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1. Introduction

This paper is about the connection between the circuit theory of 4-regular multigraphs and the

elementary linear algebra of symmetric matrices over the two-element field GF(2).

Definition 1. A square matrix S = (sij) with entries in GF(2) is symmetric if sij = sji for all i �= j. S is

zero-diagonal if sii = 0 for all i.

As GF(2) is the only field that concerns us, we will often omit the phrase “with entries in GF(2)."
Symmetric matrices are important to us because they arise as adjacency matrices of graphs, and

for our purposes it is not important if the vertices of a graph are listed in any particular order. That is,

if V is a finite set then we regard a V × V matrix as a function V2 → GF(2). Of course wemust impose

an order on V in order to display a matrix.
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Many zero-diagonal symmetric matrices are singular, and consequently do not have inverses in the

usual sense. Nevertheless matrix inversion gives rise to an interesting relation among zero-diagonal

symmetric matrices.

Definition 2. Let S be a zero-diagonal symmetric matrix. A modified inverse of S is a zero-diagonal

symmetric matrix obtained as follows: first toggle some diagonal entries of S to obtain an invertible

symmetric matrix S′, and then toggle every nonzero diagonal entry of (S′)−1.

Here toggling refers to the function x �→ x + 1, which interchanges the elements of GF(2).
The relation defined by modified inversion is obviously symmetric, but examples indicate that it is

not reflexive or transitive.

Example 3. For each of these four matrices, the set of modified inverses consists of the other three.
⎛
⎜⎜⎜⎝

0 1 1

1 0 1

1 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 1 1

1 0 0

1 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 0 1

0 0 1

1 1 0

⎞
⎟⎟⎟⎠

Example 4. The modified inverses of the first of the following three matrices include the other two,

but not itself. The modified inverses of the second include the first, but not itself or the third. The

modified inverses of the third include the first and itself, but not the second.
⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 1

0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Definition 2 yields an equivalence relation in the usual way.

Definition 5. Let S and T be zero-diagonal symmetric GF(2)-matrices. Then S ∼mi T if T can be

obtained from S through a finite (possibly empty) sequence of modified inversions.

We recall some relevant definitions from graph theory. In a 4-regular multigraph every vertex is of

degree 4. Loops and parallel edges are allowed; a loop contributes twice to the degree of the incident

vertex. In order to distinguish between the two orientations of a loop it is technically necessary to

consider half-edges rather than edges;wewill often leave it to the reader to refine statements regarding

edgesaccordingly.Awalk in a4-regulargraph is a sequencev1, h1, h′
2, v2, h2, h′

3, . . . , hk−1, h′
k, vk such

that for each i, hi and h′
i are distinct half-edges incident on vi, and hi and h′

i+1 are half-edges of a single

edge. The walk is closed if v1 = vk . A walk in which no edge is repeated is a trail, and a closed trail is

a circuit. An Euler circuit is a circuit that contains every edge of the graph. Every connected 4-regular

multigraphhas Euler circuits, and every 4-regularmultigraphhas Euler systems, each ofwhich contains

one Euler circuit for every connected component of the graph.

For example, Fig. 1 illustrates two Euler circuits in a connected 4-regular multigraph. These two

Euler circuits illustrate the following.

Definition 6. If C is an Euler systemof a 4-regularmultigraph F and v ∈ V(F) then the κ-transform C∗v

is the Euler system obtained by reversing one of the two v-to-v trails within the circuit of C incident

at v.

The κ-transformations were introduced by Kotzig [34], who proved the fundamental fact of the

circuit theory of 4-regular multigraphs.
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Fig. 1. A 4-regular multigraph with two of its Euler circuits. To trace an Euler circuit, maintain the dash pattern while traversing each

vertex. (The dash pattern may change within an edge, though.)

Theorem 7 (Kotzig’s theorem). All the Euler systems of a 4-regular multigraph can be obtained from any

one by applying finite sequences of κ-transformations.

In this paper our attention is focused on 4-regular multigraphs, but we should certainly mention

that the reader interested in general Eulerianmultigraphswill find Fleischner’s books [21,22] uniquely

valuable. In particular, Theorem VII.5 of [21] generalizes Kotzig’s theorem to arbitrary Eulerian graphs.

The alternanceor interlacement graph I(C) associated to anEuler systemC of a 4-regularmultigraph

F was introduced shortly after Kotzig’s work became known [7,19,42]. Two vertices v �= w of F are

interlaced with respect to C if and only if they appear in the order v . . .w . . . v . . .w on one of the

circuits included in C.

Definition 8. The interlacement graph of a 4-regular graph F with respect to an Euler system C is the

simple graph I(F, C) with V(I(F, C)) = V(F) and E(I(F, C)) = {vw | v and w are interlaced with

respect to C}. The interlacement matrix of F with respect to C is the adjacency matrix of this graph;

when no confusion can arise, we use I(C) to denote both the graph and the matrix.

A simple graph that can be realized as an interlacement graph is called a circle graph, and Kotzig’s

κ-transformations give rise to the fundamental operation of the theory of circle graphs, which we

call simple local complementation. This operation has been studied by Bouchet [8–10], de Fraysseix

[23], and Read and Rosenstiehl [42], among others. The reader can easily verify that the effect of a

κ-transformation on an interlacement matrix is described as follows.

Definition 9. Let S be a symmetric n × n matrix, and suppose 1 ≤ i ≤ n. Then the simple local

complement of S at i is the symmetric GF(2)-matrix Si obtained from S as follows: whenever i �= j �=
k �= i and sij �= 0 �= sik , toggle sjk .

We call this operation simple local complementation to distinguish it from the similar operation

that Arratia et al. called local complementation in [1–3]. The two operations differ on the diagonal:

Definition 10. Let S be a symmetric n × n matrix, and suppose 1 ≤ i ≤ n. Then the (non-simple)

local complement of S at i is the symmetric matrix Si
ns obtained from Si as follows: whenever j �= i and

sij �= 0, toggle sjj .

The first 3 × 3 matrix of Example 3 has three distinct simple local complements, which are the

same as its three modified inverses. Each of the three other 3 × 3 matrices of Example 3 has only two

distinct simple local complements, itself and the first matrix.

Definition 11. Let S and T be zero-diagonal symmetric GF(2)-matrices. Then S ∼lc T if T can be

obtained from S through a finite (possibly empty) sequence of simple local complementations.

Proposition 12. This defines an equivalence relation.
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Proof. As (Si)i = S, ∼lc is symmetric. The reflexive and transitive properties are obvious. �

In Section 3 we prove a surprising result:

Theorem13. Let S and T be zero-diagonal symmetric GF(2)-matrices. Then S ∼lc T if and only if S ∼mi T.

Wemight say thatmodified inversionconstitutesakindofglobal complementationofazero-diagonal

symmetric matrix (or equivalently, a simple graph). Theorem 13 shows that even though individual

global complementations do not generally have the same effect as individual simple local complemen-

tations, the two operations generate the same equivalence relation.

Theorem 13 developed as we read the work of several authors who have written about the equiv-

alence relation on looped graphs (or equivalently, symmetric GF(2)-matrices) generated by (non-

simple) local complementations at looped vertices and pivots on unlooped edges; we denote this

relation ∼piv. (If G is a looped graph then a pivot on an unlooped edge ab of G is the triple simple local

complement ((Ga)b)a = ((Gb)a)b.) Although∼piv is defined for symmetricmatrices and∼lc is defined

only for zero-diagonal symmetric matrices, it is reasonable to regard ∼lc as a coarser version of ∼piv,

obtained by ignoring the difference between looped and unlooped vertices. Genest [24,25] called the

equivalence classes under ∼piv Sabidussi orbits. Glantz and Pelillo [26] and Brijder and Hoogeboom

[16–18] observed that another way to generate ∼piv is to use a matrix operation related to inversion,

the principal pivot transform [48,49]. In particular, Theorem 24 of [17] shows that the combination of

loop-toggling with ∼piv yields a description of ∼lc that is different from Definition 9 (and also Defin-

ition 2). Ilyutko [28,29] has also studied inverse matrices and the equivalence relation ∼piv; he used

them to compare the adjacency matrices of certain kinds of chord diagrams that arise from knot dia-

grams. Ilyutko’s account includes an analysis of the effect of the Reidemeister moves of knot theory,

and also includes the idea of generating an equivalence relation on nonsingular symmetric matrices

by toggling diagonal entries. Considering the themes shared by these results, it seemed natural to

wonder whether the connection between matrix inversion and ∼piv reflects a connection between

matrix inversion and the coarser equivalence relation ∼lc .

Theorem 13 is part of a very pretty theory tying the elementary linear algebra of symmetric GF(2)-
matrices to the circuit theory of 4-regular multigraphs. This theory has been explored by several

authors over the last forty years, but the relevant literature is fragmented and it does not seem that

the generality and simplicity of the theory are fully appreciated. We proceed to give an account.

At each vertex of a 4-regular multigraph there are three transitions – three distinct ways to sort the

four incident half-edges into two disjoint pairs. Kotzig [34] introduced this notion, and observed that

each of the 3n ways to choose one transition at each vertex yields a partition of E(F) into edge-disjoint

circuits; such partitions are called circuit partitions [1–3] or Eulerian partitions [35,38]. (Kotzig actually

used the term transition in a slightly different way, to refer to only one pair of half-edges. As we have

no reason to ever consider a single pair of half-edges without also considering the complementary

pair, we follow the usage of Ellis-Monaghan and Sarmiento [20] and Jaeger [31] rather than Kotzig’s.)

In [47] we introduced the following way to label the three transitions at v with respect to a given

Euler system C. Choose either of the two orientations of the circuit of C incident at v, and useφ to label

the transition followed by this circuit; use χ to label the other transition in which in-directed edges

are paired with out-directed edges; and use ψ to label the transition in which the two in-directed

edges are paired with each other, and the two out-directed edges are paired with each other. See

χ ψφC

Fig. 2. The three transitions at a vertex are labeled according to their relationships with the incident circuit of C .
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Fig. 2, where the pairings of half-edges are indicated by using solid line segments for one pair and

dashed line segments for the other.

Definition 14. Let C be an Euler system of a 4-regular multigraph F , and let P be a circuit partition of

F . The relative interlacement matrix IP(C) of P with respect to C is obtained from I(C) by modifying

the row and column corresponding to each vertex at which P does not involve the transition labeled

χ with respect to C:

(i) If P involves the φ transition at v, then modify the row and column of I(C) corresponding to v

by changing every nonzero entry to 0, and changing the diagonal entry from 0 to 1.

(ii) If P involves the ψ transition at v, then modify the row and column of I(C) corresponding to v

by changing the diagonal entry from 0 to 1.

The relative interlacement matrix determines the number of circuits included in P:

ν(IP(C))+ c(F) = |P| ,
where ν(IP(C)) denotes the GF(2)-nullity of IP(C) and c(F) denotes the number of connected compo-

nents in F . We refer to this equation as the circuit-nullity formula or the extended Cohn–Lempel equality;

many special cases and reformulations have appeared over the years [5,6,8,15,19,30,32,33,36,37,39,

40,43–45,50]. A detailed account is given in [46].

The circuit-nullity formula is usually stated in an equivalent form, with part (i) of Definition 14

replaced by:

(i)′ If P involves the φ transition at v, then remove the row and column of I(C) corresponding to v.

We use (i) instead because it is more convenient for the sharper form of the circuit-nullity formula

given in Theorem 16, which includes a precise description of the nullspace of IP(C).

Definition 15. Let P be a circuit partition of the 4-regular multigraph F , and let C be an Euler system

of F . For each circuit γ ∈ P, let the relative core vector of γ with respect to C be the vector ρ(γ, C) ∈
GF(2)V(F) whose nonzero entries correspond to the vertices of F at which P involves either the χ or

theψ transition, and γ is singly incident. (A circuit γ is singly incident at v if γ includes precisely two

of the four half-edges at v.)

Theorem 16. Let P be a circuit partition of the 4-regular multigraph F, and let C be an Euler system of F.

(i) The nullspace of the relative interlacement matrix IP(C) is spanned by the relative core vectors of

the circuits of P.

(ii) For each connected component of F, the relative core vectors of the incident circuits of P sum to 0.

(iii) If Q ⊂ P and there is no connected component of F for which Q contains every incident circuit of P,

then the relative core vectors of the circuits of Q are linearly independent.

Theorem 16 is an example of a comment made above, that the generality and simplicity of the

relationship between linear algebra and the circuit theory of 4-regular multigraphs have not been

fully appreciated.

On the one hand, Theorem 16 is general: it applies to every 4-regular multigraph F , every Euler

system C and every circuit partition P. In Proposition 4 of [30], Jaeger proved an equivalent version of

the special case of Theorem 16 involving the additional assumptions that F is connected and C and P

involve different transitions at every vertex. (These assumptions are implicit in Jaeger’s use of left-right

walks on chord diagrams.) It is Jaegerwho introduced the term core vector;we use relative core vector to

reflect the fact that in Definition 15, the vector is adjusted according to the Euler system with respect

to which it is defined. We provide a direct proof of Theorem 16 in Section 4 below, but the reader

who is already familiar with Jaeger’s special case may deduce the general result using detachment

[21,41] along φ transitions. Bouchet [8] gave a different proof with the additional restriction that C

and P respect a fixed choice of edge-direction in F; or equivalently, that P involve only transitions that
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are labeled χ with respect to C. (Bouchet’s result is also presented in [27].) Genest [24,25] did not

use techniques of linear algebra, but he did discuss the use of bicolored graphs to represent a circuit

partition P using an Euler system that does not share a transition with P at any vertex. These previous

resultsmay give the erroneous impression that an Euler systemprovides information about only those

circuit partitions that disagreewith it at every vertex. In fact, every Euler systemgives rise to amapping

{circuit partitions of F} → {subspaces of GF(2)V(F)}
under which the image of an arbitrary circuit partition P is the (|P| − c(F))-dimensional subspace

spanned by the relative core vectors of the circuits in P.

On the other hand, Theorem 16 is simple: Definition 14 gives an explicit description of the relative

interlacementmatrix associated to a circuit partition, and Definition 15 gives an explicit description of

its nullspace. Although some version of Theorem 16 may be implicit in the theory of delta-matroids,

isotropic systems and multimatroids associated with 4-regular graphs (cf. for instance [11–14]), these

structures are sufficiently abstract that it is difficult to extract explicit descriptions like Definition 14

and Definition 15 from them.

The circuit-nullity formula implies that ifC is anEuler systemof F , thenwecanfindeveryother Euler

system C′ of F by finding every way to obtain a nonsingular matrix from I(C) using the modifications

given in Definition 14.Moreover, there is a striking symmetry tying together the relative interlacement

matrices of two Euler systems:

Theorem 17. Let F be a 4-regular graph with Euler systems C and C′. Then

IC′(C)−1 = IC(C
′).

Like Theorem 16, Theorem 17 generalizes results of Bouchet and Jaeger discussed in [8,27,30],

which include the additional assumption that C and C′ are compatible (i.e., they do not involve the

same transition at any vertex). Bouchet’s version requires also that C and C′ respect the same edge-

directions.

Greater generality is always desirable, of course, but it is important to observe that in fact, Theorem

17 is particularly valuable when C and C′ are compatible. The equation IC′(C)−1 = IC(C
′) does not

allowus to construct the full interlacementmatrix I(C′)directly from I(C) ifC andC′ share a transition
at any vertex, because there is no way to recover the information that is lost when off-diagonal entries

are set to 0 in part (i) of Definition 14. (For instance, if C is any Euler system and v is any vertex then

Definition 14 tells us that IC(C) = IC(C∗v) = IC∗v(C) is the identity matrix no matter how C is

structured.) This observation motivates our last definition.

Definition 18. Let F be a 4-regularmultigraphwith an Euler system C, and suppose W ⊆ V(F) has the
property that an Euler system is obtained from C by using the ψ transition at every vertex in W , and

the χ transition at every vertex not in W . Then this Euler system is the ι-transform of C with respect

to W; we denote it C#W .

According to the circuit-nullity formula, C#W is an Euler system if and only if a nonsingular matrix

M is obtained from I(C) by changing the diagonal entries corresponding to elements of W from 0 to

1. Then M = IC#W (C) and M−1 = IC(C#W), so I(C) and I(C#W) are modified inverses. We call the

process of obtaining C#W from C an ι-transformation in recognition of this connection with matrix

inversion.

Theorem 13 and the fact that simple local complementations correspond to κ-transformations

imply the following alternative to Kotzig’s theorem:

Theorem 19. All the Euler systems of a 4-regular multigraph can be obtained from any one by applying

finite sequences of ι-transformations.

The fact that the full interlacement matrix I(C#W) is determined by I(C) and W implies that

the transition labels of C#W are also determined. Suppose v ∈ V(F); we use φ, χ,ψ to label the
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C 

ψψ 'χψ '

ψχ 'χχ '

Fig. 3. An Euler circuit of C incident at a vertex v, along with the four different ways C#W might be configured at v.

three transitions at v with respect to C, and φ′, χ ′, ψ ′ to label the three transitions at v with respect

to C#W . Let M denote the nonsingular matrix obtained from I(C) by toggling the diagonal entries

corresponding to elements of W , and let X ⊆ V(F) denote the set of vertices corresponding to nonzero

diagonal entries of M−1. Then φ′ = ψ if v ∈ W , φ′ = χ if v �∈ W , φ = ψ ′ if v ∈ X and φ = χ ′ if
v /∈ X . Consequently v ∈ W ∩ X implies φ′ = ψ , φ = ψ ′ and χ = χ ′; v ∈ W − X implies φ′ = ψ ,

φ = χ ′ and χ = ψ ′; v ∈ X − W implies φ′ = χ , φ = ψ ′ and ψ = χ ′; and v ∈ V(F) − W − X

implies φ′ = χ , φ = χ ′ and ψ = ψ ′. See Fig. 3, where the four cases are indexed by first listing

φ′ with respect to C and then listing φ with respect to C′, so that χψ ′ represents v ∈ X − W , ψψ ′
represents v ∈ W ∩ X ,ψχ ′ represents v ∈ W − X and χχ ′ represents v ∈ V(F)− W − X .

Theorem 17 also implies that interlacement matrices satisfy a limited kind of multiplicative func-

toriality, which we have not seen mentioned elsewhere.

Corollary 20. Let C and C′ be Euler systems of a 4-regular multigraph F, and let P be the circuit partition

described by: (a) at every vertex where C and C′ involve the same transition, P involves the same transition;

and (b) at every vertex where C and C′ involve two different transitions, P involves the third transition. Then

IP(C) = IC′(C) · IP(C
′).

Proof. Let I be the identity matrix, and let I′ be the diagonal matrix whose vv entry is 1 if and only if

C and C′ involve different transitions at v. Then

IP(C) = I′ + IC′(C) = I + IC′(C) · I′

= IC′(C) · (IC(C
′)+ I′) = IC′(C) · IP(C

′). �

Corollary 21. Suppose a 4-regular multigraph F has three pairwise compatible Euler systems C, C′ and

C′′. (That is, no two of C, C′, C′′ involve the same transition at any vertex). Then

IC(C
′) · IC′′(C) · IC′(C′′)

is the identity matrix.

Proof. By Corollary 20, IC′′(C) = IC′(C) · IC′′(C′). �

2. Examples

Before giving proofs we discuss some illustrative examples. In the first column of Fig. 4 we see two

Euler circuits C and C′ in the graph F of Fig. 1. C is given by the double occurrence word abcdbcaeed,

and C′ is given by abcbdeeadc. In the second column we see the simple graphs I(C) and I(C′), and in

the third column we see the looped graphs whose adjacency matrices are
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c

ba

d

e

Fig. 4. Two Euler circuits in the graph of Fig. 1, the interlacement graphs I(C) and I(C′), and the looped graphs with adjacency

matrices IC′ (C) and IC(C
′).

IC′(C) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0

0 0 1 1 0

0 1 1 1 0

1 1 1 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and IC(C
′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0

0 1 1 0 0

1 1 0 0 0

1 0 0 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(The rows and columns correspond to a, b, c, d, e respectively.) Observe that IC(C
′) = IC′(C)−1,

in accordance with Theorem 17.

In Fig. 5, we see two circuit partitions in F; P corresponds to the set of four words {e, ade, abc, bcd}
and P′ corresponds to {adee, bc, abcd}. (In order to trace a circuit in the figure, maintain the dash

pattern while traversing each vertex. Note however that the dash pattern may change in the middle

of an edge; this is done to prevent the same dash pattern from appearing four times at any vertex, as

that would confuse the transitions.) P and P′ have

IP(C) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, IP(C
′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

IP′(C) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and IP′(C′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Fig. 5. A four-circuit partition P and a three-circuit partition P′ .

In accordancewith the circuit-nullity formula, ν(IP(C)) = ν(IP(C
′)) = 3 and ν(IP′(C)) = ν(IP′(C′))

= 2. As predicted by Theorem 16, the nullspace of IP(C) is spanned by the relative core vectors

(0, 0, 0, 0, 1), (1, 0, 0, 0, 1), (1, 0, 1, 0, 0) and (0, 0, 1, 0, 0). The nullspace of IP(C
′) is spanned by

the relative core vectors (0, 0, 0, 0, 1), (0, 0, 0, 1, 1), (0, 1, 1, 0, 0) and (0, 1, 1, 1, 0). The nullspace

of IP′(C) is spanned by (1, 0, 0, 0, 0), (0, 1, 1, 0, 0) and (1, 1, 1, 0, 0); and the nullspace of IP′(C′) is
spanned by (0, 0, 0, 1, 0), (0, 1, 0, 0, 0) and (0, 1, 0, 1, 0).

3. Theorem 13

3.1. Modified inverses from local complementation

Theorem 13 concerns the equivalence relation∼lc on zero-diagonal symmetric matrices generated

by simple local complementations S �→ Si, where i is an arbitrary index. As noted in the introduction,

Theorem 13 is related to results of Brijder and Hoogeboom [16–18], Glantz and Pelillo [26] and Ilyutko

[28,29] regarding an equivalence relation ∼piv on symmetric matrices that is generated by two kinds

of operations: (non-simple) local complementations S �→ Si
ns where the ith diagonal entry is 1, and

edge pivots S �→ Sij where the ith and jth diagonal entries are 0 and the ij and ji entries are 1. (The

reader familiar with the work of Arratia et al. [1–3] should be advised that the operation they denote

Sij differs from this one by interchanging the ith and jth rows and columns.) It is well known that an

edge pivot Sij of a symmetric matrix S coincides with two triple simple local complementations, Sij =
((Si)j)i = ((Sj)i)j . (See [17] for an extension of this familiar equality to set systems.) This description

of the pivot is not very useful in connection with ∼piv, as the individual local complementations with

respect to i and j are “illegal" for ∼piv when the ith and jth diagonal entries are 0. It is useful for us,

though: as non-simple local complementation coincides with simple local complementation off the

diagonal, the description of the pivot implies that if S and T are zero-diagonal symmetricmatrices, and

S′ and T ′ are symmetric matrices that are (respectively) equal to S and T except for diagonal entries,

then S′ ∼piv T ′ ⇒ S ∼lc T .

This implication allows us to prove half of Theorem 13 using a result noted in [16–18,26], namely

that symmetric matrices related by the principal pivot transform are also related by ∼piv. Suppose S1
is a zero-diagonal symmetric matrix and S2 is a modified inverse of S1. Then there are nonsingular

symmetric matrices S′
1 and S′

2 that are (respectively) equal to S1 and S2 except for diagonal entries, and

have (S′
1)

−1 = S′
2. As inverses, S′

1 and S′
2 are related by the principal pivot transform, so S′

1 ∼piv S′
2;

consequently the implication of the last paragraph tells us that S1 ∼lc S2. Iterating this argument, we

conclude that S ∼mi T ⇒ S ∼lc T .

3.2. A brief discussion of the principal pivot transform

The principal pivot transform (ppt) was introduced by Tucker [49]; a survey of its properties was

given by Tsatsomeros [48]. The reader who would like to learn about the ppt and its relationship with

graph theory should consult these papers, the work of Brijder and Hoogeboom [16–18] and Glantz and

Pelillo [26], and the references given there. For the convenience of the reader who simply wants to

understand the argument above, we sketch the details briefly.
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The principal pivot transform is valuable for us because it provides a way to obtain the inverse of a

nonsingular symmetric GF(2)-matrix incrementally, using pivots and non-simple local complemen-

tations. This property is not immediately apparent from the definition:

Definition 22. Suppose

M =
⎛
⎝P Q

R S

⎞
⎠

is an n×nmatrixwith entries in a field F , and suppose P is a nonsingular principal submatrix involving

the rows and columns whose indices lie in a set X . Then

M∗X =
⎛
⎝ P−1 −P−1Q

RP−1 S − RP−1Q

⎞
⎠ .

In particular, if M is nonsingular then M∗{1, . . . , n} = M−1.

The matrix M is displayed in the given form only for convenience; the definition may be applied to

any set of indices X whose corresponding principal submatrix P is nonsingular.

A direct calculation (whichwe leave to the reader) yields an alternative characterization: ifwe think

of Fn as the direct sum of a subspace corresponding to indices from X and a subspace corresponding

to the rest of the indices, then the linear endomorphism of Fn corresponding to M∗X is related to the

linear endomorphism corresponding to M by the relation

M

⎛
⎝x1

x2

⎞
⎠ =

⎛
⎝y1

y2

⎞
⎠ if and only if (M∗X)

⎛
⎝y1

x2

⎞
⎠ =

⎛
⎝x1

y2

⎞
⎠ .

This characterization directly implies two useful properties.

(1) Suppose X1 and X2 are subsets of {1, . . . , n}, and (M∗X1)∗X2 is defined. Then M∗(X1
X2) is
also defined, and it is the same as (M∗X1)∗X2. (Here 
 denotes the symmetric difference, X1
X2 =
(X1 ∪ X2)− (X1 ∩ X2).)

(2) If M is nonsingular then the submatrix S − RP−1Q of M∗X must be nonsingular too. For

(M∗X)

⎛
⎝ 0

x2

⎞
⎠ =

⎛
⎝x1

0

⎞
⎠ implies M

⎛
⎝x1

x2

⎞
⎠ =

⎛
⎝0

0

⎞
⎠ ,

which requires x1 = 0 and x2 = 0.

Note also that if M is a symmetric GF(2)-matrix, then so is M∗X .

Suppose now that M is a nonsingular symmetric GF(2)-matrix. We begin a recursive calculation

by performing principal pivot transforms ∗{i1}, ∗{i2}, …, ∗{ik} for as long as we can, subject to the

proviso that i1, …, ik are pairwise distinct. It is a direct consequence of Definition 22 that each

transformation ∗{ij} is the same as non-simple local complementation with respect to ij , because

P−1 is the 1 × 1 matrix (1), R is the transpose of Q , and an entry of RQ is 1 if and only if its row

and column correspond to nonzero entries of R and Q . For convenience we display the special case

{i1, . . . , ik} = {1, . . . , k}:

M∗{i1, . . . , ik} = M∗{i1}∗ · · · ∗{ik} = M′ =
⎛
⎝P′ Q ′

R′ S′

⎞
⎠ ,

where the diagonal entries of P′ (resp. S′) are all 1 (resp. all 0) and R′ is the transpose of Q ′. Note
that by property (2), S′ is nonsingular; hence each row of S′ must certainly contain a nonzero entry.

Consequently we may (again for convenience) display the matrix in a different way:
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M∗{i1, . . . , ik} = M′ =
⎛
⎝P′′ Q ′′

R′′ S′′

⎞
⎠where P′′ =

⎛
⎝0 1

1 0

⎞
⎠ .

The next step in the calculation is to perform the principal pivot transform ∗{ik+1, ik+2}, where ik+1

and ik+2 are the indices involved in P′′. A direct calculation using Definition 22 shows that

M′∗{ik+1, ik+2} = M′′ =
⎛
⎝P′′ Q ′′′

R′′′ S′′ + X

⎞
⎠

where Q ′′′ is obtained by interchanging the two rows of Q ′′, R′′′ is the transpose of Q ′′′, and X is the

matrix whose ij entry is

(R′′)iik+1
(Q ′′)ik+2j + (R′′)iik+2

(Q ′′)ik+1j = (Q ′′)ik+1i(Q
′′)ik+2j + (Q ′′)ik+2i(Q

′′)ik+1j.

That is, Xij = 0 unless the ith and jth columns of Q ′′ are distinct nonzero vectors. It follows that M′′ is
the pivot (M′)ik+1ik+2 ; equivalently, M′′ is the triple simple local complement (((M′)ik+1)ik+2)ik+1 .

The resulting matrix M′′ has no new nonzero diagonal entry, so the second step may be repeated

as many times as necessary. At no point do we re-use an index that has already been involved in a

principal pivot transform, at no point do we obtain a non-symmetric matrix, and at no point is the

principal submatrix determined by the as-yet unused indices singular. Consequently the calculation

proceeds until every index has been involved in precisely one principal pivot transform. By property

(1), at the end of the calculation we have obtained M∗{1, . . . , n} = M−1 using individual steps each

of which is either a non-simple local complementation or a pivot.

3.3. The ν, ν, ν + 1 lemma

Lemma 2 of Balister et al. [4] is a very useful result about the nullities of three related matrices,

which we cite in the next section. Here is a sharpened form of the lemma, involving the nullspaces of

the three matrices rather than only their nullities.

Lemma 23. Suppose M is a symmetric GF(2)-matrix. Let ρ be an arbitrary row vector, and let 0 be the

row vector with all entries 0; denote their transposes κ and 0 respectively. Let M1,M2 and M3 denote the

indicated symmetric matrices.

M1 =
⎛
⎝M κ

ρ 1

⎞
⎠ M2 =

⎛
⎝M κ

ρ 0

⎞
⎠ M3 =

⎛
⎝M 0

0 1

⎞
⎠

Then two of M1,M2,M3 have the same nullspace, say of dimension ν . The nullspace of the remaining matrix

has dimension ν + 1, and it contains the nullspace shared by the other two.

Proof. We use rk(N) and ν(N) to denote the rank and nullity of a matrix N, row(N) and col(N) to
denote the spaces spanned by the rows and columns of N, and ker N to denote the nullspace of N, i.e.,

the space of row vectors x with x · N = 0.

Case 1. Suppose ρ /∈ row(M); then also κ /∈ col(M).
Observe that ν(M1) = ν(M2) = ν(M3)− 1 = ν(M)− 1 in this case.

We claim that ker M3 ⊇ (ker M1)∩ (ker M2). Note first that no row vector
(

y 1
)
can be an element

of both ker M1 and ker M2, because
(

y 1
)

· M1 = 0 ⇒ y · κ = 1 and
(

y 1
)

· M2 = 0 ⇒ y · κ = 0.

Consequently every x ∈ (ker M1) ∩ (ker M2) is of the form
(

y 0
)
for some y ∈ ker M. Obviously

ker M3 =
{(

y 0
)
|y ∈ ker M

}
,

so the claim is verified.
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The inclusion

(ker M1) ∩ (ker M2) ⊇
{(

y 0
)
|y ∈ ker M and y · κ = 0

}

is obvious, but note that the dimension of the right hand side is at least ν(M) − 1. As ν(M) − 1 =
ν(M1) = ν(M2), we conclude that

ker M1 = ker M2 = (ker M1) ∩ (ker M2) =
{(

y 0
)
|y ∈ ker M and y · κ = 0

}
.

Case 2. Suppose ρ ∈ row(M); then also κ ∈ col(M).

As ρ ∈ row(M), at least one of
(
ρ 0

)
,
(
ρ 1

)
is an element of row

(
M κ

)
. If both are elements

then

rk
(

M κ
)

= rk

⎛
⎜⎜⎜⎝

M κ

ρ 0

ρ 1

⎞
⎟⎟⎟⎠ = rk

⎛
⎜⎜⎜⎝

M κ

ρ 0

0 1

⎞
⎟⎟⎟⎠ = rk

⎛
⎜⎜⎜⎝

M 0

ρ 0

0 1

⎞
⎟⎟⎟⎠ = rk(M)+ 1

and hence κ /∈ col(M), an impossibility. Consequently one of M1,M2 is of rank rk(M), and the other

is of rank rk(M)+ 1 = rk(M3).

We claim that ker M3 ⊆ (ker M1) ∩ (ker M2). Suppose x ∈ ker M3; clearly then x =
(

y 0
)
for

some y ∈ ker M. As y ∈ ker M, y · z = 0 ∀z ∈ col(M). It follows that y · κ = 0, and hence

x ∈ (ker M1) ∩ (ker M2) as claimed.

As one of M1,M2 has nullity ν(M3) and the other has nullity ν(M3) + 1, the claim implies that

either ker M3 = ker M2 ⊂ ker M1 or ker M3 = ker M1 ⊂ ker M2. �

3.4. Local complements from modified inversion

The implication S ∼lc T ⇒ S ∼mi T does not follow directly from results regarding ∼piv, but our

argument uses two lemmas very similar to ones used by Ilyutko [28].

Lemma 24. Let S be an n × n zero-diagonal symmetric GF(2)-matrix. Suppose 1 ≤ i ≤ n and the ith

row of S has at least one nonzero entry. Then there is a nonsingular symmetric GF(2)-matrix M that differs

from S only in diagonal entries other than the ith.

Proof. Wemay as well presume that i = 1, and that s12 �= 0.

For k ≥ 2 let Sk be the submatrix of S obtained by deleting all rows and columns with indices> k.

We claim that for every k ≥ 2, there is a subset Tk ⊆ {3, . . . , k} with the property that we obtain a

nonsingular matrix S′
k by toggling the diagonal entries of Sk with indices in Tk . When k = 2 the claim

is satisfied by T2 = ∅.
Proceeding inductively, suppose k ≥ 2 and Tk ⊆ {3, . . . , k} satisfies the claim. If we obtain a

nonsingularmatrix by toggling the diagonal entries of Sk+1 with indices in Tk , then Tk+1 = Tk satisfies

the claim for k + 1. If not, then the ν, ν, ν + 1 lemma implies that Tk+1 = Tk ∪ {k + 1} satisfies the
claim.

The required matrix M is obtained from S = Sn by toggling the diagonal entries with indices in

Tn. �

Lemma 25. Suppose

M =

⎛
⎜⎜⎜⎝

0 1 0

1 M11 M12

0 M12 M22

⎞
⎟⎟⎟⎠
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is a nonsingular symmetric matrix, with

M−1 =
⎛
⎝a ρ

κ N

⎞
⎠ .

Then the matrix

M′ =

⎛
⎜⎜⎜⎝

0 1 0

1 M11 M12

0 M12 M22

⎞
⎟⎟⎟⎠

obtained by toggling all entries within the block M11 is also nonsingular, and

(M′)−1 =
⎛
⎝a + 1 ρ

κ N

⎞
⎠ .

Proof. M−1 · M is the identity matrix, so

(
a ρ

)
·

⎛
⎜⎜⎜⎝

0

1

0

⎞
⎟⎟⎟⎠ = 1;

consequently the row vector ρ must have an odd number of nonzero entries in the columns corre-

sponding to the 1 in the first row of M. Similarly, each row of N must have an even number of nonzero

entries in these columns, because

(
κ N

)
·

⎛
⎜⎜⎜⎝

0

1

0

⎞
⎟⎟⎟⎠ = 0.

It follows that the products
⎛
⎝a ρ

κ N

⎞
⎠ · M and

⎛
⎝a + 1 ρ

κ N

⎞
⎠ · M′

are equal. �

As stated, Lemma 25 requires that the first row of M be in the form
(
0 1 0

)
. This is done only for

convenience; the general version of the lemma applies to any row in which the diagonal entry is 0.

Suppose now that S is a zero-diagonal symmetric n × n matrix and 1 ≤ i ≤ n. If every entry of the

ith row of S is 0, then the local complement Si is the same as S.

If the ith row of S includes some nonzero entry, then Lemma 24 tells us that there is a nonsingular

matrix M such that (a) M is obtained from S by toggling some diagonal entries other than the ith.

The general version of Lemma 25 then tells us that there is a nonsingular matrix M′ such that (b)

(M′)−1 equals M−1 except for the ith diagonal entry and (c) M′ equals the local complement Si except

for diagonal entries. Condition (a) implies that a modified inverse T of S is obtained by changing all

diagonal entries of M−1 to 0; condition (b) implies that T is also equal to (M′)−1 except for diagonal

entries; and condition (c) implies that the local complement Si is a modified inverse of T .

It follows that every simple local complement Si can be obtained from S using no more than two

modified inversions. Applying this repeatedly, we conclude that S ∼lc T ⇒ S ∼mi T .
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4. Theorem 16

Let F be a 4-regular multigraph with an Euler system C, and suppose v ∈ V(F). Let the Euler circuit
of C incident at v be vC1vC2v, where v does not appear within C1 or C2. Every edge of the connected

component of F that contains v lies on precisely one of C1, C2. If w �= v is a vertex of this component

which is not a neighbor of v in I(C), i.e., v and w are not interlaced with respect to C, then all four

half-edges incident at w appear on the same Ci. On the other hand, if v and w are neighbors in I(C)
then two of the four half-edges incident at w appear on C1, and the other two appear on C2. Moreover

the only transition at w that pairs together the half-edges from the same Ci is the φ transition; the χ
and ψ transitions at w pair each half-edge from C1 with a half-edge from C2. At v, instead, only the

χ transition pairs together half-edges from the same Ci; the φ and ψ transitions pair each half-edge

from C1 with a half-edge from C2. These observations are summarized in the table below, where N(v)
denotes the set of neighbors of v in I(C) , (1)(2) indicates a transition that pairs together half-edges

from the same Ci and (12) indicates a transition that pairs each half-edge from C1 with a half-edge

from C2.

Vertex v w ∈ N(v) w /∈ N(v)

Transition

φ (12) (1)(2) (1)(2)

χ (1)(2) (12) (1)(2)

ψ (12) (12) (1)(2)

Supposeγ is a circuit that is singly incident at v, and involves theφ transition at v.We start following

γ at v, on a half-edge that belongs to Ci. We return to v on a half-edge that belongs to Cj , j �= i, so while

following γ we must have switched between Ci and Cj an odd number of times. (See Fig. 6.) That is,

|{w ∈ N(v)|γ is singly incident at w and involves the χ orψ transition at w}|
must be odd.

Suppose instead that γ is a circuit that is singly incident at v and involves theχ transition at v. If we

start following γ along a half-edge that belongs to Ci, we must return to v on the other half-edge that

belongs to Ci, so we must have switched between Ci and Cj an even number of times. Consequently

|{w ∈ N(v)|γ is singly incident at w and involves the χ orψ transition at w}|
must be even.

Similarly, if γ is a circuit that is singly incident at v and involves theψ transition at v then

|{w ∈ N(v)|γ is singly incident at w and involves the χ orψ transition at w}|
must be odd.

Suppose γ is doubly incident at v and we follow γ after leaving v on a half-edge that belongs to C1.

We cannot be sure on which half-edge wewill first return to v. But after leaving again, wemust return

on the one remaining half-edge. If the first return is from C1, then on thewaywemust traverse an even

number of vertices w ∈ N(v) such that γ is singly incident at w and involves the χ orψ transition at

w; moreover when we follow the second part of γ we will leave v in C2 and also return in C2, so again

we must encounter an even number of such vertices. If the first return is from C2 instead, then on the

φC1 C2
ψχ

Fig. 6. An Euler circuit and three circuits that are singly incident at a vertex.
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way we must traverse an odd number of vertices w ∈ N(v) such that γ is singly incident at w and

involves the χ orψ transition at w; the second part of the circuit will begin in Ci and end in Cj (j �= i),

so it will also include an odd number of such vertices. In any case,

|{w ∈ N(v)|γ is singly incident at w and involves the χ orψ transition at w}|
must be even.

Proposition 26. Let F be a 4-regular multigraph with an Euler system C, and suppose P is a circuit partition

of F. Then ρ(γ, C) ∈ ker IP(C) ∀γ ∈ P.

Proof. Recall that ρ(γ, C) ∈ GF(2)V(F) has nonzero entries corresponding to the vertices where γ is

singly incident anddoes not involve theφ transition;we considerρ(γ, C) as a rowvector. Let v ∈ V(F),
and let κ(v) be the column of IP(C) corresponding to v.

If γ lies in a different connected component than v, or if P involves the φ transition at v, then

for every w ∈ V(F) at least one of ρ(γ, C) and κ(v) has its entry corresponding to w equal to 0;

consequently ρ(γ, C) · κ(v) = 0.

If γ lies in the same component as v and P involves the χ transition at v, then considering the

definitions of ρ(γ, C) and IP(C), we see that ρ(γ, C) · κ(v) is the mod 2 parity of

|{w ∈ N(v)|γ is singly incident at w and involves the χ orψ transition at w}| .
Whether γ is singly or doubly incident at v, this number is even as observed above.

If γ lies in the same component as v and P involves the ψ transition at v, then considering the

definitions of ρ(γ, C) and IP(C), we see that ρ(γ, C) · κ(v) is the mod 2 parity of this sum:

|{w ∈ N(v)|γ is singly incident at w and involves the χ orψ transition at w}|

+
⎧⎨
⎩

1, if γ is singly incident at v

0, if γ is doubly incident at v

Whether γ is singly or doubly incident at v, the sum is even as observed above. �

Proposition 27. Let F be a 4-regular multigraph with an Euler system C, and let P be a circuit partition

of F. Suppose Q ⊂ P and there is at least one connected component of F for which Q contains some but

not all of the incident circuits of P. Then there is at least one vertex v ∈ V(F) such that P involves the χ
or ψ transition at v, precisely one circuit of Q is incident at v, and this incident circuit of Q is only singly

incident.

Proof. Let F0 be a connected component of F in which Q includes some but not all of the incident

circuits of P. Then there must be an edge of F0 not included in any circuit of Q .

Choose such an edge, e1. If a circuit of Q is incident on an end-vertex of e1, then that circuit is

only singly incident. If not, choose an edge e2 that connects an end-vertex of e1 to a vertex that is not

incident on e1. Continuing this process, wemust ultimately find a vertex at which precisely one circuit

of Q is incident, and this circuit is only singly incident.

Suppose P involves the φ transition at every such vertex. Then every circuit of P that is contained

in F0 and not included in Q involves only φ transitions. This is impossible, as the only circuit contained

in F0 that involves only φ transitions is the Euler circuit of F0 included in C. �

Corollary 28. Let F be a 4-regular multigraph with an Euler system C, and suppose P is a circuit partition

of F. Suppose Q ⊂ P and there is no connected component of F for which Q contains every incident circuit

of P. Then {relative core vectors of the circuits of Q} is linearly independent.

Proof. IfQ is empty then recall that∅ is independentbyconvention.Otherwise, letQ ′ beanynonempty

subset of Q . Proposition 27 tells us that there is a vertex v of F atwhich P involves theχ orψ transition,

precisely one circuit ofQ ′ is incident, and this circuit is singly incident. It follows that the v coordinate of
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∑

γ∈Q ′
ρ(γ, C)

is 1, and hence
∑

γ∈Q ′
ρ(γ, C) �= 0. �

Proposition 26 and Corollary 28 tell us that the relative core vectors of the circuits of a circuit

partition P span a (|P| − c(F))-dimensional subspace of ker IP(C). The circuit-nullity formula tells us

that |P| − c(F) is the nullity of IP(C), so we conclude that the relative core vectors span the nullspace

of IP(C).
This completes our proof of Theorem16. Before proceedingwe should recall thework of Jaeger [30],

whoseProposition4 is equivalent to the special case of Theorem16 inwhichP involvesnoφ transitions.

A different way to prove Theorem 16 is to reduce to the special case using detachment [21,41] along φ
transitions. We prefer the argument above because it avoids the conceptual complications introduced

by Jaeger’s use of chord diagrams and surface imbeddings.

5. Theorem 17

Suppose C and C′ are Euler systems of F , and v ∈ V(F). We use transition labels φ, χ,ψ with

respect to C, and φ′, χ ′, ψ ′ with respect to C′.
If C and C′ involve the same transition at v, then the row and column of both IC(C

′) and IC′(C)
corresponding to v are the same as those of the identitymatrix, so the rowand columnof IC(C

′)·IC′(C)
corresponding to v are the same as those of the identity matrix.

Suppose instead that C and C′ involve different transitions at v. Then C′ involves the χ or the ψ
transition, and C involves the χ ′ or theψ ′ transition; the four possible combinations are illustrated in

Fig. 3 of the introduction. N.b. The caption of Fig. 3 mentions C#W , but the figure is valid for any Euler

circuits that do not involve the same transition at v.

Let vC1vC2v be the circuit of C incident at v; then vC1v and vC2v are the two circuits obtained by

“short-circuiting" C at v. We claim that the relative core vector ρ(vC1v, C′) is the same as the row of

IC′(C) corresponding to v. The entry of ρ(vC1v, C′) corresponding to a vertex w �= v is 1 if and only

if vC1v is singly incident at w, and vC1v does not involve the φ′ transition at w. Also, the vw entry

of IC′(C) is 1 if and only if v and w are interlaced with respect to C, and C′ does not involve the φ
transition at w. As vC1v and C both involve the φ transition at every w �= v, the two entries are the

same. On the other hand, the entry of ρ(vC1v, C′) corresponding to v is 1 unless the transition of vC1v

at v (that is, the χ transition) is the φ′ transition, and the vv entry of IC′(C) is 1 unless the transition

of C′ at v (the φ′ transition) is the χ transition. These two entries are also the same, so ρ(vC1v, C′) is
indeed the same as the row of IC′(C) corresponding to v.

It follows that ρ(vC1v, C′) · IC(C
′) is the row of IC′(C) · IC(C

′) corresponding to v. We claim that

this coincideswith the corresponding row of the identitymatrix, i.e., if w ∈ V(F) and κw is the column

of IC(C
′) corresponding to w then ρ(vC1v, C′) · κw = 1 if and only if w = v.

Let P(C, v) be the circuit partition that includes vC1v and vC2v, along with all the circuits of C not

incident at v. Alternatively, we may describe P(C, v) as the circuit partition that involves φ transitions

at vertices than v, and involves the χ transition at v. As C and P(C, v) involve the same transitions at

vertices other than v, the relative interlacementmatrices IC(C
′) and IP(C,v)(C

′) coincide except for the
row and column corresponding to v. Looking at Fig. 3, we see that in the cases χψ ′ and χχ ′, P(C, v)
involves the φ′ transition at v; in the caseψψ ′, P(C, v) involves the χ ′ transition at v; and in the case

ψχ ′, P(C, v) involves theψ ′ transition at v.

Consider the cases χψ ′ and χχ ′. If w �= v then the column κw of IC(C
′) is the same as the column

of IP(C,v)(C
′) corresponding to w, except for the entry corresponding to v; changing this entry does not

affectρ(vC1v, C′)·κw , because P(C, v) involves theφ′ transition at v andhence the entry ofρ(vC1v, C′)
corresponding to v is 0. Consequently Theorem 16 tells us that ρ(vC1v, C′) · κw = 0. Theorem 16 also

tells us that ρ(vC1v, C′) �= 0; as IC(C
′) is nonsingular, it follows that ρ(vC1v, C′) · κv = 1.
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Now consider the cases ψψ ′ and χχ ′. The only vertex at which C and P(C, v) involve different

transitions is v, where one involves the χ ′ transition and the other involves the ψ ′ transition; conse-
quently IP(C,v)(C

′) and IC(C
′) coincide except for their vv entries, which are opposites. The entry of

ρ(vC1v, C′) corresponding to v is 1, so ρ(vC1v, C′) · IP(C,v)(C
′) = 0 tells us that ρ(vC1v, C′) · κv �= 0,

and ρ(vC1v, C′) · κw = 0 for w �= v.

The closing comment of the last section applies here too: the special case of Theorem 17 involving

compatible Euler systems follows from Jaeger’s proof of Proposition 5 of [30], and the general casemay

be reduced to the special case by detachment.
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