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Model Discrimination and Mechanistic Interpretation of Kinetic Data
in Protein Aggregation Studies

Joseph P. Bernacki and Regina M. Murphy*
Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin

ABSTRACT Given the importance of protein aggregation in amyloid diseases and in the manufacture of protein pharmaceuti-
cals, there has been increased interest in measuring and modeling the kinetics of protein aggregation. Several groups have
analyzed aggregation data quantitatively, typically measuring aggregation kinetics by following the loss of protein monomer
over time and invoking a nucleated growth mechanism. Such analysis has led to mechanistic conclusions about the size and
nature of the nucleus, the aggregation pathway, and/or the physicochemical properties of aggregation-prone proteins. We
have examined some of the difficulties that arise when extracting mechanistic meaning from monomer-loss kinetic data. Using
literature data on the aggregation of polyglutamine, a mutant b-clam protein, and protein L, we determined parameter values for
18 different kinetic models. We developed a statistical model discrimination method to analyze protein aggregation data in light of
competing mechanisms; a key feature of the method is that it penalizes overparameterization. We show that, for typical mono-
mer-loss kinetic data, multiple models provide equivalent fits, making mechanistic determination impossible. We also define the
type and quality of experimental data needed to make more definitive conclusions about the mechanism of aggregation. Specif-
ically, we demonstrate how direct measurement of fibril size provides robust discrimination.
INTRODUCTION

Protein aggregation has been linked to a number of degener-

ative amyloid diseases, such as Alzheimer’s, Huntington’s,

and the prion-related diseases. In these diseases, the mature

aggregated species is typically b-sheet and fibrillar in

morphology (1). Aggregation also poses problems of conse-

quence in the manufacture of protein therapeutics: it can

occur during purification, formulation, packaging, or storing

of recombinant proteins and can lead to lowered yields,

reduced efficacy, altered pharmacokinetic profiles, and

potentially life-threatening immunological responses (2,3).

The growing awareness of the importance of protein mis-

folding and aggregation has led to a concomitant increased

interest in measuring and modeling the kinetics of protein

aggregation.

In evaluating kinetic data on the aggregation of proteins

and peptides, particularly with fibrillogenesis, some kind of

nucleated growth mechanism has generally been invoked.

Conventionally, the term ‘‘nucleation’’ has been used to

indicate a localized phase transition, but the word has been

appropriated to describe the onset of fibril growth. Descrip-

tions and definitions vary, but generally, nucleated growth is

considered to be characterized by 1), a sigmoidal growth

curve with lag, propagation, and plateau phases; 2), a reduc-

tion in lag time with the addition of ‘‘seeds’’; and, some-

times, 3), a critical concentration below which aggregation

will not occur (4–6). Sophisticated mathematical models

have been developed that describe protein aggregation

kinetics (e.g., (7–10)). However, application of these models
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for the interpretation of experimental data is challenging due

to both the nature of the available experimental data and the

complexity of the mathematical models. Despite these diffi-

culties, several groups have analyzed monomer-loss kinetic

data quantitatively using simplified kinetic models. It is

important to note that such analysis has led to conclusions

about the nature of the aggregation nucleus, the dominant

pathway of aggregation, and/or the physicochemical proper-

ties of proteins that undergo aggregation.

Ferrone proposed that a simple algebraic equation

describes monomer-loss kinetics adequately under some

limiting conditions (11); in particular, only data at early

time points (~10–20% of total monomer loss) is included.

Wetzel and co-workers used this approach to analyze the

aggregation of polyglutamine peptides, concluding that the

aggregation nucleus is a structured monomer in equilibrium

with the bulk pool of disordered monomers and that the equi-

librium constant, though small, increases with increasing

polyglutamine chain length (12–14). The same approach

was used in studies of the aggregation kinetics of ataxin-3

(15) and b-clam proteins (16), and a similar conclusion, of

an energetically unfavorable monomeric nucleus at equilib-

rium with the bulk unstructured monomer, was reached.

Using a similar analysis, aggregation of protein L was deter-

mined to proceed via equilibrated nuclei that were dimers

and/or trimers (17).

Other groups have applied a similar mechanistic scheme,

but with different methods for fitting the model to the data.

One method involves plotting the log of a specific time

(lag time or t50) versus the log of concentration, in which

case the slope is equated to either n/2, or (n þ 1)/2, where

n is the size of the nucleus. This method was used in a study
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of yeast prion protein aggregation to conclude that Sup35p

nuclei are hexamers but Sup35pNM nuclei are trimers (18).

Morris et al. argue for a different scheme: an autocatalytic

mechanism, in which a slow but irreversible nucleation step

is followed by further nucleation catalyzed by the reaction

product (19). They derived a two-parameter analytical solu-

tion to the differential rate equations describing this mecha-

nism, and used this model to fit kinetic rate constants to

several sets of data in the literature. It is of interest that

one data set came from Chen et al. (13), who had fit the

data to the Ferrone approximation for nucleated polymeriza-

tion. In all cases, reasonably good fits of the data to the

model equation were obtained. Unlike the Ferrone approxi-

mation, data over the entire range of monomer loss was

used in the model fitting; however, the fitted data were at

only a single concentration. The autocatalytic model has

been used by others, for example, in an analysis of insulin

aggregation (20).

Somewhat more complex models have been used by a few

groups. For example, a three-step mechanism that included

monomer activation, nucleation, and elongation was

proposed to explain FtsZ protein assembly (21). Experi-

mental data were fit to a six-parameter model, and the result-

ing excellent fit was used to argue that FtsZ assembly is

cooperative and proceeds via a dimeric nucleus. In another

example, a fibril fragmentation step was added to a model

of Sup35 aggregation (22), and the additional parameters

improved model fit. In a third study, both homogeneous

and heterogeneous nucleation steps, as well as fibril elonga-

tion by monomer addition, were included in the analysis of

aggregation data of islet amyloid polypeptide (IAPP) (23).

In other cases, researchers have fit data to empirical

equations in the absence of a specific mechanistic scheme.

For example, Dubay et al. (24) collected literature data on

a variety of proteins and, neglecting both the lag and plateau

phases, fit the data to a simple exponential equation to extract

a single rate constant; this parameter was then used to corre-

late to a variety of physical properties, such as hydropho-

bicity and charge. A similar approach was taken in an

examination of the effect of mutations on acylphosphatase

aggregation (25,26). Other researchers have also used expo-

nential decay curves to fit aggregation data, and in some

cases have related the exponent to a lumped kinetic param-

eter (27,28). The logistic and Gompertz functions have

been used widely to model sigmoidal curves; examples in

which these equations (or variations) were applied to protein

aggregation kinetics include an examination of the effect of

solution conditions on insulin aggregation (29), an investiga-

tion of aggregation of microtuble-associated protein tau (30),

and studies on the effects of mutations on aggregation of

glucagon (31) and IAPP (32).

In this work, we examined some of the issues that arise

when fitting model equations to experimental data of protein

aggregation kinetics, highlighting the difficulty in extracting

mechanistic meaning from such modeling analyses. We
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focused primarily on fibril growth kinetics because of their

importance in amyloid disease. First, we derived several

kinetic models that describe competing aggregation schemes.

We next created a ‘‘test’’ monomer-loss data set and fitted

parameters for each of the models to the data using nonlinear

regression. Since reasonable parameter values were obtained

for several different models, we developed a statistical model

discrimination method to compare the kinetic models. A key

feature of this method is that the model rankings are weighted

by the number of regressed parameters, effectively penalizing

overparameterized models. We demonstrated that multiple

models derived from disparate aggregation mechanisms

provided equivalent fits. We conclude, therefore, that it is

generally not possible to elucidate a mechanism of protein

aggregation simply from analysis of monomer-loss kinetic

data. We then defined the type and quality of experimental

data needed to make definitive conclusions about the mecha-

nism of aggregation. Finally, we examined the effect of

‘‘seeding’’ on monomer-loss kinetics to investigate the utility

of seeding experiments in distinguishing among particular

mechanisms of aggregation.

MATERIALS AND METHODS

Parameter regression

Model parameters were regressed using Athena Visual Studio 12.0 (Athena

Visual Software, Naperville, IL), except where indicated. Athena Visual

Studio provides a Windows-based interface for inputs into equation solving

and parameter estimation programs. It employs an implicit integrator

package, DDAPLUS, for solving initial-boundary value problems described

by sets of mixed differential and algebraic equations (DDAPLUS is an

extension of the DASSL predictor-corrector algorithm and is described in

detail elsewhere (33,34)). Parameter estimation from multiresponse data is

provided by nonlinear least-squares regression (sum-of-squares minimiza-

tion) using the GREGPLUS algorithm described elsewhere (34,35); confi-

dence limits on parameters are calculated from the covariance matrix. Sets

of monomer-loss data at each initial concentration were considered indepen-

dent responses. The modeling equations and monomer-loss kinetic data were

programmed into Athena Visual Studio, along with initial guesses for the

parameter values. The modeling equations were numerically integrated

and the best-fit parameters and 95% confidence intervals were determined

via least-squares regression.

Model discrimination

A statistically valid model discrimination procedure for multiresponse data

was implemented according to the method described by Stewart et al.

(36). All models were assigned equal prior probability, and the posterior

probability, PðmjjY¼Þ, of model mj, given the monomer-loss data matrix Y,

was calculated via

P
�
mjjY¼

�
f2�pj=2j v

¼ jj�ve=2

vik ¼
P

u

�
Yiu � GjiðuÞ

��
Yku � GjkðuÞ

� ; (1)

where u is the vector of times at which the data were taken, pj is the number

of regressed parameters in model mj, ve is the degrees of freedom, and Gji is

the solution for response i of model mj. ve is calculated as the total number of

data points (including replicates) minus the number of time points at which

data were taken; if a set of monomer-loss data did not include replicates,
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FIGURE 1 Schematics illustrating aggregation models.

Open symbols indicate various conformations of monomer.

Solid symbols indicate aggregates classified as fibrillar. (a)

Preequilibrated nucleus. (b) Slow initiation. (c) Monomer

partitioning. (d) Autocatalytic. (e) Sequential growth. (f)

Qualitative Gibbs (free) energy sketches for PN and SI

mechanisms. The dagger indicates a transition state. The

sketch illustrates that in the PN mechanism, N exists as

a (meta)stable species at a local energy minima; this species

is absent in the SI mechanism.
ve was set equal to 1. The matrix vj is the covariance matrix, containing the

products of the residual errors at each time point. The covariance matrix

cannot have any missing values, so the data sets must be full; in other words,

data must be obtained at all time points for each initial concentration. The

2�pj/2 term is obtained during the derivation of Eq. 1 (36). This term penal-

izes those models with a greater number of parameters, thereby offsetting the

improvement in the fit of a model due to overparameterization. Thus, an

increase in the number of parameters must be statistically justifiable to

improve the posterior probability of the model. The posterior probabilities

were normalized to give the posterior probability share pj:

pj ¼
P
�
mjjY¼

�
P

k

PðmkjY¼Þ
: (2)

In essence, pj reports on the relative likelihood that model mj provides the

best fit of the data. The numerical integration of the modeling equations

and other calculations were completed using Mathematica 6.0 (Wolfram

Research, Champaign, IL).

RESULTS

Mathematical models of monomer-loss kinetics

Starting with several commonly invoked mechanisms for

fibril formation kinetics, we derived models describing mono-

mer-loss and fibril-growth kinetics. We restricted our study to

relatively simple models, with no more than three parameters.

Qualitative descriptions or illustrations of aggregation

processes will be referred to as ‘‘schematics’’, the sequence

of steps describing the aggregation process will be referred

to as the ‘‘reaction pathway’’, the system of differential equa-

tions derived from the reaction pathway will be referred to as

the ‘‘modeling equations’’, and the numerical solution to the

modeling equations will be referred to as the ‘‘model solu-

tion’’. Note that none of the reaction pathways contain true

chemical reactions, in that no covalent bonds are created or

broken. The schematic of each model is illustrated in Fig. 1.
Preequilibrated nucleus (PN) model

In the PN schematic, monomers (M) are in rapid equilibrium

with a nucleus (N) containing n monomers, characterized by

an equilibrium constant KPN ¼ [N]/[M]n. Thus, the PN sche-

matic posits that the nucleus exists as an identifiable species,

and that the rate for interconversion between nM and N is

much faster than that of subsequent steps. Typically, one

assumes that KPN << 1, because the nucleus is energetically

unfavorable relative to the bulk monomer, but this is not

a requirement of the mathematical formulation. Fig. 1 f
contains a free-energy diagram that qualitatively demonstrates

these concepts. Free M binds irreversibly to N to form fibril

Fnþ1, with the rate of formation described by the rate constant

k1PN. Fibrils grow by continued addition of M to Fx, where x
indicates the number of monomers in the fibril and x R nþ 1.

The rate of growth is described by k2PN, which is assumed to

be independent of x. Thus, the PN reaction pathway is

nM4
KPN

N

M þ N /
k1PN

Fnþ1

M þ Fx /
k2PN

Fxþ 1; xRn þ 1

We set [N] ¼ KPN[M]n and ½F� ¼
PN

i¼nþ1

½Fi�, yielding the PN

modeling equations

d½M�
dt
¼ �k�1PN½M�

nþ 1�k2PN½M�½F�
d½F�
dt
¼ k�

1PN
½M�nþ 1

; (3)

where k�1PN ¼ k1PNKPN. From Eq. 3 we note that monomer-

loss kinetic data cannot be used to find k1PN and KPN
Biophysical Journal 96(7) 2871–2887



2874 Bernacki and Murphy
independently. This set of coupled differential equations is

solved by numerical integration given initial conditions that

[M] ¼ [M]0 and [F] ¼ 0 at t ¼ 0. (The assumption that [F] ¼
0 at t¼ 0 is relaxed later when simulating seeding experiments.)

Ferrone approximation (FA) of the PN model

Ferrone et al. (11,13) derived a simple algebraic equation to

describe the PN model monomer-loss kinetics, subject to two

simplifying assumptions. First, if data are restricted to very

early times, then [M] z [M]0. Second, if monomer loss by

addition to fibrils exceeds monomer loss by nucleation,

then k�1PN½M�
nþ1 << k2PN½M ½F�� . Application of these

approximations leads to an analytic solution to Eq. 3 of

½M� ¼ ½M�0�
k�1PNk2PN

2
½M�nþ 2

0 t2 ¼ ½M�0�
k1FA

2
½M�nþ 2

0 t2;

(4)

where k1FA ¼ k�1PNk2PN ¼ k1PNKPNk2PN. Using these

approximations, the fibril growth kinetics are

½F� ¼ k�1PN½M�
nþ 2

0 t: (5)

Chen et al. developed a graphical method for analyzing

monomer-loss kinetic data using the FA model (13). Per

Eq. 4, a plot of [M] versus t2 is linear, with slope

�0:5k1FA½M�nþ2
0 . If data are taken at multiple initial concen-

trations, one can then plot the log(�slope) versus log[M]0.

The slope of this log-log plot is nþ2, and the intercept is

log(0:5k1FA).

Slow initiation (SI) model

The SI reaction pathway consists of two irreversible steps:

1), n monomers converting to a fibril, Fn, with a rate constant

k1SI; and 2), M adding to Fx with a rate constant k2SI.

nM /
k1SI

Fn

M þ Fx /
k2SI

Fxþ1; xRn:

In the SI reaction pathway, the first reaction is typically

considered to be slow relative to the second, but this is not

a requirement of our mathematical formulation. The SI model

differs from the PN model in that there is no assumption of

a metastable nucleus in the former. A free-energy diagram

is shown in Fig. 1 f that illustrates the SI model, assuming

that the first reaction is slow and has a high activation energy.

This first reaction step has sometimes been called nucleation

by others, and the transition state (highest point on the free-

energy diagram) has sometimes been called a nucleus. We

do not use that terminology, instead reserving ‘‘nucleus’’

for the metastable species described in the PN model. Similar

to the PN model, the fibril-growth rate constant k2SI is

assumed to be independent of fibril size and ½F� ¼
PN
i¼n

½Fi�.
The SI modeling equations are readily derived:
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d½M�
dt
¼ �nk1SI½M�n�k2SI½M�½F�

d½F�
dt
¼ k1SI½M�n :

(6)

This set of coupled differential equations was solved by

numerical integration.

Autocatalytic (AC) model

In the AC reaction pathway, monomer M irreversibly

converts to F1 with a rate constant of k1AC. F1 then catalyzes

the formation of additional F1 from M with a rate constant of

k2AC:

M /
k1AC

F1

M þ F1 /
k2AC

F1 þ F1:

Unlike the PN and SI reaction pathways, the AC reaction

pathway does not include a step for monomer loss by addi-

tion to Fx. Rather, fibrils are postulated to grow by coales-

cence of Fx, with x R 1. Because these modeling equations

will be applied to monomer-loss kinetic data, fibril coales-

cence steps are not necessary in our formulation. In the

AC model, one implicitly assumes that each monomer in

a fibril retains its ability to catalyze further fibril formation.

The modeling equations for the AC reaction pathway are

d½M�
dt
¼ �k1AC½M� � k2AC½M�½F1�

d½F1�
dt
¼ k1AC½M� þ k2AC½M�½F1�

: (7)

These equations have an analytic solution:

½M�¼½M�0
��

k1AC þ k2AC½M�0
�
exp
�
�
�
k1AC þ k2AC½M�0

�
t
�

k2AC½M�0exp
�
�
�
k1AC þ k2AC½M�0

�
t
�
þ k1AC

�
:

(8)

During our analysis, we chose to numerically integrate Eq. 7.

The AC model was used by Morris et al. (19) to fit a large

number of sets of protein aggregation kinetic data.

Monomer partitioning (MP) model

It has been suggested that the monomer species in some

systems may comprise multiple conformational states, of

which only a fraction can support fibril initiation (37). To

capture this schematic, the MP model posits that the mono-

mer population partitions into two conformational subspe-

cies, MA and MB, with parameter fMP as the fraction of

monomer in the ‘‘A’’ conformation. MA and MB are not

assumed to reequilibrate with each other as fibril growth

proceeds. This situation might arise, for example, upon rapid

change in denaturant concentration, trapping two alternate

conformations in local minimum energy wells. We assume
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that the MA subpopulation forms fibrils Fn with a rate

constant k1MP but does not participate in fibril growth,

whereas the MB subpopulation does not initiate new fibrils

but adds to extant fibrils with a rate constant k2MP:

nMA /
k1MP

Fn

MB þ Fx /
k2MP

Fxþ1; xRn:

Similar to previous developments, ½F� ¼
PN
i¼n

½Fi� and k2MP is

assumed to be independent of x. The MP modeling equations

are

d½MA�
dt

¼ �nk1MP½MA�n

d½MB�
dt

¼ �k2MP½MB�½F�
½MA�0¼ fMP½M�0
½MB�0¼

�
1� fMP

�
½M�0

d½F�
dt
¼ k1MP½MA�n:

(9)

These modeling equations have analytic solutions, for

example, if n ¼ 1, then

½M�A¼ fMP½M�0expð�k1MPtÞ

½M�B¼ ð1� fMPÞ

½M�0exp

�
k2MPfMP½M�0

k1MP

�
1� k1MPt � e�k1MPt

�	
:

(10)

We numerically integrated Eq. 9 during our analysis. To

compare the modeling equations to monomer-loss data, we

let ½MA� þ ½MB ¼ ½M�� .

Sequential growth (SG) model

We considered the possibility that a soluble intermediate f
forms during aggregation. In the SG model, 1), n monomers

react irreversibly to form fn with a rate constant k1SG; 2), fn
converts to fibril Fn with a rate constant k2SG; and 3), M
adds to Fx with a rate constant k3SG:

nM /
k1SG

fn

fn /
k2SG

Fn

M þ Fx /
k3SG

Fxþ 1; xRn:

As before, k3SG is considered independent of x and

½F� ¼
PN
i¼n

½Fi�. The SG modeling equations are

d½M�
dt
¼ �nk1SG½M�n�k3SG½M�½F�

d½f �
dt
¼ k1SG½M�n�k2SG½fn�

d½F�
dt
¼ k2SG½fn�:

(11)
Soluble intermediates lack the defined structure, density,

and/or morphology of fully formed fibrils and thus may

not be detectable by assays such as sedimentation or thiofla-

vin T fluorescence. We therefore assumed, in fitting the SG

model to monomer-loss kinetic data, that the ‘‘monomer’’

response equals [M] þ n[fn].

Simple polynomial (SP) model

For completeness, we also considered empirical polynomial

models to describe monomer-loss kinetics. We limited

ourselves to only linear (SP1) and quadratic (SP2) expres-

sions:

½M� ¼ ½M�0ð1� k1tÞ (12)

½M� ¼ ½M�0
�
1� k1t � k2t2

�
: (13)

Equations 12 and 13 do not represent any implied mecha-

nism or reaction pathway.

It is clear that there are many variations on the above

models. In particular, we neglected schemes involving mech-

anisms of fibril growth or restructuring other than monomer

addition. We also did not consider any reaction pathways

with off-path agglomeration steps, and we limited ourselves

to models with no more than three parameters. One could

imagine combinations of mechanisms, for example, a combi-

nation of PN and SG models where a preequilibrated nucleus

is formed that then grows into a soluble aggregate before

maturing to fibrils. A modular approach for combining

different steps to generate a large number of combinatorial

models has been described recently (38). Still, we believe

this collection is sufficiently diverse for our purposes, and

is reasonably representative of the kinetic models that have

been published in the literature and used to interpret experi-

mental data.

Selection of test data sets and parameter
estimation

Development of representative monomer-loss kinetic
data sets

Our first objective was to establish test data sets to subject to

parameter estimation and model discrimination. To do this,

we adapted aggregation data published by others on three

different systems: the polyglutamine peptide K2Q36K (13),

the b-clam protein (16), and protein L (17). These data sets

were chosen because they all contained kinetic data taken

at several different concentrations and because all three

sets were analyzed in the original literature using Eq. 4 and

the log-log method described by Chen et al. (13). Our model

discrimination procedure requires full response data taken at

the same independent variable values (Eq. 1). Since aggrega-

tion rates generally decrease with concentration, we chose

to define our independent variable not as time (t) but as

t ¼ [M]0t. This reflects practice, as low-concentration
Biophysical Journal 96(7) 2871–2887
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samples are generally tracked over longer time periods than

high-concentration samples (e.g., (13,16,17)). In no case did

the published data fit the exact requirements of our model

discrimination procedure. Therefore, we were not able to

use the published data without modification; rather, the

published data served as a template for developing test data

sets. Each set will be discussed in turn.

PolyQ test data

Aggregation of polyglutamine peptide as a function of length

was studied by Wetzel and co-workers as a model system for

aggregation of huntingtin and related proteins that have been

linked to expanded CAG domain diseases (13). Monomer-

loss data for K2Q36K2 were collected based on a centrifuga-

tion assay in which peptide concentration in the supernatant

was measured by reverse-phase high-performance liquid

chromatography. Data at four initial concentrations were

reported (13). The published data did not report concentra-

tion measurements at the same t for all initial monomer

concentrations, nor were there the same number of data

points for each initial concentration (three points at the two

higher concentrations, and nine at the two lower concentra-

tions). Therefore, we used the published data as a template,

but we modified this template to produce a data set that

was amenable to model discrimination. For example, we

interpolated between the actual data points to obtain data

at the t values required. Our representative data set includes

four responses (at initial concentrations of 37, 17, 8.25, and

4.5 mM) and six t points (100, 200, 300, 400, 500, and

600 mM h) per response. These data are denoted as our

‘‘polyQ test’’ data set and are given in Table S1 in the

Supporting Material.

FIGURE 2 Graphical analysis of the monomer-loss kinetics of the polyQ

test data, as suggested by Chen et al. (13). The initial concentrations are

37 mM (-), 17 mM (�), 8.25 mM (:), and 4.5 mM (;). (Inset) Slopes of

the best-fit lines versus the corresponding initial concentration. The slope

of this line is 2.59 � 0.07, and the intercept is �5.74 � 0.08.
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The polyQ test data are plotted in Fig. 2 as [M] versus t
(per Eq. 4), following the analysis procedure described else-

where (13). The slopes for each initial concentration data set

were determined by linear regression. The inset to Fig. 2

shows a plot of log(�slope) versus log[M]0. The slope of

the log-log plot for the polyQ test data is 2.59� 0.07, similar

to the reported value of 2.68 for the original published data

(13). Since the slope¼ nþ 2, this was interpreted in the orig-

inal literature as n ~ 1, indicating that the nucleus is a mono-

mer in equilibrium with the unfolded monomer pool. From

the intercept of Fig. 2 (inset), we obtained a value of

log(k1FA/2) ¼ �5.75 � 0.08 or k1FA ¼ 0.27 M�2 s�2, some-

what higher than the value of 0.09193 M�2 s�2 reported for

the published data (13).

Clam test data

CRABP I (cellular retinoic acid binding protein I) is

a member of the ‘‘b-clam’’ protein family whose folding

kinetics have been studied in detail. A slow-folding mutant

(P39A) is known to form inclusion bodies. Ignatova and

Gierasch measured in vitro aggregation of this mutant using

a probe that is fluorescent when bound to all nonnative states,

and using centrifugation followed by concentration determi-

nation of the supernatant (16). The published data were

modified slightly to meet the requirements of our model

discrimination method to generate the ‘‘clam test’’ data set

(Table S2). As with the polyQ test data, four concentrations

at six t points were included.

In the original literature, the data were analyzed using

Eq. 4 and the method described in Chen et al. (13). It was

concluded that n z 1, that aggregation proceeded via

a monomeric nucleus, and that ‘‘an unfavorable equilibrium

between the misfolded intermediate and the bulk pool of

monomers [was] causative in aggregation.’’ We analyzed

our clam-test data set using this method, to be sure that our

modified data were in keeping with the original, and simi-

larly found n ¼ 0.9 � 0.4. (Note that only a fraction of the

test data, at low-percent total aggregation, was used in this

analysis, because the analysis using Eq. 4 is valid only at

low aggregation. The full range of the test data set was

used in subsequent parameter estimation and model-discrim-

ination steps.)

Protein L test data

Protein L is a small a/b protein that aggregates in 25%

trifluoroethanol solutions. Aggregation kinetics were

measured using the thioflavin T assay (17), and the data

were analyzed using Eq. 4 and the ‘‘log-log’’ method (13).

From this analysis, it was concluded that the kinetic data

was consistent with linear elongation with a nucleus size

of 2 or 3. We adapted the published data slightly to meet

the requirements of our model-discrimination procedure

and generated the ‘‘protein L test’’ data set (Table S3). We

analyzed this test data set using the log-log method and
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TABLE 1 Fitted parameter values obtained by regression to the polyQ test data set

Model n r2 k1 k2 k3 or fMP

PN 1 0.999 1.4 (1.1) � 10�4 mM�1 h�1 5 (8) � 10�3 mM�1 h�1

2 0.994 4 (7) � 10�6 mM�2 h�1 5 (16) � 10�3 mM�1 h�1

3 0.991 1.1 (2.5) � 10�7 mM�3 h�1 5 (22) � 10�3 mM�1 h�1

FA 1 0.998 1.1 (0.1) � 10�6 mM�2 h�2

2 0.992 3.0 (0.6) � 10�8 mM�3 h�2

3 0.989 8 (2) � 10�10 mM�4 h�2

SN 1 0.994 1 (5) � 10�3 h�1 2 (9) � 10�2 mM�1 h�1

2 0.999 7 (6) � 10�5 mM�1 h�1 1.1 (1.5) � 10�2 mM�1 h�1

3 0.994 1.4 (2.4) � 10�6 mM�2 h�1 1.5 (4.5) � 10�2 mM�1 h�1

AC 0.994 2.5 (2.3) � 10�3 h�1 3.7 (2.8) � 10�3 mM�1 h�1

MP 1 0.999 1.8 (0.9) � 10�1 h�1 5 (~) � 100 mM�1 h�1 8.8 (1.9) � 10�5 –

2 0.999 7 (~) � 100 mM�1 h�1 2 (5) � 100 mM�1 h�1 5 (8) � 10�4 –

3 0.998 8 (~) � 103 mM�2 h�1 6 (32) � 10�1 mM�1 h�1 2 (8) � 10�3 –

SG 1 0.999 1.4 (0.5) � 10�1 h�1 2.9 (1.0) � 10�3 h�1 1.3 (0.6) � 10�1 mM�1 h�1

2 0.999 2.1 (1.4) � 10�4 mM�1 h�1 1.9 (1.3) � 10�1 h�1 1.5 (5) � 10�3 mM�1 h�1

3 0.999 5.6 (3.8) � 10�5 mM�2 h�1 2.2 (0.6) � 10�2 h�1 2 (9) � 10�3 mM�1 h�1

SP1 0.991 5.1 (1.3) � 10�3 h�1

SP2 0.995 7.6 (1.6) � 10�3 h�1 �5 (2) � 10�5 h�2

Fitted value and the 95% confidence interval (in parentheses) are shown for each parameter. A tilde (~) in place of a numerical confidence interval indicates an

indeterminate parameter.
found n ¼ 2.6 � 0.5, again demonstrating that our data set is

consistent with the published data.

Parameter estimation

The three test data sets were then used to obtain parameter

values by fitting each of the kinetic models to each data set

using the parameter estimation package Athena Visual

Studio. Where applicable, n was fixed to an integer value

of 1, 2, or 3; these models are denoted as, e.g., PN2 for the

preequilibrated nucleus model with n ¼ 2. In total, 18

different models were fitted to three different test data sets.

All modeling equations were modified to accommodate the

transformation of the independent variable from t to t.

A summary of the fitted parameters for the polyQ test data

is given in Table 1. We were able to determine numerical

values for all parameters, though in many cases the confi-

dence interval was very large. Confidence intervals were

generally smaller for those models with fewer parameters.

There are several specific results worth noting.

1. The fitted value of k1FA was 0.084 � 0.01 M�2 s�2,

roughly a factor of 3 smaller than the value obtained

from fitting Eq. 4 using the log-log method. This discrep-

ancy can be attributed primarily to the difference between

setting n ¼ 1 and fitting to n ¼ 0.59.

2. If the Ferrone approximation is adequate to analyze the polyQ

test data, then we should observe k1FA ¼ k�1PNk2PN. A

comparison of the fitted values in Table 1 reveals that k1FA

is ~35–45% larger than k�1PNk2PN, depending on the chosen

value of n. This difference represents the error imposed by the

two simplifying assumptions used to derive Eq. 4.

3. With the SI model, the first reaction is indeed slower than

the second reaction. This is most directly observed at

n ¼ 2; at n ¼ 1 or n ¼ 3 the comparison requires consid-

eration of the monomer concentration.
4. For the MP model, the fraction of monomer capable of

initiating fibril formation is strikingly small. However,

the uncertainty in the parameter values is large, due to

the high correlation between fMP and the rate constants.

5. In the SG model, formation of the soluble intermediate f is

faster than conversion of f to F; thus, f accumulates during

early times.

The r2 values for each fit are listed in Table 1; no r2 value

was <0.989, which is usually taken to indicate a good fit for

each model. Visual confirmation of the adequacy of the fit

was obtained by plotting the fitted curves against the test

FIGURE 3 Representative model solutions for the polyQ test data set. The

37 mM test data (-) and the corresponding PN1 (solid line), FA1 (dashed

line), SI2 (dash-dotted line), and SG3 (dotted line) model solutions are

plotted against the transformed time variable as t ¼ [M0]t. The SI2 and

PN1 model solutions for 37 mM are virtually indistinguishable at this

resolution.
Biophysical Journal 96(7) 2871–2887
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data; a selection of model solutions is plotted against the

37 mM Poly Q test data in Fig. 3.

Similarly, the clam test and protein L test data sets were fit

to the 18 various kinetic models. In all cases, parameter esti-

mates were obtained by nonlinear regression, and good fits,

as characterized by r2, were observed (not shown).

Model discrimination of three test data sets

We next applied our model discrimination procedure to eval-

uate the competing kinetic models. The modeling equations

were numerically integrated using the fitted parameter values

(shown for polyQ (Table 1), but not for clam and protein L

test sets) to obtain the model solutions versus t. Equations

1 and 2 were used to calculate the normalized posterior prob-

ability of each model on the basis of the test data set. We will

discuss each test data set in turn.

Results of our evaluation of the validity of various models

to describe the polyQ test data are plotted in Fig. 4 a. None of

the kinetic models is a clear winner. The SG3 model has the

greatest posterior probability share, though the PN1, FA1,

SI2, MP2, and SG1 models also have sizable shares. Further-

more, many of the other models do not lag far behind; most

notably, the PN and FA models with n ¼ 2 or 3 possess

~65% of the posterior probability share of the PN1 and

FIGURE 4 Model discrimination results for the (a) polyQ test, (b) clam

test, and (c) protein L test data sets. (a) For the polyQ test data, the SG3

model has the highest share (0.096), followed by the SI2 (0.081), PN1

(0.081), FA1 (0.078), SG1 (0.076), and MP2 (0.070) models. (b) For the

clam test data, the MP2 has the highest share (0.15), followed by the MP3

(0.10), SI1 (0.073), and SG3 (0.072) models. (c) For the protein L data,

the FA2 has the highest share (0.14), followed by the FA3 (0.11), SI3

(0.097), and PN2 (0.097) models.
Biophysical Journal 96(7) 2871–2887
FA1 models. We conclude that the correct mechanism

cannot be reliably ascertained from the data (Fig. 2 and

Table S1), as there is no single model with a dominating

posterior probability share. Specifically, this analysis shows

that these data are insufficient to draw the conclusion that

polyglutamine aggregation proceeds via a preequilibrated-

nucleation mechanism with a monomeric nucleus.

We completed a similar analysis of the clam test data to

calculate the posterior probability of each model. For this

case, the MP2 model was deemed the most probable

(Fig. 4 b). PN1, the model chosen in the literature, was

less than half as likely as MP2 to be the appropriate model.

Furthermore, several other models had posterior probabilities

similar to PN1, indicating that they are equally adept at

describing the experimental data. Thus, one cannot conclude

based on this monomer-loss data that b-clam protein aggrega-

tion proceeds through a misfolded intermediate that serves as

a monomeric nucleus. Our analysis suggests that the most

probable mechanism involves the presence of two alternate

protein conformations at initiation of aggregation, only one

of which is capable of initiating aggregation. However,

conclusive evidence for this is lacking, as several other

kinetic models had nonnegligible probabilities.

For the protein L test data, there was again no clearly supe-

rior kinetic model. The FA2 model yielded the highest prob-

ability (Fig. 4 c). It is interesting that the PN2 model, from

which the FA2 is obtained via simplifying assumptions,

achieves less probability share than FA2. This could be

due to the narrow timescale and concentration range over

which the original data were collected; there is no added

benefit of the PN2 model over FA2 at fitting long-time

data, and PN2 is penalized because of its additional param-

eter. A variety of other models (PN3, FA3, SI3, MP3, and

SG3) have similar posterior probabilities. Our analysis

supports a conclusion that the reaction is second- or third-

order, but no definitive distinction among the various mech-

anisms can be made, and one cannot conclude definitively

that aggregation proceeds via a dimeric or trimeric preequi-

librated nucleus.

In summary, with three different sets of monomer-loss

kinetic data derived from the literature, we were able to

obtain good fits of the data to several kinetic models. We

developed a method to discriminate among different models

and determine which was the most probable. We demon-

strated that although some models could be ruled out in

each case, the data sets were insufficient to positively deter-

mine a unique mechanism of aggregation.

Effect of experimental error and data quantity

We next asked, given ‘‘data’’ generated from a model solu-

tion, 1), will our parameter estimation method recover the

correct parameter values? and 2), will our model discrimina-

tion procedure successfully identify the correct model and

eliminate incorrect models?
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To explore these questions, we chose the PN1 model and

the fitted parameters from the polyQ-test data set: k�1PN ¼
1.4 � 10�4 mM�1 h�1 and k2PN¼ 5.4 � 10�3 mM�1 h�1.

We chose four initial concentrations ([M]0 ¼ 40, 30, 20,

or 10 mM) and six transformed time points (t ¼ 100, 200,

300, 400, 500, and 600 mM h). Equation 3 was numerically

integrated with n ¼ 1 to calculate [M] versus t. A normally

distributed random number with s ¼ 1 mM was added to the

calculated values to simulate experimental error. This

process was repeated three times to generate three sets of

simulated monomer-loss data; these data sets will be referred

to as simulation 1, simulation 2, and simulation 3. These

simulated data sets are available in Table S1.

The three simulation data sets were first analyzed using

Eq. 4 and the graphical method described earlier (13).

The n values determined in this manner were 1.7 � 0.2,

0.4 � 0.3, and 0.8 � 0.3. This simple examination shows

that analysis of monomer-loss data using Eq. 4 could

lead to erroneous conclusions about the nucleus size, even

presuming that the PN mechanism is correct, because of

the influence of experimental error. The values of k1FA

obtained in this manner for each data set were, respectively,

0.0082, 0.59, and 0.13 M�2 s�2; given that k1FA ¼ k�1PNk2PN,

the anticipated value was 0.058 M�2 s�2. Again, we observe

that experimental error can lead to large variability in param-

eter estimates when this methodology is used.

We next evaluated the simulated data using our parameter-

estimation and model-discrimination procedures, to deter-

mine if we could 1), recover the input model parameter values;

and 2), uniquely ascribe the data source as the PN1 model

solution. Fitted PN1 parameter values are provided in Table

2. The regressed parameter values differed from each other

by one or more orders of magnitude. This result was

surprising, given that all three data sets were acquired by

simply incorporating error (2.5–10% relative error, depend-

ing on the initial concentration) into the exact model solu-

tions. Note, however, that the product of the two parameters

(k�1PN1k1PN1 ¼ 0.11, 0.11, and 0.062 M�2 s�2) does not

TABLE 2 Fitted parameters for the PN1 model regressed to

simulated data sets

Data set k�1PN (10�4 mM�1 h�1) k2PN (10�4 mM�1 h�1)

Input parameters 1.4 54

Simulation 1 0.11 (~) 1300 (200)

Simulation 2 0.0025 (~) 58,000 (8000)

Simulation 3 0.8 (1.7) 100 (300)

Triplicate 1.6 (1.1) 40 (60)

Extensive 1.1 (0.5) 77 (48)

Fibril 1.4 (0.2) 52 (16)

Time 1.0 (0.9) 73 (71)

Fibril þ time 1.4 (0.1) 54 (5)

Data sets were obtained by solving the PN1 model equations at the input

parameter values and then adding a random error to the calculated values.

The data were then regressed to the model equations. Ideally, the input

parameters would be returned. The values presented are the fitted parameters

(95% confidence interval).
vary nearly as much as the individual values, nor is there as

much variability as when the data were fit to Eq. 4 using the

graphical method. This indicates that the lumped parameter

can be ascertained with better certainty than the individual

parameters, and that the two parameter values are highly

correlated with each other.

Finally, the simulation data sets were fit to all 18 kinetic

models to find model parameters. The normalized posterior

probabilities obtained from evaluating model fits to the simu-

lated data are shown in Fig. 5. It was surprising that the PN1

model, from which the data were actually derived, was never

the highest-ranking model. Rather, the FA model was

selected for all three data sets as most probable. The FA1

model had the highest posterior probability for simulation

1, and the FA2 was the highest for simulation 2, even though

the graphical method indicated the reverse: a dimeric nucleus

for simulation 1 and a monomeric nucleus for simulation 2.

In no case was the FA model strongly preferred over all other

models, and the next-best models varied significantly among

the different simulation data sets. We suspect that the FA

models do relatively well for two reasons: first, they incur

the smallest parameterization penalty (Eq. 1), and second,

there is insufficient data at long times to provide an advan-

tage to the PN model that compensates for the additional

parameter.

We wondered whether an increase in the quantity of data

would improve parameter estimation and/or model discrimi-

nation. Specifically, we evaluated the importance of replicate

FIGURE 5 Model discrimination results for the data sets from (a) simula-

tion 1 (b) simulation 2, and (c) simulation 3. The models with the highest

posterior probabilities are the FA1 (0.11) for simulation 1, FA2 (0.13) for

simulation 2, and FA1 (0.14) for simulation 3.
Biophysical Journal 96(7) 2871–2887
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measurements at each time point and the addition of more data

points. We generated two new simulated data sets from the

PN1 model. The ‘‘triplicate’’ simulated data set had three

‘‘measurements’’ for each initial concentration (40, 30, 20,

and 10 mM) at each t value (100, 200, 300, 400, 500, and

600 mM h), whereas the ‘‘extensive’’ simulated data set had

100 single ‘‘measurements’’ taken much more frequently

over the same t range (6, 12, 18 . 588, 594, 600 mM h).

The triplicate and extensive data sets are given in Table S1

and Table S4, respectively.

Graphical analysis of the triplicate data set produced an

estimate of n ¼ 1.0 � 0.1, consistent with the PN1 model

used to simulate these data. Furthermore, fitted parameter

values for the PN1 model were close to the input values,

although the confidence intervals were still large (Table 2).

Thus, replicate measurements greatly improve the reliability

of parameter estimates. However, the model discrimination

results did not improve (Fig. 6 a); indeed, the SG1 model

had the highest posterior probability share by a considerable

margin. With the large number of replicates in the triplicate

data set, ve is large, and a slight decrease in the residual error

confers a significant advantage (Eq. 1); as such, the influence

of the parameterization penalty lessens as the number of repli-

cates grows. This may explain why a three-parameter model

such as the SG1 is selected over the two-parameter PN1

model. Thus, including replicate measurements greatly

improves the accuracy of parameter estimates once a mecha-

nism is assumed. Replicates become increasingly important

as the number of parameters and the model complexity

increase. However, replicates alone are not sufficient to

successfully discriminate among alternative mechanisms.

In the extensive data set, we increased the number of data

points (without replicates) within the same transformed time

domain. Graphical analysis of this data set based on Eq. 4

FIGURE 6 Model discrimination results for the (a) triplicate and (b)

extensive data sets. The SG1 model has the largest share for the triplicate

data set (0.57), whereas the FA1 model has the largest share for the extensive

data set (0.098).
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yielded a value of n ¼ 0.76 � 0.01. Regression to the PN1

model led to parameter estimates that are close to the input

values, with tighter confidence intervals than those obtained

with the triplicate data set (Table 2). FA1, PN1, and SI2 were

selected as the most probable models (Fig. 6 b), with several

other models having smaller, but still significant, probability

shares. Thus, a unique mechanism cannot be identified from

these data with any confidence. We conclude that increasing

the quantity of experimental data improves parameter esti-

mation but not model identification.

Data requirements for successful model
discrimination

Our analysis showed that replicates or an increased number

of data points improve parameter estimation but not model

discrimination. We next explored whether changing the

nature of the experimental data would improve model

discrimination. We examined two cases: 1), fibril-growth

kinetics in addition to monomer-loss kinetics; and 2), mono-

mer-loss data collected over much longer timescales.

Addition of fibril-growth data

The PN, FA, SI, MP, and SG models all include equations

for fibril growth. Note that [F] in Eqs. 3, 5, 6, 9, and 11 is

the molar concentration of fibrils, not the mass concentra-

tion. It is possible to calculate the molar fibril concentration

from simultaneous measurement of the mass of fibrils and

the average fibril molecular weight, obtained directly or indi-

rectly through static light scattering, atomic force micros-

copy, or other experimental techniques. Because these

measurements are more difficult to carry out, there is much

less published data on fibril size and growth kinetics than

on monomer-loss kinetics. With the AC model, fibril size

is irrelevant as the fibrils are presumed to grow by an unspec-

ified coalescence mechanism. The SP model is an empirical

fit of monomer-loss data and therefore does not provide

a means for calculating [F] versus time. Therefore, we did

not include the AC or SP models in this analysis.

We again used the PN1 model with k�1PN ¼ 1.4 � 10�4

mM�1 h�1 and k2PN¼ 5.4 � 10�3 mM�1 h�1 to generate

the simulated data. We obtained model solutions at four

different initial concentrations (40, 30, 20, and 10 mM)

through numerical integration of Eq. 3 and calculated [F]

as well as [M] versus t. Random normally-distributed errors

(sM ¼ 1 mM , sF ¼ 0.07 mM) were added to simulate exper-

imental error; the variance for the simulated fibril data was

chosen to give the fibril data a similar percent error as the

monomer data. This ‘‘fibril’’ data set spans the same t range

(0–600 mM h), but contains 10 rather than six data points at

each concentration, to maintain the matrix dimensions neces-

sary for model discrimination (Eq. 1). The fibril data set is

provided in Table S5.

We first fit the PN1 model equations to the fibril data set to

obtain estimates of the model parameters. Inclusion of fibril
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kinetic data greatly improved the accuracy and precision of

the parameter estimates (Table 2). We next fit the fibril

data set to the PN, FA, SI, MP, and SG models at n ¼ 1,

2, and 3, and calculated the normalized posterior probability.

It was surprising that the SI2 model had a much greater

posterior probability share than the PN1 model from which

the data were actually obtained (Fig. 7 a). This is akin to

a false positive; analysis of this data set would lead to the

conclusion that the slow-initiation model with n ¼ 2 was

superior to the model actually used to generate the simulated

data.

Increased percent monomer loss

We next tested whether including data over a longer time

period, and thus a greater percent monomer loss, would

improve parameter estimation and model discrimination.

We simulated monomer-loss data directly versus t, rather

than versus the scaled time variable, t. The time range was

chosen so that ~90% of the monomer at [M]0 ¼ 40 mM

aggregated over the course of the ‘‘experiment’’; the six

time points used were 15, 30, 45, 60, 75, and 90 h. The

time data set is included in Table S5. The parameter regres-

sion was improved in comparison to the simulation data sets

(Table 2). Collecting data over a longer time period also

somewhat improved model discrimination, in that more

models were determined to be unsatisfactory (Fig. 7 b).

The FA models were clearly unable to describe this data

set, which is to be expected, as the approximations leading

FIGURE 7 Model discrimination results for the (a) fibril, (b) time, and (c)

fibril þ time data sets. The SI2 has the largest share (0.56) for the fibril data

set, three models tie for the largest share (0.18) for the time dataset, and the

PN1 has the largest share (0.83) for the fibril þ time dataset.
to the FA equations are reliable only when there is little

(~10–20%) monomer loss. Still, there were several models

with similar probabilities; these included the correct model

(PN1) as well as various incorrect models (SI2, MP2, SG2,

and SG3).

Addition of fibril data plus increased percent monomer loss

Finally, we combined both ideas: the ‘‘fibril þ time’’ data

set (Table S5) included fibril data and was measured versus

t to ~90% monomer loss. At each initial monomer concen-

tration, data was generated at 10 equally spaced time points

up to 90 h. Both parameter estimation and model discrimi-

nation were highly successful with the fibril þ time data set.

Parameter estimates obtained by fitting to the PN1 model

equations were identical to the input values, and the confi-

dence intervals were small (Table 2). Furthermore, the PN1

model was selected as the correct model via our model-

discrimination analysis: the posterior probability of the

PN1 model was more than an order of magnitude higher

than the next best model (Fig. 7 c). A comparison of the

data and model solutions at [M]0 ¼ 40 mM is given in

Fig. 8. Though many of the competing models successfully

track the monomer-loss data (Fig. 8 a), only the source PN1

model also captures the fibril data without systematic devi-

ation (Fig. 8 b). Most notably, the model discrimination

analysis of the fibril þ time data successfully indicated

the correct model despite excellent fits from the competing

models. Ten of the 12 models had r2 values >0.95, with the

SG2 model nearly matching the r2 of the source PN1 model

(0.989 vs. 0.990). Thus, a high r2 value alone is not suffi-

cient to conclusively identify a particular kinetic scheme

as correct.

To ensure that our conclusions are general, and not

specific to PN-type aggregation mechanisms, we expanded

FIGURE 8 Representative model solutions for the fibril þ time data set.

The 40 mM monomer-loss (a) and fibril-growth (b) data (-) and the corre-

sponding PN1 (solid line), FA1 (dashed line), SI2 (dash-dotted line), and

SG3 (dotted line) model solutions are plotted versus time.
Biophysical Journal 96(7) 2871–2887
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FIGURE 9 Model discrimination results for the (a) MP2

simulation, (b) MP2 fibril þ time, (c) SG2 simulation, and

(d) SG2 fibril þ time data sets.
our analysis to include two other mechanisms, MP2 and

SG2. Model equations were solved, using parameters ob-

tained by fitting the clam (MP2) or protein L (SG2) test

data sets. These solutions were then used to generate either

monomer-loss data (‘‘MP2 simulation’’ or ‘‘SG2 simula-

tion’’), or monomer-loss plus fibril-growth data to ~90%

total aggregation (‘‘MP2 fibril þ time’’ or ‘‘SG2 fibril þ
time’’). Experimental error was added to each solution

generated by the models, and then the resulting simulated

data sets were fitted to the various kinetic models. The data

sets used in this analysis are given in Table S2, Table S3,

Table S6, and Table S7.

Results of this analysis are summarized in Fig. 9. With the

MP2 simulation data, our model discrimination process was

able to identify the MP2 model as the most probable

(Fig. 9 a), but two other models, the SI2 and the PN1, also

had substantial posterior probabilities. Addition of the fibril-

growth data increased the MP2 probability and provided for

more robust identification of the correct mechanism (Fig. 9 b).

Model discrimination was poor with the SG2 simulation data

(Fig. 9 c) as was found with the PN1 simulation (Fig. 5).

Marked improvement was obtained if fibril-growth data was

analyzed along with monomer-loss data, and the data were

collected over most of the aggregation process (Fig. 9 d). In

this case, SG2 was clearly identified as the correct model.

Thus, we conclude that both monomer-loss and fibril-

growth data, extending over nearly the entire aggregation

process, are necessary to discriminate between competing

aggregation models. It is important to point out that the

complementary statement can also be made: given mono-

mer-loss and fibril-growth data extending over the aggrega-

tion process, discrimination among different aggregation

mechanisms is robust, and the correct model can be identified.
Biophysical Journal 96(7) 2871–2887
Characteristics of nucleated growth:
concentration-dependent lag times and seeding

A lag time that decreases with concentration and the elimina-

tion of this lag phase by the addition of preexisting fibrils

(‘‘seeding’’) are frequently considered to be diagnostic of

nucleated growth (4,6,8,16,28,39,40). We examined which

of our models were able to capture these behaviors.

To do this, we used the parameter estimates in Table 1,

then obtained model solutions at [M]0 ¼ 0.1 mM, 0.5 mM,

and 1.0 mM. Depending on the concentration and parameter

values, all models were able to produce sigmoidal monomer-

loss profiles, with apparent lag phases (not shown). We note,

FIGURE 10 Effect of seeding. The initial concentrations simulated were

[M]0 ¼ 0.5 mM and [F]0 ¼ 0 mM (solid lines) and [M]0 ¼ 0.5 mM and

[F]0 ¼ 0.005 mM (dotted lines). Solutions for the PN1 (a) and MP2 (b)

models were obtained using the parameter values listed in Table 1.
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however, that none of the models produced true lag phases, if

we define a true lag phase as a time period during which there

is no aggregation. A true lag phase requires a stochastic

aggregation model. Rather, the apparent lag phase we

observed is indicative of a slow aggregation rate during early

times and a faster aggregation rate at intermediate times.

With the exception of the AC and SG1 models, the lag

time decreased strongly with concentration. For example,

with the MP2 model, the time to 1% aggregation increased

from 86 h at [M]0 ¼ 1.0 mM to 864 h when [M]0 ¼ 0.1 mM.

We conclude that sigmoidal monomer-loss kinetics and

a concentration-dependent lag time are not diagnostic of

any unique aggregation model.

We simulated seeding by using a nonzero [F] at t ¼ 0.

Specifically, we calculated the monomer-loss profiles with

[M]0 ¼ 0.5 mM and [F]0 ¼ 0.005 mM, using the parameter

values given in Table 1. We were surprised to find that there

was virtually no change in monomer-loss kinetics with the

PN1 model (Fig. 10 a), whereas a drastic seeding effect

was observed with the MP2 model (Fig. 10 b). There was

no effect of seeding in the AC or SG1 models, small effects

with PN2, SI1, SI2, SG2, and SG3, and moderate

effects with PN3 and SI3; the largest effect of seeding was

observed with the MP series of models (not shown). Thus,

we conclude that the absence of a significant seeding effect

does not necessarily rule out nucleated growth, nor does

the presence of a seeding effect provide definitive proof of

any specific aggregation mechanism. Furthermore, seeding

experiments cannot be used in model discrimination unless

the molar fibril concentration is known; in most published

experiments, only the fibril mass concentration is reported.

DISCUSSION

Protein aggregation, and particularly fibril growth, has

received considerable attention over the past few years

because of its negative effects in degenerative amyloid

diseases and in the manufacture of protein pharmaceuticals.

On a more positive front, controlled self-assembly of

peptides and proteins into supramolecular structures affords

the opportunity to design novel materials with unique func-

tional properties. Knowledge of the pathway by which

aggregates form, and their rate of formation, is critical infor-

mation as researchers aim to develop methods and reagents

for reliable control of aggregation.

There is a growing body of literature in which the kinetics

of protein aggregation is measured quantitatively and the

data are interpreted mechanistically. A simple, but widely

used, approach for quantitative analysis of kinetic data is

illustrated in other studies (13,15–17). By limiting data anal-

ysis to the first ~10–20% of the aggregation process and by

assuming that the rate of fibril elongation exceeds that of

fibril nucleation, a simple algebraic expression (Eq. 4) is

derived. Monomer concentration is predicted to decrease

with a t2 dependence, and monomer-loss kinetics are charac-
terized by a single lumped rate constant, k1FA, and the size of

the aggregation nucleus, n. This algebraic equation, first

described by Ferrone (11), is derived from a more complete

nucleation-based aggregation model; this model assumes

that monomers are in rapid and reversible equilibrium with

an energetically unfavorable nucleus, and that this nucleus

(and subsequent fibrils) grows by monomer addition. It is

important to note that the conclusions derived from this

type of analysis have been used to motivate and inform theo-

retical studies on the structure of the nucleus (e.g., (41)) and

the connection between aggregation and toxicity (e.g., (28)).

However, there has not been a systematic evaluation of the

validity of applying Eq. 4 to kinetic data or the robustness

of any mechanistic interpretation based on the outcome of

this analysis.

Some researchers have applied more detailed and sophis-

ticated kinetic models to analyze their data. For example,

Collins et al. derived differential equations for aggregation

of the yeast prion protein Sup35 that included nucleation,

growth, and fibril fragmentation steps, but they fit only

a linearized version of the model to their data (22). Ruschak

and Mirankar (23) derived a set of differential equations

involving three rate constants for primary nucleation,

secondary nucleation, and elongation. All steps were

assumed irreversible and the rate constants were fit to kinetic

data for IAPP aggregation. Assembly of the FtsZ protein, as

measured by a fluorescence assay, was fit to a six-parameter

model that included forward and reverse steps for monomer

activation, dimerization, and elongation (21). The researchers

reported that they achieved an excellent fit to the model. In

a very recent report, Xue et al. (38) developed a clever

modular approach for generating a library of aggregation

models. Kinetic data on b2-microglobulin aggregation were

collected to obtain lag times and lumped rate constants.

Several models were fitted to these parameters by least-

squares regression, and the models were ranked based on

goodness-of-fit criteria, with a penalty assessed based on

the number of parameters. The spirit of this work is similar

to ours, although the approaches and goals are distinct.

The goals of this work were 1), to examine the validity of

Eq. 4 in fitting experimental kinetic data; 2), to compare the

accuracy of parameter estimates obtained from linearized,

graphical approaches versus nonlinear regression methods;

3), to develop a method for discriminating among different

kinetic formulations; and 4), to define the nature of the exper-

imental data needed for robust parameter estimation and

model discrimination.

Experimental issues

Experimental methods for measuring fibril formation kinetics

include thioflavin T fluorescence, turbidity, sedimentation,

size exclusion chromatography, circular dichroism, and filtra-

tion assays. In general, these techniques report (or are

assumed to report) the mass of protein/peptide in the fibrillar

state or the mass of nonaggregated monomer, which are often
Biophysical Journal 96(7) 2871–2887
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presumed to be equivalent. Some difficulties arise in interpret-

ing the data obtained using these methods. For example, small

soluble oligomers will not be differentiated from monomers in

filtration or sedimentation assays, and such oligomers will not

be detected by circular dichroism if they lack regular

secondary structure. Thioflavin T fluorescence is insensitive

to nonamyloid aggregation, and because the dye binds to

the surface of large aggregates and its fluorescence intensity

is partially dependent on morphology, the technique might

not accurately assay the mass of fibrils. To maintain our focus

on data fitting and model discrimination, we did not consider

these experimental uncertainties in our analysis. Following

along with the general practice, we assumed that measure-

ments of monomer concentration were reliable and, except

where otherwise noted, that only monomers and fibrils were

present.

Parameter estimation

Equation 4 is derived from the PN mechanism, but data anal-

ysis using Eq. 4 requires the application of two simplifying

assumptions. The graphical method recommended by Chen

et al. (13) requires further transformations of the data that

can skew the experimental errors so that they are no longer

randomly distributed. We evaluated the ‘‘polyQ test’’ data

set and found, when the data were analyzed, that there was

as much as a fourfold difference in the lumped rate constant

k1FA obtained using 1), the graphical log-log method; 2),

nonlinear regression fit directly to Eq. 4; or 3), nonlinear

regression via numerical integration of the PN model equa-

tions (Eq. 3). We also found that the log-log method was

sensitive to experimental error; for example, within our three

simulation data sets, estimates of n varied from 0.5 to 1.7,

and the lumped rate constant varied from 0.0082 to 0.59

M�2 s�2. Thus, extreme care must be taken not to place

too much confidence in the numerical values of n or k1FA ob-

tained by these methods.

We next evaluated the ability of a nonlinear regression

multiresponse analysis method to fit kinetic data to a variety

of model equations. Our three test data sets were developed

from published data from three different sources (13,16,17)

and are representative of the type of data that is generally

available for kinetic analysis. It was interesting that we

were able to obtain fitted parameter values for almost all of

the models that we attempted. Confidence intervals varied

significantly; as a general rule, fewer fitted parameters meant

tighter confidence intervals. For example, in fitting the polyQ

test data set to the PN1 model, we obtained parameter esti-

mates with large confidence intervals, whereas the same

data set fit to the FA1 model generated a lumped parameter

with a small confidence interval (Table 1). This result is

initially surprising, as FA1 represents an approximate solu-

tion to the full PN1 model, but it is most likely because of

high correlation between the two PN1 parameters; in other

words, the product of the PN1 parameters is known more

accurately than the individual parameter values. This anal-
Biophysical Journal 96(7) 2871–2887
ysis suggests that parameter error estimates from overly

simplified models may be misleadingly small. On the other

hand, although more complex models (which include for

instance fibril fragmentation or secondary nucleation) may

more accurately describe the true physical situation, the

increased number of unknown variables increases the uncer-

tainty of fitted parameter values.

The quantity and nature of the experimental data also

greatly affects the quality of the resultant parameter esti-

mates. We show (Table 2) that replicate experiments, more

frequent data collection, and expansion of the time over

which monomer-loss data are taken all improve the reli-

ability of the parameter estimates. These factors must be

carefully considered in the experimental design.

However, a good fit of a model to data does not mean that

the underlying mechanism must be correct! When we simu-

lated data using one model, and then fit alternate models to

the simulated data, we were able to obtain parameter esti-

mates for nearly all of the models (data not shown). As

such, we disagree with the statement that obtaining a good

fit indicates that the ‘‘mechanism must be portraying at least

some of the key features of the more complete, elementary

step process of protein agglomeration’’ (19). We frequently

obtained ‘‘good’’ parameter estimates (i.e., small confidence

intervals) and ‘‘good’’ fits (i.e., high r2) with models that did

not earn a high posterior probability. Thus, one must not

interpret a good fit as equivalent to identification of the

correct mechanism.

Model discrimination

Parameter estimation is only the first step in identifying the

aggregation mechanism from data. The next step is determi-

nation of the uniqueness of the proposed mechanism at

fitting the experimental data. The model discrimination

method we demonstrate here evaluates the probability that

a specific model is the best model, given a library of alterna-

tives. Of importance, we penalize models that require

additional parameters; a better fit should nearly always be

obtained by adding parameters, but the addition of parame-

ters must be justified by providing a statistically superior

fit of the data. In other words, the added complexity of the

model must be required by the data.

Our results clearly show that it is essentially impossible to

select a unique mechanism among candidate models based

solely on monomer-loss kinetic data. In particular, we argue

that simplified approaches such as Eq. 4, in which monomer-

loss data over the first 10–20% of the aggregation process is

utilized, should be considered empirical curve-fitting exer-

cises, from which no underlying mechanistic interpretation

of the fitted parameters can be reliably obtained. By trun-

cating the data at early times, as required by the assumptions

underlying Eq. 4, one ignores the longer-time data that

significantly contributes to differential identification of

models (compare Fig. 5 with Fig. 7 b). Our analysis calls

into question, for example, the conclusion that polyglutamine
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peptides, ataxin-3, and b-clam protein aggregation proceed

via a thermodynamic nucleus of size n¼ 1 (13–16). Our claim

is not that this conclusion is necessarily false. Rather, we

claim that no definite conclusion about mechanism is justified

based on the published analyses.

An examination of the model equations explains in part

why it is difficult to interpret a mechanism, especially based

only on monomer-loss data taken at early times. The func-

tional form of the d[M]/dt equations are very similar for

many of the different models (for example, compare Eqs.

3, 6, and 7). Greater differences are observed when fibril

growth is accounted for. Fibril growth affects kinetic

behavior both directly, through the d[F]/dt equations, and

indirectly, through the contribution of [F] to the d[M]/dt
equations, a contribution that becomes increasingly influen-

tial as aggregation progresses. It is important to note that the

equations are coupled. For example, the d[M]/dt equations

for the PN1 and the SI2 models are identical, but the d[F]/dt
equations differ, and since [F] appears in the d[M]/dt equa-

tions, the net result is differences in the monomer-loss kinetic

patterns. This explains the basis for our result showing that

both monomer-loss and fibril-growth data over the entire

aggregation process are necessary to discriminate among

competing models. It is not possible, using data sets that

encompass only the early stages of monomer loss or that

lack fibril kinetic data, to adequately distinguish between

even simple aggregation models. Indeed, in some of the cases

we simulated, insufficient data led to an incorrect conclusion

about the underlying mechanism (e.g., Figs. 6 a, 7 a, and 9 c).

Robust identification of the underlying kinetic mechanisms

requires experimental data on monomer loss that cover the

full timespan of the aggregation process, plus measurements

of the fibril size (or, equivalently, the fibril molar concentra-

tion) over time. Additional experiments to detect the presence

of intermediates may be needed to rule out oligomer-based

mechanisms, such as the SG model.

Kinetic models and physical interpretation

For the purposes of our study, we derived simple kinetic

models that often produced similar, though not identical,

modeling equations. Although the model equations may

appear mathematically similar, the underlying physics of

these models are distinct. The PN model assumes rapid

equilibration between monomers and a nucleus with

a defined structure. In other words, in the PN model, the

nucleus exists as an identifiable species, and the rate of inter-

conversion between the monomer and nucleus is sufficiently

fast that the concentration of the nucleus and the monomer

are related to each other at all times by the equilibrium

constant. A sigmoidal aggregation curve is attributed to

a very low equilibrium concentration of nuclei (Fig. 1). In

the SI mechanism, irreversible conversion of monomers to

an aggregate is assumed, and sigmoidal monomer loss is

obtained if the creation of aggregates is slow relative to their

growth by monomer addition. In the SI model, the monomer
may be conformationally heterogeneous, and there are no

defined metastable structured nuclei before the appearance

of the smallest fibrils (Fig. 1). A key point of contrast

between the PN and the SI models is in the nature of the

collision that leads to fibril formation. In the PN1 model,

there is a two-step process: first, rapid reversible conversion

between the bulk monomer and an alternate conformation

(the nucleus), and second, collision between a monomer in

the bulk and this rare alternate conformation that produces

the first fibril. In the SI2 model, in contrast, a collision

between any two monomers in the bulk produces the first

fibril. Some of these distinctions between PN- and SI-type

schematics are discussed in greater detail in the literature

(e.g., (42,43)). In the MP model, one assumes that monomers

are initially trapped in two distinct conformations that do not

interconvert; as an example, during refolding, a protein may

be divided into natively folded and misfolded species, with

a large energy barrier separating the two forms. One confor-

mation is then assumed to be capable of initiating aggrega-

tion, whereas the other conformation can only add to existing

aggregates. The SG model is distinct from the other mecha-

nisms in that oligomeric intermediates are allowed to accu-

mulate until they convert to fibrils. This mechanism posits

the appearance of unstructured oligomers that eventually

undergo a conformational transition to structured fibrils.

Both the MP and SG models require three parameters and

both can exhibit sigmoidal aggregation kinetics in multiple

mechanistic regimes, especially because the ‘‘monomer’’

response is treated as MA þ MB and M þ nfn in the MP

and SG models, respectively.

‘‘Seeding’’ is often considered indicative of nucleated

growth. We observed, with interest, that the MP model was

the most sensitive to seeding of all the mechanisms tested.

This result was unexpected, as responsiveness to seeding

has sometimes been used as evidence for PN-type mecha-

nisms. We found that the PN and SI models are strongly

sensitive to seeding only when the size of the nucleus (n) is

large. The response is also strongly dependent on the molar

concentration of seeds, a concentration that can be calculated

only if one has data on the size of the aggregates used as

seeds. Our analysis demonstrates that the mechanism cannot

be identified simply by examination of the shape of the mono-

mer-loss kinetic profile or the response to seeding.

In our development of model equations, we focused

primarily on monomer-loss mechanisms, because there are

more examples in the literature of quantitative analysis of

monomer-loss data than of fibril-growth data. Yet, our anal-

ysis points out the critical need for experimental data on the

size of fibrils and the rate of fibril growth to differentiate

among various mechanisms. Monomer addition was the

only allowed mechanism for fibril growth in the models

we considered. We neglected many of the complexities of

fibril growth, such as fibril fragmentation, fibril-fibril coales-

cence, and formation of off-path agglomerates. Such steps

can be readily incorporated into reaction pathways; however,
Biophysical Journal 96(7) 2871–2887
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these steps will involve additional parameters. Thus, accu-

rate parameter estimation and model discrimination for these

more complex models will place even greater demands on

high-quality fibril data. In particular, these added complex-

ities may necessitate data on the size distribution of fibrils

and a more rigorous modeling treatment of distinct Fx

species. Nevertheless, the approach developed here can be

easily modified to determine whether the data require, for

example, that fibril fragmentation or off-path aggregation

be considered.

In conclusion, we note that in deriving kinetic model equa-

tions from mechanisms, we implicitly assumed that the reac-

tion order is directly related to the reaction stoichiometry.

This assumption is almost universally made in the aggrega-

tion kinetics field, but it deserves closer examination. This

assumption is strictly valid only if the reaction is elementary,

that is, if the reaction involves a single reaction step and

a single transition state, without any reaction intermediates.

Given that a step such as monomer addition to a fibril

involves no covalent bond making or breaking, but likely

does involve the making and/or breaking of multiple

hydrogen bonds, as well as changes in excluded volume

and hydrophobic and electrostatic interactions, this assump-

tion may not be justified. If so, the reaction order from fitting

kinetic data may be simply empirical and ultimately unre-

lated to the stoichiometry of the underlying reaction; in other

words, a reaction order of 1 does not necessarily imply a stoi-

chiometric coefficient of 1, and vice versa. A simple example

suffices to illustrate this difficulty. We consider only mono-

mer addition to preexisting fibrils. If this is an elementary

step, then

M þ Fx /
k2

Fxþ 1

d½M�
dt
¼ �k2½M�½F�:

A plot of the initial rate of monomer loss, d[M]/dt, versus

[M]0 would be linear, and one would conclude that fibril

growth is via monomer addition. However, if monomer addi-

tion actually occurs by a two-step mechanism such as the

‘‘dock-lock’’ mechanism (44), where F* represents a fibril

where the monomer has docked but not yet locked into place,

then the reaction sequence is:

M þ Fx /
k1

)
k�1

F�xþ 1

F�xþ1 /
k2

Fxþ1:

Assuming that F* is a reactive intermediate, applying

the quasi-steady state assumption, and letting ½F�tot ¼P
½F�x � þ

P
½Fx�, we find that

P
½F�x � ¼ k1½M ½F�tot

k�1þk2þk1½M�

i
and the rate of monomer loss is
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d½M�
dt
¼ �k1½M�½F�tot

�
1� ðk�1 � k1½M�Þ
ðk�1 þ k2 þ k1½M�Þ

�
:

Although the overall reaction is still monomer addition, and

the stoichiometry remains the same, the plot of initial rate of

monomer loss versus [M]0 is no longer linear. Such effects, if

present, further complicate the problem of extracting the

aggregation mechanism from kinetic data.

Our results clearly demonstrate the need for more compre-

hensive kinetic data on protein aggregation, including data

that extend over the full timescale of aggregation and

comprise multiple measures of aggregate size, structure,

and mass. In addition, mechanistic interpretations of kinetic

data require clear analysis of the reliability of estimated

parameter values and, of more importance, careful statis-

tics-based comparison of several alternative models. The crit-

ical importance of distinguishing among various aggregation

mechanisms becomes clear as one considers, for example, the

possible role of soluble oligomers in cellular toxicity or the

design of chemical ligands to prevent aggregation.
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