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We analyze the observed shell gaps in N = Z nuclei determined from the binding energy differences.
It is found that the shell gaps can be described by the combined contributions from the single-particle
level spacing, the like-nucleon pairing, and the proton–neutron pairing interaction. This conclusion is
consistent with that of Chasman in [R.R. Chasman, Phys. Rev. Lett. 99 (2007) 082501]. For the double-
closed shell N = Z nuclei, the single-particle level spacings calculated with Woods–Saxon potential are
very close to those obtained by subtracting the nn pairing interaction from the observed shell gap. For
the sub-closed or non-closed shell N = Z nuclei, the pn pairing interaction is shown to be important for
the observed shell gaps.

© 2008 Elsevier B.V. Open access under CC BY license.
A long-standing problem in nuclear structure is that for the
double-closed and sub-closed shell nuclei the single-particle en-
ergy-level orderings and spacings obtained from mean-field calcu-
lations underestimate the observed shell gaps. The observed shell
gaps are defined by taking differences of ground-state masses,
which are usually given as twice the odd–even mass difference ex-
tracted from the binding energy. However, this method assumes
that there are no many-body effects involved in the mass differ-
ences at the closed shell. Chasman [1] has recently investigated
this problem, and pointed out that the correlation energy due
to pairings can resolve this discrepancy. As addressed in Ref. [1],
there are changes in binding energy due to many-body effects
even for double-closed shell nuclei. In this Letter, two main in-
teractions have been considered to affect the observed shell gaps:
One is the pairing interaction in like nucleons (neutron–neutron
(nn) and proton–proton (pp)), and the other is the proton–neutron
(pn) pairing interaction. Previously, one of us (K.K.) studied [2–4]
these empirical interactions in N ≈ Z nuclei using the odd–even
mass difference and the double difference of binding energies [5,6],
which is different from the other one [7].
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A typical indicator for T = 1 nn pairing interactions is well
known, which is given by the following three-point odd–even mass
difference:

Δ
(3)
n (Z , N) = (−1)N

2

[
B(Z , N + 1)

− 2B(Z , N) + B(Z , N − 1)
]
, (1)

where B(Z , N) is the negative binding energy of a nucleus. Ac-
cording to the standard BCS theory for the nn pairing gap Δn ,
B(Z , N ± 1) ≈ B(Z , N) + Δn ± λn . Therefore, Δ

(3)
n (Z , N) is roughly

Δn . Thus, Δ
(3)
n is often interpreted as a measure of the empirical

nn pairing gap. However, because of the odd–even staggering ef-
fect, values of Δ

(3)
n (Z = even, N) are large for even-N and small

for odd-N nuclei. It has been suggested [8,9] that the three-point
odd–even mass difference for an odd-mass nucleus with neutron
excess is an excellent measure of pp and nn pairing interactions
in neighboring even–even nucleus, although it is still controversial
[10]. Thus, the differences of Δ

(3)
n in adjacent even- and odd-N nu-

clei reflect the mean-field contributions. To extract the mean-field
shell gap, we can apply this idea to the even–even N = Z nuclei.

Fig. 1 shows experimental values of Δ
(3)
n obtained by using

Eq. (1). We plot Δ
(3)
n (Z , Z) and Δ

(3)
n (Z , Z + 1) for the even–even

N = Z and the adjacent odd-mass N = Z + 1 nuclei ranging from
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Fig. 1. (Color online.) Experimental odd–even mass differences Δ
(3)
n (Z , Z) for even–

even N = Z nuclei, and Δ
(3)
n (Z , Z + 1) for the neighboring odd-mass N = Z + 1

nuclei, plotted as functions of mass A = 2Z and A = 2Z + 1, respectively.

A = 12 to A = 61. It can be seen that the large Δ
(3)
n (Z , Z) in N = Z

nuclei decreases steadily with increasing particle number. The ex-
pected quenching in the nn pairing interaction at the magic or
semi-magic number N or Z = 14 and 28 is clearly seen. As also
observed from the figure, the differences between Δ

(3)
n (Z , Z) and

Δ
(3)
n (Z , Z + 1) are remarkable. The N = Z nuclei have additional

binding energy due to the so-called Wigner effect. The differences
in Δ

(3)
n between neighboring even- and odd-N nuclei reflect the

single-particle (mean-field) contributions and the correlation ener-
gies.

To investigate the physical source of the differences between
Δ

(3)
n (Z , Z) and Δ

(3)
n (Z , Z + 1), we first adopt a spherical single-

particle model without considering the two-body interactions. In
this case, the binding energy is simply expressed as

Bsp(N) =
∑

j

N jε j, (2)

with N j and ε j being the occupation number and single-particle
energy, respectively, and the particle number N = ∑

j N j . In a
double-closed and sub-closed shell nucleus with N = Z , energy
levels are fully occupied up to the level j0, while in the neigh-
boring odd-N = Z + 1 system, the last neutron occupies the next
level j1. This implies

Δ
(3)
sp (N = Z + 1) = 0,

Δ
(3)
sp (N = Z) = 1

2
(ε1 − ε0), (3)

where ε0 and ε1 are the level energies for j0 and j1, respec-
tively. Thus, for the double-closed and sub-closed shell nuclei with
N = Z , the indicator (1) vanishes for N = Z + 1, but gives half of
the single-particle level spacings for N = Z . On the other hand, for
non-closed shell nuclei with N = Z particles partially occupy the
last level j0. The odd–even mass difference is then expressed as

Δ
(3)
sp (N = Z + 1) = 0,

Δ
(3)
sp (N = Z) = 0. (4)

This means that the single-particle energies do not contribute to
the odd–even mass difference or the observed shell gap for non-
closed shell nuclei with N = Z . It is important to note that polar-
ization effects for odd-A nucleus may affect the filters (3) and (4).
For this reason, the formulae (3) and (4) are considered as approx-
imations.
Fig. 2. (Color online.) Comparison of shell gaps in magic and submagic nuclei. For
each nucleus, the quantities are ordered (from left to right) as the observed gap
2Δ

(3)
n (Z , Z), the extracted gap 2δΔ

(3)
n (Z , Z), and the calculated WS spacing δεWS.

The many-body contributions beyond the single-particle model
are characterized by the amount that deviates from Eq. (3). By
subtracting the many-body contributions from the indicator (1)
at N = Z and N = Z + 1, we may obtain information about the
single-particle level spacing. Since for non-double-closed or non-
sub-closed shell nuclei both values in (3) vanish in a single-particle
model, the many-body contributions are dominated by the odd–
even mass difference in these nuclei.

We consider the observed shell gap defined as twice the odd–
even mass difference Δ

(3)
n (Z , Z). By subtracting the nn pairing gap

Δ
(3)
n (Z , Z + 1) ≈ Δn from Δ

(3)
n (Z , Z), we can define the extracted

gap as

δΔ
(3)
n (Z , Z) = Δ

(3)
n (Z , Z) − Δ

(3)
n (Z , Z + 1). (5)

In Fig. 2, we plot twice the observed shell gap 2Δ
(3)
n (Z , Z), twice

the extracted gap δΔ
(3)
n (Z , Z), and the single-particle spacing

δεWS, for the double-closed and sub-closed shell nuclei ranging
from A = 12 to A = 56. Comparing the extracted gaps with the
single-particle spacings δεWS obtained from a Woods–Saxon (WS)
potential, we can see that the agreement between these two quan-
tities is fairly good for the double-closed shell nuclei 16O, 40Ca, and
56Ni. This is expected because the nn pairing interaction is dom-
inated in these nuclei and any other interactions would be small
due to the large shell gaps. Thus, for the double-closed shell nuclei,
the nn pairing interaction is considered to be the extracted gaps
δΔ

(3)
n (Z , Z). For sub-closed shell nuclei such as 12C and 28Si, how-

ever, the difference between the extracted gaps and the Woods–
Saxon calculations, defined as

δΔn(Z , Z) = δΔ
(3)
n (Z , Z) − 1

2
δεWS, (6)

is quite large. This suggests that the many-body interactions be-
yond the nn pairing interaction would be significant. It should be
mentioned here that the WS potential model is by no means a
consistent microscopic mean-field model. A recent paper [11] has
demonstrated that the single-particle energies can be improved
systematically by refitting the spin–orbit and tensor part of the en-
ergy density functional method. Inclusion of the tensor effect may
modify the shell gaps in sub-closed-shell nuclei.

Next, we study the many-body effects in the shell gaps for the
sub-closed and non-closed shell N = Z nuclei. The odd–even mass
differences in even–even N = Z nuclei are larger than those in the
neighboring even–even N = Z + 2 nuclei, which reflects the gain
in pairing energy due to stronger pn interactions in N = Z sys-
tems [2] and is referred as the Wigner energy [12]. The previous
work [2] studied the indicator (1) for the Cr isotopes by performing
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Fig. 3. (Color online.) The pn pairing gaps estimated from the double differences of
experimental binding energies. The open triangles denote the T = 0 pn pairing gap,
while the solid circles the T = 1 pn pairing gap. The odd–even mass differences in
odd-mass nuclei with N = Z + 1 are shown by the open squares.

shell model calculations, and suggested that the pn pairing inter-
actions play an important rule for the odd–even mass difference as
well as the nn pairing at N = Z . To describe the pn pairing interac-
tions in odd–odd N = Z nuclei, we estimate the following double
difference of binding energies [2–6]:

Δ
(4)T
pn (Z , N) = (−1)N

2

[
B(Z , N)T − B(Z , N − 1)

− B(Z − 1, N) + B(Z − 1, N − 1)
]
, (7)

where B(Z , N)T is the binding energy of the lowest state of isospin
T in odd–odd N = Z nuclei. Fig. 3 shows such double differences
calculated from the experimental binding energies. The odd–even
mass differences for odd-mass nuclei are also displayed. One sees
that Δ

(3)
n (Z = even, Z +1) agrees with Δ

(4)T =1
pn (Z +1, Z +1), which

means that the T = 1 pn pairing interaction for odd–odd N = Z
nuclei have the same interaction energy as the nn pairing interac-
tion, namely Δn = Δ

(4)T =1
pn , if isospin symmetry is assumed. Thus,

the indicator Δ
(4)T =1
pn provides the T = 1 pn pairing gap in N = Z

nuclei. Similarly, Δ
(4)T =0
pn can be regarded as the T = 0 pn pair-

ing gap. Fig. 3 further suggests that for the ground states of sd
shell nuclei, the T = 0 pn interactions are stronger than the T = 1
pn interactions, whereas an opposite situation occurs in the pf
shell nuclei where the T = 1 pn interactions are stronger. Thus, the
T = 0 pn pairing gap Δ

(4)T =0
pn cannot be explained by the T = 1

pairing Hamiltonian.
In Fig. 4, we compare the extracted gap obtained from Eq. (5)

with the pn pairing gap Δ
(4)T
pn (Z + 1, Z + 1) after subtracting the

WS single-particle spacing from δΔ
(3)
n (Z , Z). One can see that

overall, the extracted gaps correlate fairly well with the pn pairing
interaction, with only two exceptions 20Ne and 24Mg (see discus-
sions below). Thus, we may conclude that Δ

(3)
n (Z , Z) generally

contains contributions from the single-particle spacing δε, the nn
pairing gap Δn , and the pn pairing gap Δpn:

Δ
(3)
n (Z , Z) = 1

2
δε + Δn + Δpn. (8)

It is important to note that Δpn ≈ 0 for the double-closed shell
nuclei and δε ≈ 0 for the non-closed shell nuclei.

Using shell model calculations with the USD interaction in the
sd shell, we now explain why the extracted gaps of 20Ne and 24Mg
in Fig. 4 are larger than the pn pairing interaction. To understand
Fig. 4. (Color online.) Comparison of the extracted gap with the pn pairing inter-
action. The solid squares and solid circles are for non-closed and sub-closed shell
nuclei, respectively. For the extracted gap of sub-closed shell nuclei, we subtracted
the WS part from the extracted gap δΔn(Z , Z), using Eq. (6).

this, we first extract the J = 0 pairing and monopole interaction
from the USD interaction [13]

H pm = H0 + H p + Hm. (9)

In Eq. (9), H0 is the single-particle Hamiltonian and the pairing
term H p has the J = 0 components of the two-body matrix el-
ements 〈a,b, J , T |V |a,b, J , T 〉 in the USD interaction. Hence the
matrix elements of the monopole interaction Hm take the form

V T
m(a,b) =

∑
J (2 J + 1)〈a,b, J , T |V |a,b, J , T 〉

∑
J (2 J + 1)

, (10)

where a,b are single particle orbitals and the J = 0 components
are neglected from the summation. The residual interaction is
then defined by Hres = H − H pm . It is well known that this in-
teraction is dominated by the multipole interactions such as the
quadrupole, octupole, and hexadecapole interactions [14]. In this
sense, the residual interaction Hres provides the collective corre-
lations [15,16]. On the other hand, the monopole interaction does
not lead to the collective correlations but it is important for the
binding energy. It has been shown [2–4] that the T = 0 matrix
elements of the monopole field V T

m(a,b) are significantly larger
than those with T = 1, and are very important in determining
the double differences of binding energies [6–8]. We can see that
the matrix elements are quite large for the isoscalar components
but small for the isovector components [3]. In the USD interaction,
the monopole matrix elements (10) with T = 0 have values about
−3 MeV and are strongly attractive, while the T = 1 monopole
components are quite small.

The experimental and theoretical odd–even mass differences
Δ

(3)
n (Z , Z) for N = Z nuclei in the sd-shell region are compared

in Fig. 5. The calculated results with the USD interaction repro-
duce very well the odd–even mass difference for the N = Z nuclei.
The shell model calculations with the J = 0 pairing and monopole
interactions are in good agreement with the experimental values
for 28Si, 32S, and 36Ar, but not for 20Ne and 24Mg. It is obvious
that the differences for 20Ne and 24Mg are attributed to the resid-
ual interaction Hres, and are consistent with the previous finding
that the extracted gaps are larger than the pn pairing interactions
in Fig. 4.
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Fig. 5. (Color online.) Comparison of the odd–even mass difference Δ
(3)
n (Z , Z) for

N = Z nuclei in the sd-shell. For each nuclide, the ordering is the experimental
values, the calculated values in the USD interaction, and the calculated values in
the H pm interaction.

To summarize, we have studied in detail the observed shell
gaps determined from the binding energy differences for N = Z
nuclei. We have shown that the observed shell gaps can be de-
scribed by the single-particle level spacing, the nn pairing interac-
tion, and the pn pairing. This conclusion is consistent with that of
Chasman [1]. In particular, the pn pairing interactions are impor-
tant for the non-closed and sub-closed shell nuclei, while they can
be neglected for double-closed shell nuclei. For 20Ne and 24Mg, it
has been found that the residual interactions after removing the
J = 0 pairing and monopole interactions contribute to the shell
gaps as well. Although we have considered in this Letter the neu-
tron shell gap only, similar conclusions for the proton shell gap can
also be obtained.
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