 
underlying indexed pencil bundle is defined by the dual forms wl and w2 which 
correspond to X l and X2. 

3. Condition (i) implies that the integral curves of the axis bundle are geodesics 
(see also Lemma 18). 

We will see that a top is always either a contact top or an integrable top (see 
Corollary 19). Contact tops are always defined by taut contact circles (see the 
definitions in Section 2; some examples will also be given there and in Section 3). 

The first main result of this paper is a characterization of tops through the 
properties of the Lie brackets of an adapted orthonormal moving frame. 

Theorem 6. An orthonormal global moving frame (X1, X2, X3) on an oriented 
Riemannian manifold M determines a top if  and only i f  the corresponding Lie 
brackets are of  the following type: 

(1) 
[XI,X2] = cX3, 

[X2, X3] = kX1, 

[X3, Xl] = kX2, 

where c and k are real numbers. 

As a corollary, we obtain a description of the manifolds which admit tops. 
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Corollary 7. An oriented and complete connected manifold M carries a top T i f  

and only i f  M is diff'eomorphic to the left-quotient of  one of  the Jbllowing Lie groups 

by a discrete subgroup: 

SU(2) ,[br a contact top; 

SL(2, R) 

R3j 
~)r an integrable top, 

Nil 3 • 

where E2 is the universal cover of  the group o f  direct isometries of  the plane and 

Nil 3 the 3-dimensional Heisenberg group. 

We are now interested in describing the metrics on these manifolds for which tops 
can be constructed. They have to be adapted to the geometric properties of tops. 

Definition 8. A metric g on a 3-manifold M is called a spinning metric if  

• there is a unit vector field Z on M, called pivot field, which is geodesic and 

Killing, such that the sectional curvature of any plane only depends on its angle 

with Z and if 
• the extremal sectional curvatures are constant on M. 

These are the only metrics to which tops can be associated, as the following 

theorem states. 

Theorem 9. Let (M, g) be an oriented Riemannian 3-manifi)ld. I f (M ,  g) admits 
a top, then g is a spinning metric. I fg  is a spinning metric and H1 (M, R) : O, then 

there exists a spinning metric on ( M , g ). 

Sections 2 and 3 contain background information and examples concerning 
contact tops and integrable tops. In Section 4, we prove Theorem 6 and several 
corollaries. In Section 5, we analyze the properties of spinning metrics and prove 
Theorem 9. In Section 6, we determine the metrics for which a given contact pencil 
bundle defines a top. In Section 7, some partial classification results are discussed, 
especially the uniqueness problem of a top for a given spinning metric. In the last 
part of this paper, a connection to Sasakian geometry is made. In particular, we 
discuss which Sasakian structures define tops and which tops give rise to a Sasakian 

structure. 
To conclude, let us remark that it is possible to consider tops in higher dimen- 

sions, but there are considerable additional difficulties. The first one is the problem 

to find a good definition, because the common subspace bundle of a family of  

hyperplanes in IR" can be of different dimensions, depending on the number of 
generators of  the defining family of  1-forms, and as soon as the codimension of  the 

common subspace bundle is greater than 2, one can not use the concept of rotation 
speed any more. Moreover, the study of contact p-spheres on higher-dimensional 
manifolds is much less developed than for contact circles on 3-manifolds. 
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2. CONTACT CIRCLES AND CONTACT TOPS 

Some examples coming from contact geometry have been an important motivation 
to introduce contact tops. The study of contact circles has been initiated by 
H. Geiges and J. Gonzalo in 1995 (see [2]). 

Definition 10. If all non-trivial, normalized linear combinations of two contact 
forms are contact forms, this family is called a contact circle. We note $~ {COl, co2} := 
/Xlco| + x2co2, + = 1/. 

Similarly, a contact sphere is generated by three contact forms. 

H. Geiges and J. Gonzalo distinguish a certain class of contact circles, defined as 
follows: 

Definition 11. A contact circle ,S~ {col, O92} o n  a 3-manifold M is said to be taut 

if all its elements define the same volume form, that is, if co A dco is constant on 
Sc l {col, o)2/. 

Example 12 (Contact  circle on T3). On the 3-torus with pseudo-coordinates 
(01,02, 03), the forms 

col = cos(n01)d02 + sin(n0~)d03, 

o92 = - sin(nO1)d02 + cos(nO1)d03 

generate a contact circle, for n 6 N*. 
Indeed, for w = ~lWl + )~2CO2, with ~2 + ~.~ = 1, we have co A dco = -ndOl  /x 

dO2/x dO3, so all non-trivial linear combinations are contact forms. They all define 
the same volume form, so the contact circle is taut. 

Example 13 (Contact sphere on $3). We consider the 3-sphere as the unit sphere 
of the quaternionic space N. On this sphere, we have 3 independent contact forms, 
induced by the following forms on H: 

Olq = (qi, dq) = qldq2 - q2dql + q4dq3 - q3dq4, 

f lq  = (q j ,  dq) = qldq3 - q3dql + q2dq4 - q4dq2, 

Fq = (qk, dq) = q3dq2 - qzdq3 + qldq4 - q4dql. 

The induced forms generate a contact sphere. Indeed, any normalized linear 
combination co := ~.ja + ~.2/3 + ~-3V satisfies: 

co/x do)/x (qldqz + q2dq2 + q3dq3 + q4dq4) = dql A dq2 /x dq3 /x dq4, 

which is a volume form on H. This volume form is independent of the parameters 
~-l, ~-2, ~-3, so ~, ~ and y induce a taut contact sphere on g3. 
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We have another regularity condition for contact circles, with a more obvious 

geometric meaning than tautness: 

Definition 14. A contact circle $1. {col, 032} is said to be round if  the Reeb vector 
field of  any element co = )~1031 + )~2032 of  the contact circle is given by R = 11 R1 + 

)~2R2, where Rj and R2 are the Reeb vector fields ofwl and 032. 

On 3-manifolds, roundness and tautness are equivalent, but on higher-dimen- 

sional manifolds, these properties are independent (see [9]). 
The first important question is about the existence of contact circles. For closed 

manifolds, H. Geiges and J. Gonzalo give a general answer: 

Theorem (See [3]). Everv closed and orientable 3-maniJold admits' a contact 

circle. 

For taut contact circles, which have richer geometric properties, the existence 

problem is more complex: 

Theorem (See [2]). A closed and orientable 3-mani/bld M admits' a taut contact 

circle i f  and only ([ M is di[[eomorphic to the le[t-quotient of  a Lie group G by the 
action o f  a discrete subgroup, where G is either SU(2) or SL(2, R), the universal 

cover of  SL(2, R), or E2, the universal cover of  the Euclidean group. 

A contact circle defines a contact pencil bundle in an obvious way. If we 
write the contact circle as {03 0 = cos003t + sin0032, 0 ~ [0, 27r[}, the corresponding 

trivialization is given by r (ker(co °)) = 0 mod Jr. 
A round contact circle defines a privileged plane bundle, which is transverse to 

the axis bundle ker03j (7 ker032. It is spanned by the Reeb vector fields RI and R2 of 

any two generating forms (ol and co2. 

Example 15. The contact circles in Example 12 and the contact circles generated 
by any two of  the three forms of  Example 13 define contact tops, for the flat metric 
on ~I "3 and the usual metric on ~;~. 

To see this in the case of the 3-sphere, consider the standard metric and an 
orthonormal frame (Xl, X2, X3) dual to the induced contact forms (~,/3, 77). This 
frame satisfies 

[X1,X2]=2X3,  [X2, X3]=2X1 and [X3, X1]=2X2.  

On g3, a vector field Z = ajXl  + a2X2 + a3X3 is geodesic if and only if its 

coefficients are constant on 5 3. So X3 is a geodesic vector field. Let p with t5 = 

al X l + a2 X2 + a3X3 be a geodesic. 
Then the rotation speed of  XI about X3 along p is 

R D ( X  I , X3) = ,~,~(V~XI, X2) = 2a3, 
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so it is constant and only depends on the angle between X3 and b, that is, on a3, 
which is constant. 

The rotation speed of  X3 about b along p is 

Rp(X3, fi) -~ a~ + a 2, 

so it is constant, too. 
Thus, the contact circle $c 1 {&,/~} defines a contact top. 

3. I N T E G R A B L E  TOPS 

An integrable top on a Riemannian manifold M defines a circle of  foliations of  M 
which are everywhere transverse to each other. A trivial example is the following: 

Example 16. A pencil of  planes at the origin of  II~ 3 which is parallel transported 
to all other points of  R 3 defines an integrable top with respect to the Euclidean 
metric. In this example, all rotations speeds are zero and all angles are constant, so 
the conditions of Definition 5 are trivially satisfied. All plane bundles defined by 
this top are integrable. 

Another example is the following indexed pencil bundle on the Heisenberg group. 

Example 17. We represent the Heisenberg group as R 3 with the group operation 
(x, y, z) * (x t, yl, z ~) = (x + x t, y + y~, z + z ~ + x j ) ,  and with the metric for which 

a + x ~ ,  0~) is orthonormal. The tangent vector the system (Xl, X2, X3) = ( ~ ,  
field X = a lXl  + a2 X2 ÷ a3 X3 of a geodesic y in this space satisfies Vx X = 0, thus 

X(al) ----0, X(a2) = 0 ,  X(a3) =0 .  

So a geodesic y with unit speed is defined by ~(t) = alXl  + a2X2 -}- a3X3, for 
al,a2,a3 E R. 

Thus, the vector field X3 is geodesic and the rotation speed of  X~ about X3 along 
y is 

a3 
R y ( X I , X 3 )  -- 

2 '  

so it is constant and it only depends on the angle between X3 and p, that is, on a3, 
which is constant, too. 

The rotation speed of X3 about ~ along y is 

R×(X3, :~) = ~(a~ +a~) ,  

so it is constant, as a 2 + a 2 = 1 - a 2. 

Thus, (XI, X2, X3) defines a top on the Heisenberg group. 
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4. INDEXED PEN( ' IL BUNDLES AND TOPS 

We are now going to have a closer look at indexed plane pencil bundles. 

Definition 5 describes tops in a geometric way. We will now characterize them 

using Lie brackets, in order to have some additional working tools. This is done 

by Theorem 6, which implicitly gives us much important information about the 

manifolds which carry tops and about the plane bundles which are associated to 

tops, as a number o f  corollaries will show. 

We first need a lemma which relates several geometric properties o f  a vector field 

on a Riemannian manifold. 

Lemma 18. Let Z be a unitary vector.field on a Riemannian maniJbld. Then the 
Jbllowing conditions are equivalent: 

(i) Z is a Killing vector.field and its integral curves are geodesics. 
(ii) Along any geodesic V, the angle between ~ and Z is constant. 

(iii) For every orthonormal J?ame (Xl, X2, Z), there is a real-valued function k, 
such that [Z, XI] = kX2 and [X2, Z] = k X l .  

Proof .  (i) ~ (iii). Let (Xj,  X2, Z = X3) be an orthonormal frame on M. We write 

3 

I X i , X j l =  ~-~,'~/S,. 
k=l  

The integral curves o f  Z are geodesics if  and only if  V z Z  = 0, which is equivalent 

to c33J =~23'3 = 0. For all calculations of  this type, we write F~j = g(Vxl X j, Xk) and 

J c i (see, e.g., [5, p. 48]). we use the relation F~i = ~(c~j + c[i + kj) 
Z is a Killing vector field if  and only if for every pair o f  vector fields (X,Y) 

on M, we have g(VxZ,  Y) + g(X, VyZ) = 0, which means that c 1 31 = c~3 = 0 (for 
X = Y = X l a n d t b r X = Y = X 2 ) a n d c ~ 3 = c ~ l  ( f o r X = X l a n d Y = X 2 ) .  

(ii) ~ (iii). For a geodesic g with ) ( s )  = aj (s)X1 + a2(s)X2 + a3(s)X3, we have 

a 
__ , a2c, 22  a'a~(c~3 + 43) 3 ,ds(g(X3 ) ; ' ) )=g (V~)X3 ,? ) )=  1 1 3 + a 2 c 2 3  + - +ala3Cl3 

+ a2a3c~3. 

So the constancy of  the angle between Z and 9) along any geodesic y is equivalent 

to the property (iii). [] 

Remark.  It follows from this lemma that a unitary vector field which defines the 

axis bundle of  a top is a Killing vector field. 
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Proof  of Theorem 6. Let (X1, X2, X3) be a positively oriented orthonormal 
moving frame which defines a top. Again, we write the corresponding Lie brackets 
as  

3 

[ X i , X j ] = Z c ~ j X k .  
k=l 

Furthermore, let y be a geodesic such that ) has unit length. We write 
=a lX1  q-a2X2 +a3X3, where the ai are functions on M. We will express the 

geometric conditions of  Definition 5 in terms of  the functions c~j" 

(i) By Lemma 1 8, the property that the angle between X3 and ~ is constant along 
any geodesic y is equivalent to the identities C~l = c23 = C~l = c233 = 0 and 
c213 = c321 on M. In that case, it also follows that a3 is constant along y. 

(iv) Under the assumption that property (i) is satisfied, we have 

R×(XI, X3)=  alV21 + a2r221 + a3F21 

=alCll+a2c21 +a3(c~3-~c~2 ). 

(ii) 

Thus, the rotation speed of  X1 about X3 along F does not depend on the angles 
between p and X1 or X2, if and only ifc~j = c21 = 0. 
Suppose now that y is transverse to the axis bundle. If  properties (i) and (iv) 
are satisfied, we have 

R×(X3, f/) = a2g(Vf, X3, XI)  - alg(Vf, X3, X2) 

3 2 
= Cl2(al +05) .  

Thus, the constancy of  the rotation speed of X3 about ~ along y is equivalent 
to the constancy of  c~2 along V. Indeed, a 2 + a~ is constant along y, since a3 
is, by (i). As this is true for any choice of  y (transverse to X3), it follows that 
c~2 is constant on M if and only if the rotation speed of  X3 about ~ is constant 
along any geodesic y. 

(iii) Now we assume that properties (i), (ii) and (iv) are satisfied. So we have 

1 3 
Ry(XI , X3) = a3(cl3 - ~Cl2). 

Thus, the rotation speed of X l about X3 is constant along y if and only if c~3 
is constant along y. Again, it follows that c~3 is constant on M if and only if 
the rotation speed of X1 about X3 is constant along any geodesic y. [] 

Theorem 6 allows us to describe the nature of  the indexed plane bundles 
associated to a top as well as the manifolds where tops can be constructed. 
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We first prove Corollary 7, stated in the introduction. 

Proof of Corollary 7. Let (Sl, X2, X3) be a moving frame on M which defines T 
and so satisfies the relations (1). This defines on M a locally free action of the simply 

connected Lie group G whose Lie algebra is defined by these relations. According to 
the classification of Lie algebras of  dimension 3, these Lie algebras are s0 (3, R) (for 
ck > 0), 5[(2, R) (for ck < 0), the Lie algebra associated to E2 (for c = 0, k 7~ 0), 
the Lie algebra associated to Nil 3 (for c ¢ 0, k = 0), or R 3 (for c = k = 0). Any 
orbit of this action is diffeomorphic to a quotient of G by the stabilizer, which is a 
discrete subgroup. So every orbit is an open submanifold of M and its complement 

is a union of orbits, so it is open also. Hence, the orbit is a connected component 
of M and the action is transitive, M being connected. Thus, M is diffeomorphic to 

a quotient of one of the corresponding Lie groups by a discrete subgroup given by 

the isotropy subgroup of  a point of  M. 
On the other hand, given one of  these Lie groups, which we call G, and a discrete 

subgroup S, let (XI ,  X2, X3) be a global moving frame of  G, where each Xi is a 
left-invariant vector field coming from a generator of  the associated Lie algebra, 
such that ( 1 ) is satisfied for some constants c and k. In particular, this moving frame 
is invariant under the left-action of S. Hence, it induces a moving frame on the 
quotient S \ ~  which satisfies the relations (1). According to Theorem 6, there exists 

a t o p o n S \ G .  [] 

Corollary 19. All plane bundles defined by a given top are o f  the same nature. 

They are either integrable or contact structures. 

Proof. Let 0)1,0)2 and 0)3 be the dual forms associated to the vector fields Xi, X2 
and X3 of an orthonormal moving flame of M satisfying the relations (1), that is, 

(2) 

d0)3 = -c0)1 A 0)2, 

dco2 = --kco3 A o91, 

d0)~ = -k0)2 A 0)3. 

Then COl and 0)2 are the generating forms of the top which is determined by 
(Xi, X2, X3). The plane bundles defined by the trivialization of  this top are the 
kernels of  the forms co o = cos 00)1 + sin 00)2. 

If k = 0, then COl and 0)2 are integrable, as well as their linear combinations, so 
the pencil bundle is integrable. 

Ifk ¢ 0, then 0)1 and 0)2 are contact forms, as well as their linear combinations. So 

these two forms generate a contact circle S~! {0)j, 0)2} and the corresponding pencil 
bundle is a contact pencil bundle. [] 

Definition 20 (See [4]). A contact circle ,9,! {0)1,0)2} is called a K-Cartan structure 

if there is a 1-form 0)3 such that 

d0)l = o)2/~ 093, d0)2 ~- 0)3/~ 0)1 and d0)3 = K0)I /x 0)2, 
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for some real number K. In particular, a K-Cartan structure is taut. 

Corollary 21. Any contact top is defined by a K-Cartan structure, for K 
{-1,0,1}. 

Proofi In the proof of the preceding Corollary, we show that a contact top is always 
defined by a taut contact circle. This contact circle is in fact a K-Cartan structure, 
by (2), where K can be chosen as 0, 1 or -1 .  [] 

These results about contact tops can be related to Geiges' and Gonzalo's theorem 
about the classification of closed and orientable 3-manifolds which carry taut 
contact circles (see [2] or Section 1), in the following way. 

Corollary 7 implies that on all manifolds listed in this theorem taut contact circles 
exist, since any contact top is defined by a taut contact circle (see Corollary 21). 

On the other hand, Proposition 3.5 of [4] states that every conformal class of taut 
contact circles on a compact left-quotient of SL2 (resp. E2) contains a K-Caftan 
structure, for K = -1  (resp. 0). Such a conformal class is defined as the set of 
multiples of a given contact circle, that is, where both generators are multiplied by 
the same positive function. This does not change the associated contact structures, 
so a conformal class of taut contact circles defines a trivialized plane pencil bundle, 
which is a top if this conformal class contains a K-Cartan structure. Thus, on these 
manifolds, every taut contact circle defines a contact top. 

In the following sections, we are going to have a closer look on the metrics which 
can be associated to tops. The problems are the following: For which metrics can 
tops be constructed? How far does a given metric or a given top determine the tops 

and metrics we can associate to it? We will partially answer these questions in the 
following sections. 

5. SPINNING METRICS 

In the relations (1), Xi and X 2 play symmetric parts, so a metric for which a moving 
frame satisfying (1) is orthonormal has to be, in some sense, homogeneous around 
the vector field X3, that is, invariant by rotation about the axis given by X3. 

Let us see some examples of spinning metrics (see Definition 8): 

(i) A metric with curvature zero is a spinning metric, if there is a geodesic Killing 
vector field. An example is given by the flat metric on T 3. 

(ii) Let (YI, Y2, Y3) be a moving frame on ~3 which defines the usual metric and 
where Y3 is a geodesic Killing vector field. Then any metric for which the 
moving frame (aYl, aYe, bY3), with a, b 6 •*, is orthonormal, is a spinning 
metric. 

(iii) Another interesting case is the situation where the sectional curvature of the 
planes which contain Z is positive and where the plane orthogonal to Z 
has negative sectional curvature. An example of this type is given on the 
Heisenberg group (see Example 17). 
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R e m a r k .  Metrics with negative constant curvature are not spinning metrics, 

because they do not admit non-trivial Killing vector fields. According to the 

calculations in the proof  of  the following lemma, any plane which contains a pivot 

field has non-negative sectional curvature. 

L e m m a  22. Let g be a spinning metric on a maniJold M and let Z be a pivot 
.field of  g. ff" (Xi, X2, Z) is an orthonormal moving frame, the Lie brackets o f  these 
vector fields are o['the Jbllowing type: 

(3) 

.2 ,3 
[XI, X2I = cl2Xl if- { 12X2 q'-Cl2 Z,  

[X2, Zl = c~3Xj, 

[Z,  Xl ]  ~--- , '~3X2, 

where c~2 is a constant. 

Proof .  Lemma  18 implies that the Lie brackets satisfy (3) and it only remains to 

show that c~2 is a constant. 

In the following, we will use the curvature identities (see, for example,  [5, p. 69]) 

g(R(X, Y)Z, T) = g(R(Z,  T)X, Y), 

g(R(X, Y)Z, T) = -g(R(Y ,  X)Z,  T), 

g(R(X, Y)Z, T) = - g ( R ( X ,  Y)T, Z), 

where R(X, Y) = VxVy  - VyVx - Vlx, y I, and the relation (see [5, p. 45]) 

g(R(Xi,  Xj)Xk,  Xs) V~[FI FS _ l s ,,, s = z _ . ,  ,, 
l 

--  Z ./ s ~ij FIk" 
I 

A plane spanned by two vectors 

X = cos0Xi  + sinOX2 and 

Y = - sin ~o sin 0 X1 + sin ~p cos OX2 + cos ~pZ 

has sectional curvature 

- g ( R ( X , Y ) X , Y )  

= - s i n  2 qog(R(Xi, X2)XI,  X2) 
-- cos2 q~(cos2 Og( R( X l , Z)XI ,  Z) Jr- sin2 Og( R ( X2, Z) X2, Z) ) 

- 2cosOsinqocos~pg(R(X1, X2)XI, Z) 

- 2s in0  sincpcoscpg(R(X1, X2)X2, Z) 

- 2cos0  sinOcosZ~g(R(X1, Z)X2, Z) 
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(4) = sin2cp( 3 / , c  3 ,2 _ ,2) (c12) e (c 2) 
\ 

1 2 / 3 x 2  
+ ~COS q9~C12 ) 

+cosOsin~ocos~oX,(c~2 ) 

+ sin0 sin~p cos ~0X2 (c~2) 

+ cos0 sin0 cos e ~pZ (c~2). 

31 t) + c,ec23 - x (cle) + x ,  (c e 

As g is a spinning metric, this expression does not depend on 0, hence 

X,(c~e ) =0 ,  Xe(c~2 ) = 0 ,  Z(c~e ) =0 .  

Thus, c~2 is constant on M. [] 

Lemma 23. Let g be a spinning metric on a 3-manifold M. Let Z be a pivot field 
of  g, let ot be the sectional curvature of  any plane containing Z and let fl be the 
sectional curvature of  the plane which is orthogonal to Z. Then ot and/3 are the 
extremal sectional curvatures of  g and the sectional curvature of  a plane which 

forms an angle ~o with Z is 

O~ COS 2 ~0 -[-/3 sin e qg. 

Proof. This is another consequence of  the calculation of  the sectional curvature of  
an arbitrary plane for a spinning metric in the proof of  Lemma 22. [] 

From now on, when we talk about the extremal sectional curvatures ot and/3 of  
a spinning metric, ~ will be the sectional curvature of any plane which contains a 
pivot field Z, and/3 will be the sectional curvature of  the plane orthogonal to Z. 
This does not depend on the choice of Z, by Lemma 24 below. 

Theorem 9, stated in the introduction, specifies the close relationship between 
tops and spinning metrics. 

To prove it, we need the following lemma: 

Lemma 24. I f  g is a spinning metric on a 3-manifold M and i f  (M, g) is not a 
space of  constant curvature, then the pivot field of g is unique up to the sign. 

Proof. This is a consequence of  Lemma 23. [] 

Proof of Theorem 9. Let us see why g is a spinning metric if there is a top T on 
(M, g). Let T be defined by an orthonormal moving frame (X1, Xe, X3) satisfy- 
ing (1). So X3 is geodesic and Killing. According to the calculations in the proof of  
Lemma 22, the sectional curvature of the plane spanned by the vectors 

X =cos0X1 +sin0X2 and 

Y = - sin q9 sin OX1 + sin q9 cos O X 2  q- COS qgX3, 

318 



c 2 for arbitrary angles 0 and ~p, i s  COS2 qg-g - q- sin2~p(ck 3 2 - ~c ). This value does not 

depend on 0. The extremal sectional curvatures are 

(.2 
(5) c v = - -  and / 4 = c k - 3 c 2 ,  

4 4 

so they are constant. Hence, g is a spinning metric. 
Let now g be a spinning metric on M and Z an associated pivot field and let 

(X i, X2, Z) be a positively oriented orthonormal moving frame. By Lemma 22, 

these vector fields satisfy (3), where c~2 is a constant. 

The Jacobi condition yields 

X l  (c~3) 2 I - c,2%  + z ( G )  = o, 

(6) X2(c~3 ) .1 .1 +  ,2 23 + z ( G )  = o, 

z ( G )  = o. 

Moreover, the extremal sectional curvatures of  a spinning metric are constant, so 

3 1 2 3 I _ X2(c12 ) 4_X1(c~2 ) =const, (7) /4 : :  - x ( c~2 )  2 - ( t i e  ) - (c~2) 2 + c,2c23 

by (4). We modify (XI, X2, Z) by a rotation about Z. We obtain (Yi, Y2, Z), where 

Y l = c o s ~ X l + s i n 0 X 2  and 1 / 2 = - s i n 0 X i + c o s 0 X 2 .  

These vector fields satisfy 

[V,, Y21 = ( e l 2 -  X,Op))X, + ( c~2-  X2(O))X2 +c?2Z ,  

[Y2, Z] = (Z(O) ff-c213)YI, 

[z ,  r l l  = (Z(O)  + ( ' ~ 3 ) Y 2 ,  

To construct a top, we need to find a function ~ on M such that (gl, g2, Z) 
satisfies ( 1 ), that is, we have to integrate the following system: 

x ~ ( o )  = "12, 

x2(g,)  = ~'~2, 

where h is a real number such that/4 = c~2h - 3, .3 ,2 ~ t c  12) • 

Let c~ be the differential 1-form defined by c~ (Xi )=  c12, o r (X2)=  c~2 and 
ce(X~) = - c  I - 23 + h. Then the above system of  PDEs can be written as 

(8) d~/J = c~ 
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and there is a local solution if and only i fdu  = 0. This condition is equivalent to the 
first two equations of(6) and to (7). Thus, there is a local solution, hence a local top. 
Moreover, two local solutions ~Pl and ¢2 differ only by a constant rotation, since we 

have d(¢l  - ¢2) = ot - u = 0. So this local top is unique up to a reparametrization 
of  its defining family of  1-forms. 

I fh  = 0, this local top is integrable; i fh  ~ 0, it is a contact top. Ifc~2 = 0, we can 

choose h arbitrarily. In that case, we can locally construct both integrable tops and 
contact tops. 

There is a global solution of  Eq. (8) if and only if these local tops can 
be connected in a unique way, that is, if the integral of ot over every closed 
cycle in M is an integer multiple of  2re. This is true under our assumption that 

H~eRham(M)=O. [] 

6. METRICS COMPATIBLE WITH A GIVEN CONTACT TOP 

Let us now see how much freedom we have to choose a metric for a given top. 

On a manifold (M, g) with a given top, are there other metrics for which the same 

indexed pencil bundle defines a top? 

We are going to answer this question for contact tops only, because they 

are defined by round contact circles. This determines a privileged plane bundle 
transverse to the axis bundle of  the top, generated by the Reeb vector fields 
associated to the generating forms of  the contact circle. The roundness property 
implies that this plane does not depend on the choice of  these forms. We have the 
following result: 

Proposition 25. Let T be a contact top on a Riemannian 3-manifold (M, g). Then 
7" & a contact top for another metric gl i f  and only i f  the transition matrix between 

an orthonormal frame for g and an orthonormal frame for g' is o f  the following 

form: o) 
#8 0 , with c O ( 2 ,  R) and )~ ,# ,v~I~ .  
0 v 

Proof. Let (X1, X2, X3) be an orthonormal moving frame for g which defines T 
and thus satisfies (1) for some constants c and k. As T is a contact top, we have 

k 7~ 0. Then another moving frame (Yj, Y2, Y3) which defines the same indexed 
pencil bundle, can be written as 

YI = )~(otXl + fiX2), Y2 = # ( y X l  -[- ~X2), Y3 = vX3, 

where a, fl, Y and 3 are real numbers such that A := ~ -- fly ~ 0, and where )~, 
# and v are non-vanishing functions on M. Indeed, as T is defined by a taut, thus 
round, contact circle (by Corollary 21), Yl and Y2 span the same plane as Xl and X2. 
As (X1, X2, X3) satisfies (1), we have 

320 



Y1 (#) 
IY,, Y21- Y2(Z) YI + Y2+cA)~IZy3, 

Z /z v 

62)kY1 ( ~/2 eg~/-I-fl6 ) Y2(v) [y2, y3]_Izv( ) /2+ _ 113 ) + - - v k  Y2+ Ya, 
- Z A  A v " 

Y3(Z) egg + f l6vk )Y  l + ~.v(eg 2 +[32)kY2 Yl(v) 
IY3, YJl = Z A #A - Y3. 

Thus, (YI, II2, Y3) satisfies (1) for some constants ? and k" if and only if we have 

Z# 
Yj (#) = Y2(Z) = YI (v) = Y2(v) = 0, c - -  = const, V 
/z 2 +62)=  (eg2 
lZV Zv 
- -  =const, - -  =const, Izvk(egV +[36) + AY3(#) = 0 ,  

~vk(egV +/36) - AY3(~) = 0. 

So Z, lz and v are constant on M. Up to multiplying ~, and # by constant factors, 
we can assume that eg2 +/32 = V2 + 62 = 1. The above relations show that the 

O? matrix (/~ ~,)is an orthogonal matrix. Thus, (Y1, Y2, Y3)satisfies ( 1 ) i f  and only 

if the transition matrix of (YI,)/2, I/3) with respect to (X1, X2, X3) corresponds to 
an endomorphism of  the announced type. If g' is the metric for which (YI, 1"2, I13) 
is orthonormal, then 7- is a top for g', by Theorem 6. [] 

7. C L A S S I F I C A T I O N  PROBLEMS 
Another natural problem is the classification of  tops on a given Riemannian 
manifold. We will consider the question of  uniqueness: 

Can two orthonormal global moving frames on a Riemannian 3-manifold ( M, g) 
determine two d(fferent tops, that is, tops which are not related by an isometry or a 
reparametrization o f  the defining family of  l-Jbrms? 

Lemma 26. Two tops' which have the same axis bundle and the same spinning 
direction are related by a reparametrization of  the defining family of  1 :forms. 

Proof. Let Tl and T2 be two tops determined by two positively oriented orthonor- 
mal moving frames (XI, X2, Z) and (YI, Y2, Z), respectively, and let the associated 
constants be c, k and ?,/<. By (5), the metric determines these constants up to 
simultaneous multiplication by -1 ,  so we have c = s? and k = ek, with s = +1. 

The rotation speed of ~ and of Tz about their axis bundle along a geodesic y 

which forms an angle <p with the common axis bundle is given by 

R × ( X ~ , Z ) = ( k - 2 ) c o s  p and R y ( Y 1 , Z ) = s ( k - 2 ) c o s ~ o .  

As the spinning direction is the same, it follows that e = 1. 
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So the rotation speeds along all geodesics are equal, and the two tops can only 
differ by a fixed rotation around the axis bundle. This means that the second factors 
of the corresponding trivializations rl, r2 : 5 t" ~ M x ~1 (]~) differ by a constant 

translation in ~1 (R), which can be expressed by a reparametrization of the defining 
family of  1-forms. [] 

Remark.  It follows from this proof that two moving frames which determine two 
tops with the same axis bundle define the same orientation if and only if their 
associated constants c and k coincide. 

We will consider different situations with respect to the above uniqueness question: 

If  (M, g) is not a space of  constant curvature, Lemma 24 implies the uniqueness 

of  the axis bundle of  a top on M. In that case, Lemma 26 grants the uniqueness 
of  a top on M, up to reparametrization and spinning direction. 

On S 3 with the usual metric, any pivot field defines a contact top, by Theorem 9 
and the construction done in its proof. Furthermore, as two tops which are 
given by the same pivot field have the same axis bundle, they coincide up to 
reparametrization and spinning direction. So we have to determine whether 
there are geodesic Killing vector fields on 53 which are not isometric to each 
other. 
Let 53 be the unit sphere of  the space of  quaternions H. Its algebra of Killing 
fields is of dimension 6 and it is generated by the vector fields which to a point 
q associate the elements qi, q j ,  qk, iq, jq and kq of  TqS 3, respectively. 

Let v = alqi + azqj + a3qk + bl iq + bzjq + b3kq be a Killing vector field. Its 
integral curves are geodesics if and only if either al = a2 = a3 = 0 or bl = b2 = 
b3 = 0. Indeed, as the first three vector fields qi, qj and qk define a moving 
frame, any vector field can be written as w = aqi + bqj + cqk with functions 
a, b and c on M. w is geodesic if and only if a, b and c are constants. The same 
argument holds for the last three vector fields. 
Hence, a pivot field Z of  the usual metric on 53 is given either by alqi + 
a2qj + a3qk or by bliq + b2jq + b3kq, where the ai and bi are real numbers. 
Two unitary vector fields of  one of  these families are of  course isometric. 
To see whether two unitary vector fields of  different families are isometric, 

it is enough to consider the question for the vector fields Xq = qi and Yq = iq. 
A map f exchanges X and Y if Tfq(Xq) = Y f (q )  for any point q of 53. 

For f (ql ,  q2, q3, q4) = (ql, q 2 , - q 3 , - q 4 ) ,  the tangent map T f  satisfies this 
condition. 

We have proved the following uniqueness result: 

Proposition 27. On S 3 with the usual metric, all tops are isometric, up to spinning 
direction and reparametrization of  the defining family of  1-forms. 

• On a space M of  constant zero curvature, there might be non-isometric tops. 
In particular, an isometry transforms a closed curve into a closed curve. On 
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723, there are contact tops with closed integral curves and others whose integral 

curves are not closed. 

E x a m p l e  28 (Contact top on 723 with closed integral curves). On 7 ̀3 with the 

pseudo-coordinates (0j, 02, 03), we consider the contact pencil bundle associated to 

the contact circle o f  Example  12, for n = 1, generated by 

col = cOsOld02 + sinOid03 and o)2 = - sinOld02 + cOsOld03. 

An adapted moving frame is given by the Reeb vector fields of  col and co2 and by 

a third vector field which defines the axis bundle: 

0 0̀ 0̀ 0̀ 0̀ 
- - ,  R2 = - sin01 ~ 2  + cos01 1 ,  X = . Rl = cos01 ~ 2 + sin0t 003 003 `001 

The Lie brackets are [Ri, R2] = 0, [R2, X] = Rt and [X, Rl] = R2, so this moving 

frame determines a contact top on qr 3. The integral curves of  its axis bundle are 

the integral curves o f  X, that is, the curves defined by 02 = 03 = const, which are 

closed. 

E x a m p l e  29 (Contact top on 72 3 with non-closed integral curves). We modify  a 

little the above example to get a moving frame of  72 3 which defines the same metric, 

but determines a different top, whose integral curves are not closed. Let us consider 

the following moving frame: 

(2 RI cos(01 + 602) 6 0 '0 = + sin(01 + 602)--,  
2 003 

R2 = - s i n ( 0 ,  + 8 0 2 ) ( ;  60+1 ) +  cos(01 +602) 0̀ 
2 003 

0 0 
X-- + 6 - -  

;~0j ?)02" 

I f  6 is not a rational number, the integral curves of  X are not closed, but each one is 
dense on a 2-torus contained in 723. The Lie brackets are the following: 

IR, ,R21=0,  JR2, X] = (l +62)R,,  IX, = (1 +6:)R2, 

so this moving frame determines a contact top. It is defined by the round contact 

circle generated by the forms 

COl = cos(01 + c02)d(02 - 60j) + sin(01 + 602)d03 and 

CO2 = - sin(01 + eOz)d(02 - 601) + cos(01 + 602)d03. 

8. TOPS AND SASAKIAN GEOMETRY 

The study of  contact tops can be placed in the context o f  metric contact geometry. 

Therefore, it is suitable to examine the relations to Sasakian geometry. 
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Let (XI ,  X2, X3) be a moving frame which determines a top on (M, g) and thus 
satisfies (1). Let (col, oJ2, w3) be the dual 1-forms. Then for c # 0, w3 defines a 
K-contact structure, that is, the Reeb vector field X3 is Killing. In dimension 3, a 
manifold is Sasakian if and only if it is K-contact ([8]; see also [1, Corollaries 6.3 
and 6.5]), so in this case (M, g) is Sasakian. On the other hand, according to Itoh 
(see [6]), no torus can carry a K-contact structure. But we have examples of contact 
tops on q1 "3 (see Examples 28 and 29), which correspond to the case c = 0. 

So some tops define Sasakian structures and some do not, and the other way 
round a Sasakian structure (~, ~, 7, g) (see [1] for the notations) on a 3-manifold 
M defines a top in some cases and in others does not. Indeed, according to R. Lutz 
[7, §1.8], we can choose two vector fields X1 and X2 on M such that (X1, X2, ~) is 
an orthonormal moving frame satisfying the Lie bracket relations: 

[XI,  X2I -~- c~2Xl q'- c~2X2 -}- 2s e, [X2, ~] = c~3Xl, 
[~, a l ]  = c213X2, 

for some functions c{2, c12 2 and c213. 
In view of expression (4), g is then a spinning metric if and only if 

--(C12) 2 -  (6'122) 2 -[- 2c13- X 2 ( c 1 2 ) +  X1 (6.22) 

is constant on M, that is, if the Sasakian structure has constant sectional curvature. 
This is a necessary condition for the existence of a top on M, according to 
Theorem 9. Furthermore, the Lie bracket relations imply that ~ is a pivot field for 
this metric. Thus, locally there are vector fields -~1 and X2, such that (-~1, X2, ~) 
determines a top, as shown in the proof of Theorem 9. 
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