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ABSTRACT A general method of finding the time course and the steady state distribution of potential in Vaseline or
sucrose gap preparations is given by making use of the linear cable equation. The general solution has been found
analytically in terms of its Laplace transform and then numerically inverted. Two particular experimental situations,
namely the single gap and the double gap preparations, have been analyzed. The results have been compared with the
solutions of the commonly used lumped elements models. While for the double gap no large errors are introduced by the
lumped model, for the single gap there are significant differences. The dependence of the voltage distribution on various
electrical and geometrical parameters has been examined. It is suggested that the proposed mathematical treatment
might be used by experimenters as a reference to assess the validity of simplified lumped models.

INTRODUCTION

The technique of voltage clamping a cut skeletal muscle
fiber placed in Vaseline or sucrose gaps offers important
advantages such as the possibility of introducing different
substances in the fiber interior (Kovacs and Schneider,
1978; Kovacs et al., 1979), or of allowing the fiber to
contract (Horowicz and Schneider, 1981; Jaimovich et al.,
1982). Both techniques are based on the idea of separating
through electrical insulations different parts of the fiber.
Under ideal conditions, this allows one to inject a current
and to measure the membrane potential difference without
making use of microelectrodes. The two methods differ in
the way the insulations are realized, either with a thin strip
of Vaseline or with a slender stream of sucrose solution, but
in both cases, a cable having segments with different
electrical characteristics is obtained.

In spite of the wide use of these techniques, a general
analytical treatment of the electrical behavior of these
models does not exist, except in some particular cases or at
steady state (Jirounek and Straub, 1971; Jirounek et al.,
1981; McGuigan and Tsien, 1974). Lumped elements
models are frequently used, but these models have the
obvious limitation of considering circuit elements of finite
(instead of infinitesimal) length. The aim of our work is to
offer a method to solve such problems in a more general
way in order to test under which experimental conditions
and to what extent the simplified lumped elements models
are applicable without significant errors.
The effect of the presence of the T-tubules has been

studied in the preceding paper (Andrietti and Bernardini,
1984) and it has been shown that the longitudinal spread of
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electrotonic potential in a muscular fiber is well approxi-
mated by an equivalent model whose electrical parameters
are the apparent resistances and capacities, as may be, for
example, determined from voltage clamp experiments.

THE DISTRIBUTED MODEL

In terms of the theory developed in the preceding paper
(Andrietti and Bernardini, 1984), the part of a skeletal
muscle fiber placed in an experimental chamber for Vase-
line or sucrose gap voltage clamp can be represented by the
modular circuit of Fig. 1. In each kth section the space and
time dependence of the voltage is described by the well-
known partial differential equation (see e.g., Jack et al.,
1975)

(1)Xk 2 =Tk- + Vk,
Xk Olt

where Xk and Tk are the apparent time and space constants,
Vk = Vk, i- Vk, is the difference between the internal and
external potentials in the kth section, Ik is the length of the
kth section, and 0 < Xk s ik.

Eq. 1 represents a system of partial differential equa-
tions connected through their boundary conditions. For the
continuity of the potential, one has

Vk(lk, t) = Vk+I(0, t). (2)

A second group of boundary conditions concerns the values
of the derivative of the potential at the end points of the
sections. Let us indicate with I, and I, the internal and
external currents, and with rk and rk, e the internal and
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If we let

X2k-I (s) = Ak (S), X2k(s) = Bk (S),

the functions Xi(s) (i = 1, 2, ..., 2n) have to be determined
by taking into account the linear system of order 2n
obtained from Eq. 4 and from the boundary conditions
given above, rewritten in terms of their Laplace trans-
forms. We obtain

FIGURE 1 Modular circuit representing the portion of a skeletal muscle
riber in an experimental chamber with insulating gaps. Each section k
(1-n) represents the part of the fiber either in a gap or in a conducting
pool.

external resistances; one obtains

C Vk,i . a Vk,.

OXk CXk
rk,eIe I

so that

49 Vk
-=Vk k,jIj + rk,eIe;
OlXk

aVk+1 -Tk+IiIj + Tk+IeIc.
aXk+I

From the last two relations, letting I = Ii + Ie, one obtains,
after some calculations, the second group of boundary
conditions:

a Vk+l (o Vk~ rk+ I,i + rk+ 1,e

OXk+ /o+I aXk klkkji + rk,e

rk+1 ,eI+(rk,i + rk,e) - rk,eI (rk+l,i + rk+l,e)
(3)

rk,e + rk,i

where I- and I+ indicate the limit values of I at the left and
right side of the kth section end.

When in x, = 0 the cable is short circuited, the
corresponding initial condition will be V1 (0, t) = 0. The last
boundary condition will depend on the terminal situations
of the cable and will change according to the experimental
arrangement.
_ To determine the solution of Eq. 1, let us indicate with
Vk(x, s) the Laplace transform of Vk(x, t) with respect to
time. Taking into account the initial condition VI (x, 0) = 0,

one has

2 Vk - -

k aX2 = TkS Vk + Vk,

whose general solution is

Vk (x, s) = Ak (s) exp [-xk4Ok(s)/Xk]

+ Bk (s) exp [Xkc/k(S)IXk], (4)

where 4(s) = (TkS + 1)1/2.

a1,, (s) * - *, al,2 (S)

a2n, 1 (s) -

*
-

, a2n,2n(S)

XI()1 = Cl (S)

X2,(S)J = L C2.(S) (5)

The values of the coefficients ai,j(s), ci(s), are given by the
boundary conditions considered above. For the first n - 1

rows of the matrix (1 i < n), we will obtain from Eqs. 2
and 4

ai,j(s) =0 forj<2i-1,j>2i + 2;

ai,2i-, (s) = exp [-lIjj(s)/Xj];
ai,2i(s) = exp [hI.o(s)/Xj];

ai,2i+ I (s) = ai,2i+2(S) = - 1;

ci(s) = 0.

From row n to row 2n -2 (n s i < 2n - 1), the coefficients
a11(s) will be determined from Eqs. 3 and 4:

a,j(s) forj<2(i -n)± 1,>j 2(1 - n) + 4;

(i-n+(S) ri-n+2,i + ri-n+2,e
,n )+ I ri-n+I,i + ri-n+ l,e

exp [-lin+lIi I+(s)/X in+1I;

in2+=(S) ri-n+2,i + ri-n+2,e
i-n+1 ri- n+I,i + ri-n+I,e

* exp [A in+1k>i n+I(S)/Xi-n+J];

ai,2(i-n)+3(S) = )i-n +2(S)/Xi-n+2;

ai,2(i-n)+4(S) = -'Oi n+2(S)1Xi-n+2;

ci(s) =

ri-n+2,eI (rj n+I,i + ri-n+I,e)
- ri-n+l,eI (ri-n+2,i + ri-n+2,e)

-n+l,e + ri-n+I,i

The coefficients of the last two rows are determined
according to the end conditions of the cable. Because of the
short circuit in x, = 0, one has

a2n 1,1(s) = a2n 1,2(S) = 1;

a2n- ,J(s) = 0 for] > 2;

C2n_1 (s) 0.

BIOPHYSICAL JOURNAL VOLUME 46 1984

re, dx rek dx

r,j dx rgkdx

626



The values of a21j(s) and C2t(S) will change according to the
particular experimental arrangement.

At steady state, Eq. 1 becomes

d2v
k dX2 Vk,

whose general solution is

Vk(x) = Ak exp (-xk/Xk) + Bk exp (xk/Xk). (6)

The coefficients Ak and Bk are determined according to the
linear system obtained from Eq. 6 and from the boundary
conditions given above as has been seen for Ak(s) and
Bk(s).

We will consider in detail two particular cases: single
and double Vaseline gap. To give some numerical results,
we will adopt the following rounded values of electrical
parameters taken from Hodgkin and Nakajima (1972),
corresponding to a fiber of 80 ,um in diameter: ri = 3.4
MQ/cm, rm = 120 kQ * cm, Cm = 0.15 ,uF/cm.

The experimental arrangement used by Kovacs and
Schneider (1978) may be represented by the electrical
model of Fig. 2 A. In this case, n = 2, rm, = rm,2= rm; rl,e =
re; r2,e = 0, rj,j = r2,i = ri; Tm,I = Tm,2 = Tm. The value of the
external resistance, re, the length of the gap, 11, and of the
muscle fiber out of the gap 12, taken from Kovacs and
Schneider (1978), are rounded to 280 MQ/cm, 600,tm,
and 400 ,um, respectively. In this case, Eq. 5 becomes a
system of four linear equations whose coefficients can be
determined according to what we have said above. Because
the effect of the termination of the cable, one has

(OV2 =0.
OaX2 /12-

This boundary condition enables us to determine the

coefficients

a4,,(s) = a4,2(s) = 0;

a4,3(s) = - [k2(s)/X2] exp [-1202(s)//Xj;
a4,4(s) = [02(s)/X2] {exp [12402(s)/X2] 1;
C4(S) = 0.

Solving Eq. 5, we have obtained the values of A,(s), BI(s),
A2(s), B2(s), which have been introduced in Eq. 4 to find
the Laplace transform of the potential. In Fig. 3 A ,the
results of the numerical inversion obtained with the
method given in the preceding paper (Andrietti and Ber-
nardini, 1984) are presented. Because of the linear proper-
ties of the model, with respect to the stimulating current I,
the value of the potential in Fig. 3 A and in the following
figures has been given in arbitrary units. The correspond-
ing steady state values obtained from Eq. 6 are shown in
Fig. 4 A, C, D.

The experimental arrangement for double Vaseline gap
can be represented by the electrical model of Fig. 2 B. In
this case: n = 3, rl,e = r3,e = re, r2e = 0, rm, = rm,2 = rm,3 = rm;
r,,i, = r2, = r3,i = ri, Tm,l = Tm,2 = Tm,3 = 7Tm. The dimensions
of the walls separating the pools (l1 and 13) and of the
central pool (12), taken from Kovacs et al. (1979) are,
respectively, 250 and 700 ,um, the other parameters being
unchanged. As the central pool is grounded, I = 0 for x >
l. In this case, Eq. 5 becomes a system of six linear
equations whose coefficients are determined as explained
previously. Because of the short-circuit effect at the end of
the cable, one has a6,5(s) = exp[- 13k3(S)/X3], a6,6(s) =
exp[l303(s)/X3], a6j(s) = 0, forj < 5, c6(s) = 0. Solving Eq.
5, we have obtained the values of A, (s), B,(s), A2(s), B2(s),
A3(s), B3(s), which have been introduced in Eq. 4 to find
the Laplace transform of the potential that has been
inverted as in the case of the single gap. The numerical

.,.. ,A~.s, ','x,. ,', --."L ,.swsr == ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- 1- 1- - - - - - -
a ^rdx.

* . , t _., .b ;, * r; dx
i II i 12.l

.I.I

d

FIGURE 2 Distributed model of a single (a) and double (b) Vaseline gap and lumped elements circuit for a single (c) and double (d) Vaseline
gap. Dashed areas represent the insulation gaps. Indentations in the fiber are short circuits between inside and outside. In all cases, the site of
current injection is at the extreme left of the circuit (xl = 0). The membrane properties under study are always those of unit 12.
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FIGURE 3 The three continuous curves have been obtained by numeri-
cally inverting Eq. 4 for the single (a) and double (b) Vaseline gap, and
represent the time course of voltage at the beginning, at the middle, and at
the end of the fiber segment outside the gap (12 in Fig. 2) because of the
same rectangular step of stimulating current. The dashed lines represent
the corresponding lumped elements model solutions given by Eqs. 7 and 8.
The values of the parameters are given in the text.

results of the inversion are shown in Fig. 3 B and the steady
state in Fig. 4 B.

The effect of the sealing for the single gap is shown in
Fig. 4 A and for the double gap in Fig. 4 B; the effects of
the gap length and of the terminated end length are shown
in Fig. 4 C and D. The quality of the seal and the dimension
of the gap do not appear to affect significantly the homo-
geneity of the potential in 12; instead, the value of 12
signifi'cantly affects the prof'ile of the potential in the fiber
out of the gap.

COMPARISON WITH THE LUMPED
MODELS AND DISCUSSION

Because the illustrated solutions were obtained from a
nonsimplified model, they are assumed to be a more
faithful representation of the real situation than other
solutions obtained from simplified models. It is clear that

the method outlined here is not very practical for the
interpretation of the experimental results, but it might be
useful as a reference to estimate the extent of the errors
introduced by different kinds of simplifications. As the
values of the geometrical and electrical parameters may
vary strongly, depending on the experimental arrange-
ment, and may vary among different experiments per-
formed with the same technique, a general comparison
between distributed and lumped elements models is not
possible here, but, as an example, we have examined the
behaviors of the lumped models of Fig. 2 C and D, and we
have compared them with the results given by our method.
In response to a step current pulse, Is, the time courses of
membrane potential for single (V') and for double (V")
gap are

V'(t) = R' R+ [1 - exp (-t/r')] Is;

rV(t) = Rp, [1 - exp (-t/r")] Is
(RS 1 1 ](Rs, +RPI) +
[Rs + RP1 R' Rr.2+ Rp2

(7)

(8)

where r' = R'C'and

C'nFtm
T =

_1 1 1

R,1 + Rp, Rm RS2+ Rp2

For comparison between the distributed (Fig. 2) and
lumped (Fig. 3) models: Rm= rm/12; Rp = re 1,; RS = ri (1, +
12/2); Rp= rell; Rp2= rel3;R = ri (11 + 12/2); R2= ri (13
+ 12/2); Cm= Cm . 12.

In Fig. 3 A and B, the dashed lines represent Eqs. 7 and
8. In Fig. 4 A and B, the asymptotic values of Eqs. 7 and 8
are reported. While for the double gap case there are no
large differences, the situation is worse for the single gap
system. Besides the difference in the steady state level, one
can observe that this value is approached more rapidly in
the distributed than in the lumped model. For example,
when t = Tm = 18 ms and the potential is calculated in the
middle of the external segment, the distributed element
model reaches =70% of its maximum against the 63% of
the lumped model. This means that estimates of membrane
resistance and capacity based on the lumped elements
circuit may be subject to errors that are relevant especially
when a single gap is used.

Besides constituting a tool to check the validity of
lumped elements treatments, the solutions of the distrib-
uted model may be useful to calculate the spatial distribu-
tion of voltage in the fiber segment under study. It is well
known that one of the major problems in voltage-clamping
a segment of a cylindrical cell by a strictly localized
current source is the spatial uniformity of the potential.
While it has been already shown, and it is also easy to
understand, that the length of the segment to be clamped is
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FIGURE 4 Steady state solutions of the distributed model for the single (a, c, d) and double (b) Vaseline gap for the same rectangular pulse
of stimulating current. (a and b) Effect of changing the value of the gap resistance: lower curves, re - 140 Mu/cm; intermediate curves, r,
280 Mg/cm; upper curves, r,, - 560 Mg/cm. The other parameters are the same as Fig. 3; the dots represent the steady state values of the
lumped elements circuit whose transient behavior is shown in Fig. 3 a and b, and must be compared with the level of the intermediate curves in
the middle of the exposed segment. (c) Effect ofchanging l,; other parameters are equal to the ones of Fig. 3 a. (d) Effect ofchanging 12; other
parameters are equal to the ones of Fig. 3 a.

of primary importance, it is more difficult to evaluate the
effects of other geometrical and electrical parameters. Fig.
4 shows the solutions of the distributed model when the
length of the fiber, the length of the insulating gap, and the
resistance of the gap are changed. Except for the already
mentioned effect of the fiber length (Fig. 4 D), it is
apparent that both gap length (Fig. 4 C) and gap resis-
tance (Fig. 4 A and B) do not have a great influence on the
spatial distribution at steady state. This last result is of
particular importance because, while the length of the
various segments may be rather easily adjusted by the
experimenter, the quality of the insulating seals is difficult
to be standardized.
We have analyzed in detail two particular experimental

situations, but the proposed method, with slight modifica-

tions to take into account different boundary conditions,
could be applied to more complex systems as, for example,
the three Vaseline gap preparation used by Hille and
Campbell (1976).

Received for publication 17 May 1983 and in final form 26 January
1984.
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