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Abstract 

We show that every 3-connected planar graph has a circular embedding in some nonspherical 

surface. More generally, we characterize those planar graphs that have a 2-representative embedding 

in some nonspherical surface. 

1. Introduction 

An embedding C#I of a graph G in a surface .Z that is not the sphere is p-representative 
if, for every noncontractible cycle r in Z, 1 r n 4 (G) 1 B p. A basic result in the theory of 

representativity is the following. 

Theorem 1.1. Any embedding of a planar graph in a surface other than the sphere is not 
3-representative. 

This result is proved by Robertson and Vitray [l]. See also [2]. A natural question, 

posed in [l] is: Which planar graphs have a 2-representative embedding in some 

surface other than the sphere? One of the main purposes of this article is to answer 

completely this question. The main part of this answer is the following theorem. 

Theorem 1.2. Every 3-connected planar graph has a 2-representative embedding in some 
surface other than the sphere. 

This is proved in Section 3. 

Standard results in the theory show that it suffices to consider the question 

for 2-connected graphs. For a 2-connected graph G, an embedding of G in some 
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nonspherical surface is 2-representative if and only if every face is bounded by a cycle 
of G. An embedding is circular if every face is bounded by a cycle. Thus, we are going 
to show, in Section 3, that every 3-connected planar graph has a circular embedding in 
some surface other than the sphere. (It is well-known that a circular embedding into 
the sphere exists.) 

Some of the interest in the Robertson-Vitray question arises from the connection 
with cycle double covers. A cycle double cover in a graph G is a list of cycles %? of 
G such that each edge of G lies in exactly 2 members of %. 

Conjecture 1.3. Every 2-edge-connected graph has a cycle double cover. 

The face boundaries of a circular embedding form a cycle double cover, so 
a conjecture that implies Conjecture 1.3 is the following conjecture. 

Conjecture 1.4. Every 2-connected graph has a circular embedding in some surface. 

Robertson and Vitray had hope of gaining insight into Conjecture 1.4 by consider- 
ing embeddings of planar graphs into surfaces other than the sphere. Unfortunately, 
our techniques do not shed light on Conjecture 1.4. 

The two known proofs of Theorem 1.1 rely on the structure of the embedding of the 
planar graph in the surface that is not the sphere. One can ask to what extent this is 
necessary. In Section 2, we shall prove the following result. 

Theorem 1.5. Let G be a 2-connected planar graph and let V be a cycle double cover of 
G such that no proper nonempty subset of %? forms a cycle double cover of a subgraph of 
G. If there is a cycle C in %? and an embedding 4 of G in the sphere such that C is not 
a face boundary of 4, then some other cycle C’ of Q? is such that CnC’ has two 
nonadjacent vertices. 

Theorem 1.5 is a generalization of Theorem 1.1, in that the face boundaries of 
a 2-representative embedding of a 2-connected graph form a cycle double cover 
satisfying the hypotheses of Theorem 1.5. If G is 3-connected (which is enough to 
prove Theorem l.l), then the two cycles C and C’ quickly yield the necessary 
noncontractible cycle that meets G in only 2 points. 

2. Proof of Theorem 1.5 

Proof of Theorem 1.5. Let G, Y?, C and 4 be as in the hypothesis of Theorem 1.5. In the 
embedding 4 of G, the curve 4(C) partitions 4(G) into the part inside 4(C), 4(C) itself 
and the part outside 4(C). Suppose, first, that no cycle of %? has an edge inside 4(C) 
and an edge outside 4(C). Then each cycle in @? either is inside or on 4(C) or is outside 
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or on 4(C). Let %?I denote the subset of %? consisting of the inside cycles and let 

‘%‘o contain the outside cycles. Thus, %? is the disjoint union of %‘,, %?o and {C}. 

Consider the symmetric difference of the cycles in V,. This must be a subset of C, 

and, therefore, is either C or empty. The same is true for the symmetric difference of 

the cycles in gO. Since %? is a cycle double cover containing C, exactly one of the 

symmetric differences is C and one is empty. Without loss of generality, we can assume 

that the symmetric difference of the cycles in 9, is empty. But this is a contradiction: 

%?, is a cycle double cover of a proper nonempty subgraph of G. 

It follows that some cycle C’ of %2 has an edge e,=u,w, inside 4(C) and an edge 

eo=uowo outside. Let the labelling be chosen so that C’- {e,, eo} consists of two 

paths, one joining uI to vo and the other joining the w’s, Each of these paths, travelling 

from the inside vertex, meets C for the first time, say at u and w. If uw is an edge of 

CnC’, then the subgraph of C’ consisting of the edges VW and el, together with the 

two subpaths used to locate u and w is a cycle that does not contain eo. This is 

impossible. 0 

For a cycle double cover %?, the dual graph is the graph with vertex set %? and two 

cycles in %’ are joined if they have a common edge. The hypothesis of Theorem 1.5 that 

no subset of %Y be a double cover of a proper nonempty subgraph of G is equivalent to 

the connection of the dual of g. 

It is not clear to what extent this hypothesis in Theorem 1.5 is necessary. Suppose 

four 3-connected graphs are pieced together in a ‘&-like way as illustrated in Fig. 1. 

A cycle double cover for the resulting graph can be obtained from the face boundaries 

of each of the four graphs separately. These are not the face boundaries of the planar 

embedding of their union, yet no two cycles of the cover intersect in nonadjacent 

vertices. In this case, the dual has four components. We know of no 3-connected 

planar graph G with a cycle double cover % such that the dual of %’ has fewer than four 

components and no two cycles in V? intersect in nonadjacent vertices. 

Fig. 1. 
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3. Proof of Theorem 1.2 

Theorem 1.2. Every 3-connected planar graph has a circular embedding in some surface 

other than the sphere. 

Proof. The following result is standard and forms the core of our arguments. 

Lemma 3.1. If C and C’ are twoface boundaries of an embedding of a 3-connected graph 

in the sphere, then CnC’ is empty, a single vertex or an edge with its two ends. 

Let G be a 3-connected planar graph. By standard arguments, some face of G in an 

embedding in the sphere has length at most 5. We consider two possibilities. 

Case 1: Some face has length 3. Let ei, i= 1, 2, 3, be the edges and let vi, i= 1,2,3, be 

the vertices incident with a face of length 3, so that, modulo 3, ei is incident with vi and 

Oi+l. Let Ci be the other face boundary containing ei, i = 1,2,3. 

Lemma 3.1 implies that, again taking indices modulo 3, vi+2 is not a vertex of Ci. 

This implies that Ci = (Ci - ei) u Pi is a cycle, where Pi is the path of length 2 joining 

vi and vi+1 through vi+ 2. We exhibit a new embedding of G. 

Replace the triangular face and the three faces bounded by the Ci with three faces 

bounded by the C:. This amounts to putting a crosscap in the middle of the triangular 

face and putting each of the ei through the crosscap so as to switch their orders in each 

of the rotations around the Vi. If follows that G has a circular embedding in the real 

projective plane. End of case 1. 
Case 2: There is no face of length 3. Then, for k either 4 or 5, there is a face 

of length k. 
Let C be a cycle of length k bounding a face and let its edges in order be e, , . . . , ek, 

with ei again being incident with Vi and Ui+l. (Of course the indices are to be read 

modulo k.) Let Ci be the cycle bounding the other face incident with ei. We now prove 

that at most one of CL n Ci+ 2 and Ci + 1 n Ci+ 3 is nonempty. 

For ease of notation, assume i = 1 and that both C1 n CJ and C2 n C4 are nonempty. 

If C1 n C3 consists of an edge with its ends v and w, choose the labelling so that, in 

C1 - e, , 2) is nearer v1 than w. This implies that u is nearer u4 than w is in C3 - e3. If 

C1 n C3 is a single vertex, let this vertex be labelled with both v and w. 

Let PI be the path in C, -el joining v1 to u and let P2 be the path joining v2 to w. 

Similarly, in C3 - e3, P3 joins uj to w and P4 joins v4 to o. Let 6, = P2 u P3 + e2 and let 

c2=P1uPquP, where P is the path (u1,v2,v3,v4). Evidently, both c, and 

c, separate the faces bounded by C2 and Cq. 

Let x be a vertex in C2 n C4. Then x must be in both c, and c, , and is not one of 

the ui. This implies that u= w = X. Therefore, v is common to C1 and C2, so that, by 

Lemma 3.1, vu2 is an edge of Cz . Similarly, vu3 is an edge of C2, so that C2 is a triangle, 

the required contradiction. 

In the case k = 4, we can conclude that at least one of C1 n C3 and C2 n C4 is empty. 

We assume, without loss of generality, that it is the former. It follows that 
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(a) (b) 

Fig. 2. 

6=(C, -e,)u(C, --e3)+(ez, e4) is a cycle. Also a cycle is C; obtained from Cz by 

replacing ez with the path (uz,v1,u4, 03). Similarly, replacing e4 with the path 

(u4, uj,u2, vr) turns C4 into a cycle C&. Replacing C and the Ci with three faces 

bounded by 6, Ci and Ck produces a circular embedding of G in the Klein bottle. 

This is illustrated in Fig. 2, where Fig. 2(a) is the neighbourhood of the face bounded 

by C in the plane and Fig. 2(b) has modified this by the addition of two crosscaps and 

a redrawing of the four edges ci. 

In the case k = 5, suppose there are two Ci n Ci+ 2 that are nonempty. Then they 

must have one index in common, so they are, say, C3 n C5 and C5 n Cz. In this case, 

we can conclude that C2 n C4 and C1 n C3 are both empty. If at most one Ci n Ci+ 2 is 

nonempty, then we can assume without loss of generality that any such involves C5. 

Thus, again we have that C2 n C4 and Ci n C3 are empty. Thus, in every case we can 

assume that Cz n C4 and C1 n C3 are empty. 

For 1 ,< i <j < 5, let P(j, j) denote the path (Ui, Ui+ 1, . . , Vj) and let P( j, i) denote the 

path (Uj,Uj+l,...,~g,U1,...,Vi). Let C; =(C, -el)u(C,-e3)uP(4, l)uP(2, 3), 

Ci=(C2-e2)u(C4-e4)uP(5, 2)uP(3,4) and C;=(C,-e,)uP(l, 5). It is verified 

readily that these are all cycles in G and, replacing C and Ci with the three C: yields 

a new embedding of G in the sphere with 3 crosscaps. This embedding is obtained 

from the original planar embedding by adding three crosscaps and redrawing the 

edges el , . . . ,e5 as illustrated in Fig. 3. 0 

4. Planar graphs with 2-representative non-spherical embeddings 

In this section we characterize completely those planar graphs that have a 2- 

representative embedding in some surface other than the sphere. 

We begin by noting that standard arguments about the representativity of an 

embedding (as given in [l]) show that if 4 is a 2-representative embedding of a graph 
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Fig. 3. 

G in some surface C, then there is a block B of G such that the induced embedding 

$(B) in C is also 2-representative. The other blocks are drawn in a planar way in the 

faces of 4(B). The consequence is that if G is planar and not 2-connected, then G has 

a 2-representative embedding in some surface if and only if some block of G has such 

an embedding. Thus, we may assume G is 2-connected. 

The structure of 2-connected graphs has been described by Tutte [3]. Every 

2-connected graph has a unique decomposition into what we shall call 3-blocks. 

A 3-block is either a 3-connected graph, or a cycle of length at least 3 or a bond with at 

least 3 edges. (A bond is a graph on 2 vertices such that every edge has distinct ends.) The 

idea behind the decomposition is to find a 2-separation (H, K) in the graph, i.e. a pair of 

subgraphs H and K such that G = H u K, H n K consists of two isolated vertices v and 

w and each of H and K have at least two edges. We then split G into the two graphs 

H + VW and K + VW. Repeat with these new graphs until there is no 2-separation. 

The new edge VW must be added each time; it is the virtual edge of the 2-separation. 

After we have decomposed, we wish to avoid the situation where two cycles (or two 

bonds) share a virtual edge. If C, and Cz are two cycles among the resulting graphs, 

and they have a virtual edge e in common, replace these two cycles with the single 

cycle (C, u C,) - e. Similarly for two bonds sharing a common virtual edge. Eliminat- 

ing all such occurrences produces the desired list of 3-blocks. 

Suppose (H, K) is a a-separation of a graph G, with H and K having the vertices 

v and w in common. If H + VW and K + VW each have circular embeddings, then so does 

G. Such an embedding of G can be obtained by gluing the two embeddings together 

along the virtual edge VW and then deleting VW. If either of the surfaces involved is not 

the sphere, then the embedding of G will not be in the sphere. 

The following fact is immediate from Theorem 1.2 and the above remarks. 

Theorem 4.1. Let G by a 2-connected planar graph such that some 3-block is 
connected graph. Then G has a 2-representative embedding in some surface other 
the sphere. 

a 3- 
than 
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There are some 2-connected graphs which have no 2-representative embed- 

dings. The cycles and bonds are examples. (Every cycle double cover comes from the 

face boundaries of some planar embedding.) On the other hand, we have the 

following fact. 

Lemma 4.2. If G is obtainedfrom a cycle of length at least 3 by doubling every edge, then 
G has a 2-representative embedding. 

Proof. Let G be obtained from the cycle of length n by doubling every edge, so G has 

n vertices and 2n edges. Let the cycle have, in order, the edges el , . . . , e, and let the two 

copies of ei in G be denoted ef and e’. We distinguish two cases. 

Case 1: n is even. Let C1 be the cycle consisting of the edges ef and let Cz be made 

up of the e:. Let C3 be the cycle with edges ef if i is odd and e’ if i is even. Finally, let 

C4 have the e! if i is even and the e’ if i is odd. We claim these four cycles are the face 

boundaries of an embedding of G. 

To see this, let each bound a disc and identify the disc boundaries as indicated by 

the edges of G. At the vertex vi of G incident with the four edges e_i and ei+ 1, j = 1,2, 

these discs give the rotation (ef , ei+ 1, e?, ef+ 1 , ) so that the topological space made up 

from the identified discs is a surface, as claimed. (The surface in this case is orientable 

with (n - 2)/2 handles.) 

Case 2: n is odd. Let C1 be the cycle consisting of the edges ef and let CZ be the 

cycle made up of e: and the edges ef , i = 2, . . . , n. Let C3 contain the edges e: if i is odd 

and e! when i is even. Finally, C4 has e:, e! if i is odd and i > 1 and e’ if i is even. As in 

case 1, these cycles form the face boundaries of an embedding in some surface. (In this 

case, the surface is nonorientable with n-2 crosscaps.) 0 

Observe that the 3-blocks of the graph obtained by doubling every edge of the 

n-cycle are an n-cycle and n bonds, each bond having 3 edges. Every edge of the n-cycle 

is a virtual edge. We are now prepared for the final characterization. 

Theorem 4.3. A a-connected planar graph G has a 2-representative embedding if 
and only if either some 3-block is 3-connected or some 3-block is a cycle of virtual edges. 

Proof. The ‘if’ direction follows immediately from Theorem 4.1, Lemma 4.2 and the 

observation that if no 3-block is 3-connected then every virtual edge joins a cycle and 

a bond. 

For the ‘only if’, let G be a 2-connected planar graph such that no 3-block is 

3-connected and no 3-block is a cycle with only virtual edges. We shall show that 

G has no 2-representative embedding. 

Suppose, to the contrary, that some such G has a 2-representative embedding. 

Choose G to have the minimum number of edges. Then every 3-block is either a 

bond or a cycle. As G cannot be either a bond or a cycle, G has more than one 

3-block. 
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Let T be the graph whose vertices are the 3-blocks of G and the edges of Tare the 

virtual edges, each of which joins the two 3-blocks containing it. Then T is a tree. Let 

B be a 3-block that is a leaf vertex of T, containing the virtual edge e. 

If B were a cycle, then the graph obtained from G by replacing the path B-e with 

e would have fewer edges (B-e must have length at least 2). It would also have 

a 2-representative embedding, and so be a smaller counterexample. Hence, B is a 

bond. 

Let C be the other 3-block containing the virtual edge e. Then C is a cycle and so 

some edgefof C is not a virtual edge. Consider the 2-representative embedding of G. 

There are two face boundaries, M and N, which contain the edgef: These are cycles of 

G. As every cycle of G throughfmust contain an edge of B - e, this is true in particular 

of M and N. Also, any cycle of G through an edge of B -e either is a digon in B-e or 

contains5 It follows that the cycles M and N use different edges in B-e and that the 

other boundary cycles through B-e are all digons. Therefore, we can obtain a 2- 

representative embedding (in the same surface) of the graph obtained from G by 

deleting all but one edge of B-e from G. This would be a smaller counterexample, 

which is the desired contradiction. 0 
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