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a b s t r a c t

We study the number Nγ (n, c, q) of irreducible polynomials of degree n over Fq where the
trace γ and the constant term c are given. Under certain conditions on n and q, we obtain
bounds on the maximum of Nγ (n, c, q) varying c and γ . We show with concrete examples
how our results improve the previously known bounds. In addition, we improve upper and
lower bounds of any Nγ (n, c, q) when n = a(q − 1) for a nonzero constant term c and
a nonzero trace γ . As a byproduct, we give a simple and explicit formula for the number
N(n, c, q) of irreducible polynomials overFq of degreen = q−1with a prescribed primitive
constant term c .
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1. Introduction

Let q = pω , where p is a prime. The problem of estimating the number of irreducible polynomials of degree n over the
finite field Fq with some prescribed coefficients has been extensively studied. Carlitz [1] and Kuz’min [8] gave the number
of irreducible polynomials with the first coefficient prescribed and the first two coefficients prescribed, respectively; see [2]
for a similar result over F2, and [10] for more general results. Yucas andMullen [13] and Fitzgerald and Yucas [6] considered
the number of irreducible polynomials of degree n over F2 with the first three coefficients prescribed. Over any finite field
Fq, Yucas [12] gave the number of irreducible polynomials with a prescribed first or last coefficient. More recently, Kononen
et al. [7] and Moisio [9] considered the number of irreducible polynomials with a fixed trace and norm. Their approach is
based on exponential sums and provides explicit results for some particular cases different from ours. Our approach here
is completely elementary and it is based on Yucas’ work [12]. For an excellent survey paper (up to 2005) on polynomials
(irreducible or primitive) with prescribed coefficients, see Cohen [4]. We do not treat here the case of primitive polynomials
with prescribed coefficients; see [3–5].
We now give the format of the paper. In Section 2 we review the required background and fix the notation for this paper.

The main results of this paper are given in Sections 3 and 4. Fix q and n; we study Nγ (n, c, q), the number of irreducible
polynomials of degree n over Fq where the trace γ and the constant term c are given. We obtain bounds on themaximum of
Nγ (n, c, q) under certain conditions on q and n (Theorem 6). We showwith concrete examples how our results improve the
previous bounds. Our results are particularly better when the degree n is a multiple of q− 1. We treat this case in Section 4.
We give a simple and explicit formula for the number N(n, c, q) of irreducible polynomials over Fq of degree n = q−1 with
a prescribed primitive constant term c , and one of its simple upper bound for n = a(q− 1)with a > 1 (Theorem 9). Finally,
we obtain the improved upper and lower bounds of Nγ (n, c, q) with n = a(q − 1) and a nonzero trace γ and a nonzero
constant term c (Theorems 13 and 14, respectively).
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2. Background and notation

The number of irreducible polynomials of degree n and trace γ over Fq is denoted by Nγ (n, q). For given p andm, we say
that m is pfree, if p - m. For n = pκψ where ψ is pfree, Corollary 2.7 of [12] proves that the number Nγ (n, q), for γ 6= 0, is
given by

Nγ (n, q) =
1
nq

∑
d|ψ

µ(d)q
n
d , (1)

where µ represents the Mobius function defined by µ(1) = 1; µ(d) = 0, if p2|d for some prime p; and µ(d) = (−1)r if d is
the product of r distinct primes.
If n = pκψ then using κ we introduce a variable ε as ε = 1 if κ > 0 and ε = 0 if κ = 0. For trace zero, Corollary 2.8

of [12] gives N0(n, q) as

N0(n, q) =
1
nq

∑
d|ψ

µ(d)q
n
d −

ε

n

∑
d|ψ

µ(d)q
n
dp .

We use N(n, c, q) for the number of irreducible polynomials of degree n and constant term c over Fq. Let

Dn =
{
r: r | qn − 1, r - qm − 1 form < n

}
.

For each r ∈ Dn, let r = mrdr , where dr = gcd
(
r, q

n
−1
q−1

)
. It is easy to see that mr | q − 1. Suppose that the order of the

constant c is ρ. In [12] it is shown that the number N(n, c, q) can be found as

N(n, c, q) =
1

nφ(ρ)

∑
r∈Dn
mr=ρ

φ(r),

where φ denotes Euler’s function. In this sum for each r ∈ Dn the numbermr is fixed as ρ = ord(c). When both trace γ and
a nonzero constant c are prescribed, Carlitz [1] obtained an asymptotic formula, as n→∞,

Nγ (n, c, q) =
qn − 1
nq(q− 1)

+ O
(
q
n
2

)
. (2)

Using a bijection f (x) 7→ c−1xnf ( 1x ), Nγ (n, c, q) equals the number of irreducible polynomials of degree n in the arithmetic
progression {ax + c + g(x)x2 | g(x) ∈ Fq[x]}, where a = −γ c−1. Applying a general asymptotic bound on the number of
primes on an arithmetic progression, Moisio [9] pointed out the following improvement of Eq. (2), as n→∞,

Nγ (n, c, q) =
qn−1

n(q− 1)
+ O

(
q
n
2

n

)
.

For the estimation of the error term, Wan [11] established the following effective bound∣∣∣∣Nγ (n, c, q)− qn−1

n(q− 1)

∣∣∣∣ ≤ 3nq n2 .
Recently, this bound was improved by Moisio [9] by considering two separate cases whether γ is zero or not. He obtained
for nonzero γ ,∣∣∣∣Nγ (n, c, q)− qn − 1

nq(q− 1)

∣∣∣∣ < 2
q− 1

q
n
2 ,

and for zero trace∣∣∣∣N0(n, c, q)− qn−1 − 1n(q− 1)

∣∣∣∣ < 2
q− 1

q
n
2 .

The focus of this paper is in the study of Nγ (n, c, q), where γ and c are given.
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2.1. The structure of Dn

For a better understanding of Nγ (n, c, q), where 1 ≤ γ ≤ q − 1, we need to know the structure of the set Dn = {r: r |
qn − 1, r - qm − 1 for m < n}. Let us assume that we have the prime factorization q− 1 = pg11 . . . p

gk
k , such that p1, . . . , pk

are distinct prime factors, and gi ≥ 1 for 1 ≤ i ≤ k. Similarly, we let qn − 1 = p
e1
1 . . . p

ek
k p
ek+1
k+1 . . . p

et
t , where ei ≥ gi ≥ 1, for

1 ≤ i ≤ k, and ei ≥ 1, for k+ 1 ≤ i ≤ t . Let S1 = {1, . . . , k}, and S2 = {k+ 1, . . . , t}. We have the following lemma.

Lemma 1. For each r | qn − 1 where r = mrdr , with dr = gcd
(
r, q

n
−1
q−1

)
and mr | q− 1, there exists a positive integer R such

that r = qn−1
R , and gcd(R, q− 1) = (q− 1)/mr .

Proof. Since r | qn − 1, there exists R such that r = (qn − 1)/R. Since r = mrdr with mr | q − 1 and dr = gcd
(
r, q

n
−1
q−1

)
,

there exist integers T and V , such that q− 1 = mrT , and (qn − 1)/(q− 1) = drV . Therefore,

gcd(R, q− 1) = gcd
(
qn − 1
mrdr

, q− 1
)

=
q− 1
mr

gcd
(
qn − 1
dr(q− 1)

,mr

)
=
q− 1
mr

gcd(V ,mr).

Moreover dr = gcd
(
r, q

n
−1
q−1

)
= gcd(mrdr , drV ) = dr gcd(mr , V ). Hence, we get gcd(mr , V ) = 1, and the result follows. �

In terms of the gcd(R, q− 1)we can consider two cases:
Case 1: If gcd(R, q− 1) = (q− 1)/mr = 1, thenmr = q− 1, and all the factors of R are from qn−1 + qn−2 + · · · + q+ 1,

and not from q− 1. Then r = pe11 . . . p
ek
k p
fk+1
k+1 . . . p

ft
t , where 0 ≤ fi ≤ ei, for i ∈ S2.

Case 2: If gcd(R, q− 1) > 1, thenmr < q− 1 and there exist some common primes between R and q− 1. Then let r be
given by r = pf11 p

f2
2 . . . p

fk
k p
fk+1
k+1 . . . p

ft
t where fi ≤ ei for all i ∈ S1 ∪ S2, and let us assume that the factorization of qm − 1 is

qm − 1 = phm,11 . . . pkhm,kpk+1hm,k+1 . . . p
hm,t
t pt+1hm,t+1 . . . p

hm,l
l , (3)

where hm,i ≥ gi, for i ∈ S1, and hm,i ≥ 0, for i ∈ S2. Also for all i = t + 1, . . . , l, we have hm,i ≥ 1.
Now let us consider the structure of Dn. For the above r to be in Dn, r must not be a divisor of qm − 1 for anym ≤ n− 1.

To separate the two cases, we represent the elements of Dn by r and r ′ where r = (qn − 1)/R, with gcd(R, q− 1) = 1, and
r ′ = (qn − 1)/R′ such that gcd(R′, q − 1) > 1 respectively. Let pf11 . . . p

fk
k p
fk+1
k+1 . . . p

ft
t be any r or r ′ from the set Dn. Since r

and r ′ are not divisors of qm − 1, form ≤ n− 1, we have the following conditions
1. fi ≤ ei for all i ∈ S1 ∪ S2;
2.(a) fj = ej, for all j ∈ S1, and r = p

e1
1 . . . p

ek
k p
fk+1
k+1 . . . p

ft
t - qm − 1, form ≤ n− 1; or

2.(b) There exist δ ∈ S1 such that fδ < eδ . Then since for all m ≤ n − 1 we have p
f1
1 . . . p

fk
k p
fk+1
k+1 . . . p

ft
t - qm − 1, by

considering (3) as the factorization of qm − 1, there exists j ∈ S1 ∪ S2 such that fj > hm,j.

2.2. Fixed constant term with different traces

Let c ∈ F×q be a fixed nonzero constant. We study the number of irreducible polynomials of degree n and constant term
c for different values of the trace coefficient.

Lemma 2. Let γ and δ be two nonzero traces. If c is a constant from F×q , then

Nγ (n, c, q) = Nδ

(
n, c

(
δ

γ

)n
, q
)
.

Proof. Suppose γ and δ are two nonzero traces in Fq, and let Pγ (n, c, q) denote the set of all irreducible polynomials of
degree n, trace γ and constant term c over the finite field Fq. We show that there exists a one-to-one correspondence

between Pγ (n, c, q) and Pδ
(
n, c( δ

γ
)n, q

)
. For this we consider the mapping used in Lemma 2.1 of [12]. Namely, let the

mapping ϕ : Pγ (n, c, q)→ Pδ
(
n, c( δ

γ
)n, q

)
be defined by

ϕ(f (x)) =
(
δ

γ

)n
f
(γ
δ
x
)
.

It is straightforward to verify that φ is well defined and it is a bijection. �
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Table 1
Distribution of polynomials of degree n over a finite field Fq .

Tr Cons
a1 · · · aj · · · aq−1 Row total

a0 y0,1 · · · y0,j · · · y0,q−1 N0(n, q)
a1 x1,1 · · · x1,j · · · x1,q−1 N1(n, q)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ai xi,1 · · · xi,j · · · xi,q−1 Ni(n, q)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

aq−1 xq−1,1 · · · xq−1,j · · · xq−1,q−1 Nq−1(n, q)
Column total N(n, 1, q) · · · N(n, j, q) · · · N(n, q− 1, q) N(n, q)

Let Fq = {a0 = 0, a1 = 1, a2, . . . , aq−1}. Table 1 gives the number of irreducible polynomials of degree n with given
trace and constant term.
Abusing notation, if c = aj ∈ F×q , for some j ∈ {1, 2, . . . , q− 1}, then we denote N(n, c, q) by N(n, j, q). Also for γ = ai,

where i ∈ {0, 1, . . . , q − 1}, we use Ni(n, q) for Nγ (n, q). Moreover Nγ (n, c, q) = Ni(n, j, q), where 0 ≤ i, j ≤ q − 1, and
j 6= 0. For simplicity, we use notations xi,j for Ni(n, j, q)where 1 ≤ i, j ≤ q− 1, and y0,j for N0(n, j, q)where 1 ≤ j ≤ q− 1.

For any n, we know that c
(
δ
γ

)n
= c ′ is a constant in Fq. Clearly by Lemma 2, we have Nγ (n, c, q) = Nδ(n, c ′, q), which

implies that for any nonzero traces γ = ai and δ = ak the numbers on the row ak are a permutation of the numbers on the
row ai, where 1 ≤ i, j ≤ q − 1. If we consider any column which is related to a constant c = aj, then we have an equation
of the form

y0,j +
q−1∑
i=1

xi,j = N(n, j, q). (4)

Also in column aj we know that some entries xi,j could be repeated. Let Rj be the set of indices i in the column aj such that
no xi,j is repeated. Clearly Rj ⊆ {1, 2, . . . , q−1}, and if in the column aj there is no repeated entry, then Rj = {1, 2, . . . , q−1}.
Let Ai,j represent the number of times xi,j appears in the entries of column aj. Then by Eq. (4), for each column aj, we have

y0,j +
∑
i∈Rj

Ai,jxi,j = N(n, j, q).

The last column of Table 1 gives the total number of polynomials in each row, and the last row gives the total number of
polynomials in each column. By Eq. (1) we have

N(n, q) = N0(n, q)+
q−1∑
i=1

Ni(n, q) = N0(n, q)+ (q− 1)N1(n, q).

Next we study xi,j, y0,j, and N(n, j, q).

3. Our bounds for Nγ(n, c, q)

Let γ = ai ∈ Fq, and c = aj ∈ F×q be any given elements, where 0 ≤ i ≤ q−1, and 1 ≤ j ≤ q−1. In Theorem 5.1 of [11],
bounds for the number xi,j are given as∣∣∣∣xi,j − qn−1

n(q− 1)

∣∣∣∣ ≤ 3nq n2 . (5)

In [9], better bounds for xi,j are given by considering different cases for the trace. If the trace is zero, from Corollary 3.4 of [9],
then we have the following bounds for y0,j∣∣∣∣y0,j − qn−1 − 1n(q− 1)

∣∣∣∣ ≤ s− 1n q
n−2
2 +

q
n
2 − 1
q− 1

<
2
q− 1

q
n
2 , (6)

where s = gcd(n, q − 1). For a nonzero trace γ = ai we have i > 0. By Corollary 4.3 of [9], we have the following bounds
for xi,j ∣∣∣∣xi,j − qn − 1

nq(q− 1)

∣∣∣∣ ≤ q n−22 + q
n
2 − 1

q(q− 1)
+
n
2
q
n−4
4 <

2
q− 1

q
n
2 . (7)

Suppose that the constant c = aj ∈ F×q , where 1 ≤ j ≤ q− 1, is such that ρ = ord(c). Let xr,j = max{xi,j: i ∈ Rj}. Then we
have the following result.
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Lemma 3. If c = aj is a given constant from F×q , for some 1 ≤ j ≤ q− 1, then

N(n, j, q)
q− 1

−
qn−1 − 1
n(q− 1)2

−
2q

n
2

(q− 1)2
≤ xr,j ≤

N(n, j, q)
Ar,j

−
qn−1 − 1
n(q− 1)Ar,j

+
2q

n
2

(q− 1)Ar,j
.

Proof. From Eq. (6) we have

qn−1 − 1
n(q− 1)

−
2q

n
2

q− 1
≤ y0,j ≤

qn−1 − 1
n(q− 1)

+
2q

n
2

q− 1
.

By adding
∑
i∈Rj
Ai,jxi,j to each expression in this inequality, we have

qn−1 − 1
n(q− 1)

−
2q

n
2

q− 1
+

∑
i∈Rj

Ai,jxi,j ≤ N(n, j, q) ≤
qn−1 − 1
n(q− 1)

+
2q

n
2

q− 1
+

∑
i∈Rj

Ai,jxi,j.

Then applying the lower and upper bounds for
∑
i∈Rj
Ai,jxi,j, we have

qn−1 − 1
n(q− 1)

−
2q

n
2

q− 1
+ Ar,jxr,j ≤ N(n, j, q) ≤

qn−1 − 1
n(q− 1)

+
2q

n
2

q− 1
+ (q− 1)xr,j,

which implies the result. �

Next we provide lower and upper bounds for xr,j in terms of n and q− 1, instead of N(n, j, q). We need to find lower and
upper bounds for N(n, j, q).

Definition 4. Let q and n be two positive integers, and the prime factorization of qn − 1 be given by qn − 1 = pe11 p
e2
2 . . . p

et
t ,

where pt is the largest prime factor of qn− 1. Then, the pair (q, n) is said to be a lps (largest prime survives) pair of integers,
if pt - qm − 1, form < n.

Experimental data show that for any q, there exist many n’s such that (q, n) is a lps pair. We also found some sporadic
pairs (q, n) that are not lps pairs. Let υ = pett , and mr | q − 1 be fixed, where 1 ≤ mr ≤ q − 1. We let mr = ρ = ord(c).
Then suppose that Dρ,υ is the subset of Dn defined by those r which υ divides them, that is

Dρ,υ = {r ∈ Dn: r = mrdr ,mr = ρ, υ | r} .

Lemma 5. Let (q, n) be a lps pair of integers. Suppose that pt is the largest prime in the prime factorization of qn − 1, and
mr | q− 1 be fixed as ρ = ord(c). Then for all r ∈ Dρ,υ we have

1
nφ(ρ)

∑
r∈Dρ,υ

φ(r) =
(
1−

1
pt

)
qn − 1
n(q− 1)

.

Proof. Let mr = ρ be a fixed divisor of q − 1. Then mr = p1 l1 . . . pklk , where 0 ≤ li ≤ gi, for i ∈ S1 = {1, . . . , k}. Each
r ∈ Dρ,υ is r = mrdr , wheremr = ρ, and υ | r . By Lemma 1 such r can be given by r =

qn−1
R , where

gcd(R, q− 1) =
q− 1
mr
= p1g1−l1 . . . pkgk−lk .

Therefore R = p1g1−l1 . . . pkgk−lkpk+1ck+1 . . . pt−1ct−1 , where 0 ≤ ci ≤ ei, for all i ∈ S2 − {t} = {k+ 1, . . . , t − 1}. Then each
r ∈ Dρ,υ can be considered as

r = p1e1−g1+l1 . . . pkek−gk+lkpk+1dk+1 . . . pt−1dt−1pt et ,

such that di = ei − ci, for i ∈ S2 − {t}. Then

1
nφ(ρ)

∑
r∈Dρ,υ

φ(r) =

∑
dk+1,...dt−1

φ

((
k∏
s=1
pses−gs+ls

)(
t−1∏
u=k+1

pudu
)
pett

)
nφ(p1 l1 . . . pklk)

=

φ

(
k∏
s=1
pses−gs+ls

)
nφ(p1 l1 . . . pklk)

(
t−1∏
u=k+1

eu∑
du=0

φ(pudu)

)
φ(pett )
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Table 2
Different lower bounds for xr,j .

Fq Degree n
4 7 11

F4 (0, 0, 1.74) (140.19, 142.55, 164.56) (31216.48, 31030.21, 31257.89)
F5 (0, 0, 3.94) (438.2, 476.5, 523.06) (220040.28, 220107.19, 221072.5)
F7 (0, 4.14, 8.24) (2412.24, 2634.88, 2750.06) (4267800.61, 4272351.16, 4277440.6)
F8 (0, 7.16, 14.07) (4729.24, 5126.36, 5272.63) (13919422.13, 13931249.46, 13940889.49)
F9 (0, 10.66, 19.62) (8552.73, 9198.47, 9411.91) (39574237.19, 39600149.44, 39605439.16)
F11 (0, 19.18, 30.25) (23416.12, 24845.44, 25219.11) (235649092.99, 235740989.11, 235783942.58)
F13 (0, 29.7, 40.51) (54067.13, 56777.94, 57351.98) (1044017409.66, 1044270464.84, 1044301207.22)

=

k∏
s=1
(ps − 1)pses−gs+ls−1

n
k∏
s=1
(ps − 1)psls−1

(
t−1∏
u=k+1

pueu
)
pett

(
1−

1
pt

)

=

(
1− 1

pt

)
n

(
t∏
s=1

pses
)(

k∏
u=1

pu−gu
)
=

(
1−

1
pt

)
qn − 1
n(q− 1)

. �

We state now our main result about the bounds for xr,j.

Theorem 6. Suppose that (q, n) is a lps pair of integers, and c = aj ∈ F×q be such that ρ = ord(c), for some 1 ≤ j ≤ q − 1. If
pt is the largest prime in the factorization of qn − 1, then(

1− 1
pt

)
(qn − 1)− qn−1 − 2nq

n
2 + 1

n(q− 1)2
≤ xr,j

≤
1
Ar,j

(
qn − 1
nρ
−
qn−1 − 1
n(q− 1)

+
2q

n
2

q− 1

)
.

Proof. For a givenmr = ρ, using the definition of Dρ,υ and that (q, n) is a lps pair, we have

N(n, j, q) =
1

nφ(ρ)

∑
r∈Dn
mr=ρ

φ(r) ≥
1

nφ(ρ)

∑
r∈Dρ,υ

φ(r).

Therefore, using Lemma 5, a lower bound for N(n, j, q) can be given as

N(n, j, q) ≥
(
1−

1
pt

)
qn − 1
n(q− 1)

.

Using Lemma 3, we obtain the stated lower bound for xr,j.
An upper bound for N(n, j, q) can be derived using

N(n, j, q) =
1

nφ(ρ)

∑
r∈Dn
mr=ρ

φ(r) ≤
1

nφ(ρ)

∑
r|qn−1
mr=ρ

φ(r),

where the last inequality holds since in the left-hand side sum r | qn − 1 and r - qm − 1, form < n, while on the right-hand
side sum we do not have the latter condition. Therefore it is smaller than the other sum. The sum at the right-hand side is
simply

1
nφ(ρ)

∑
ρdr |qn−1

φ(ρdr) ≤
1

nφ(ρ)

∑
dr |
qn−1
ρ

φ(ρdr) ≤
1
n

∑
dr |
qn−1
ρ

φ(dr) =
qn − 1
nρ

.

Using Lemma 3, this implies the stated upper bound for xr,j. �

Table 2 compares our lower bound with other lower bounds. We choose different n and q such that (q, n) is a lps pair
of integers, and they are small enough to compute the number in the table. For each entry (a, b, c), a represents the lower
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bound obtained byWan, b the one by Moisio, and c ours. To compare our lower bound andMoisio’s lower bound in general,
we look at their difference,(

1− 1
pt

)
(qn − 1)− qn−1 − 2nq

n
2 + 1

n(q− 1)2
−

qn − 1
nq(q− 1)

+
2
q− 1

q
n
2 ,

or,

−
(qn − 1)
n(q− 1)2pt

+
2(q− 2)
(q− 1)2

q
n
2 +

1
nq(q− 1)

.

Therefore, if the number pt is of size q
n
2−1 or larger, then this difference is positive, and so our bound is better. Checking

different q and n, this situation happens very often.

Remark. If Ar,j = ρ = q− 1, our upper bound is better than Moisio’s upper bound. In the next section we show that this is
the case if n is a multiple of q− 1. Examples are given in the next section.

4. The special case n being a multiple of q − 1

Suppose that the degree of the polynomials is fixed as n = a(q − 1), for some positive integer a. Then we have the
following results.

Lemma 7. Let 1 ≤ m ≤ n − 1, q − 1 - m, and n = a(q − 1), for some positive integer a. Then (q − 1)2 | qn − 1 and
(q− 1)2 - qm − 1. In particular, n2 | a2(qn − 1), and n2 - a2(qm − 1).

Proof. From qi ≡ 1 (mod q− 1) for any positive integer i, we have qm−1 + qm−2 + · · · + q+ 1 ≡ m 6≡ 0 (mod q− 1) and
qn−1 + qn−2 + · · · + q+ 1 ≡ n ≡ 0 (mod q− 1). Hence, multiplying by q− 1, we have the conclusion. �

Lemma 8. Suppose that n = a(q− 1), for some integer a. Let r = (qn− 1)/R such that R | qn− 1, and gcd(R, q− 1) = 1, that
is mr = q− 1. Then r - (qm − 1), for all m = 1, 2, . . . , n− 1, and m is not a multiple of q− 1.

Proof. Since q − 1 = pg11 . . . p
gk
k , q

n
− 1 = pe11 . . . p

ek
k p
ek+1
k+1 . . . p

et
t and gcd(R, q − 1) = 1, r has the form r = (qn − 1)/R =

pe11 . . . p
ek
k p
fk+1
k+1 . . . p

ft
t , where 0 ≤ fi ≤ ei, for i ∈ S2. It is clear that (q − 1)2 | r since ei ≥ 2gi for i = 1, . . . , k. Now we

show that r - qm − 1, for m = 1, 2, . . . , n − 1 and q − 1 - m. Suppose r | qm − 1. Since n2 = a2(q − 1)2 | a2r , we have
n2 | a2(qm − 1), which contradicts to Lemma 7. �

Let c ∈ F×q be such that ρ = ord(c). The constant c can be a primitive, or nonprimitive constant. For different r , in the
relation

N(n, c, q) =
1

nφ(ρ)

∑
r∈Dn
mr=ρ

φ(r), (8)

the value ofmr is fixed asmr = ρ. Let c ∈ F×q represent any primitive element. Then obviously ρ = q− 1, and let r ∈ Dn be
such thatmr = ρ = q− 1.

Theorem 9. Let n = a(q− 1), for some integer a, and c ∈ F×q be primitive. Then

N(n, c, q) ≤
qn − 1
a(q− 1)2

.

In addition, if q and n are such that pe11 p
e2
2 . . . p

ek
k - qm − 1, for m multiple of q − 1 and m < n, where qn − 1 =

pe11 p
e2
2 . . . p

ek
k p
ek+1
k+1 . . . p

et
t , then N(n, c, q) = (qn − 1)/(a(q− 1)2).

Proof. Let q − 1 = pg11 p
g2
2 . . . p

gk
k be the prime factorization of q − 1, where gi ≥ 1, for i ∈ S1. Similarly, q

n
− 1 =

pe11 p
e2
2 . . . p

ek
k p
ek+1
k+1 . . . p

et
t , such that ei ≥ gi ≥ 1, when i ∈ S1, and ei ≥ 1, when i ∈ S2. Since c ∈ F×q is primitive, we

have ρ = q− 1. Let n = a(q− 1), then by Eq. (8) we have

N(n, c, q) =
1

a(q− 1)φ(q− 1)

∑
r∈Dn

mr=q−1

φ(r).

For any r = (qn − 1)/R, where gcd(R, q− 1) = (q− 1)/mr = 1 and R = pk+1ck+1 . . . pt ct with 0 ≤ ci ≤ ei for i ∈ S2, we can
write r = (qn − 1)/R = pe11 . . . p

ek
k p
fk+1
k+1 . . . p

ft
t , where fi = ei − ci, for i ∈ S2. By Lemma 8, r - qm − 1, for allm not multiple of
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q− 1, andm < n. Since pe11 p
e2
2 . . . p

ek
k - qm − 1 for allmmultiple of q− 1 andm < n, we conclude that any r of this form is

in Dn. Hence, the number N(n, c, q) can be given by

N(n, c, q) =
1

a
(
pg11 . . . p

gk
k

)
φ
(
pg11 . . . p

gk
k

) ∑
fk+1,...,ft

φ(pe11 . . . p
ek
k p
fk+1
k+1 . . . p

ft
t )

=
φ
(
pe11 . . . p

ek
k

)
a
(
pg11 . . . p

gk
k

)
φ
(
pg11 . . . p

gk
k

) ∑
fk+1,...,ft

φ
(
pfk+1k+1 . . . p

ft
t

)

=

(
pe1−g11 . . . pek−gkk

)
a
(
pg11 . . . p

gk
k

) t∏
s=k+1

es∑
fs=0

φ(psfs)

=
pe11 . . . p

ek
k

a
(
p2g11 . . . p2gkk

) t∏
s=k+1

pses =
qn − 1
a(q− 1)2

.

Finally, we observe that if pe11 p
e2
2 . . . p

ek
k | q

m
− 1, for some mmultiple of q − 1 and m < n, then we can only conclude that

N(n, c, q) < (qn − 1)/(a(q− 1)2). �

Suppose that c ′ ∈ F×q is any nonprimitive constant, which is related to r
′
∈ Dn, where r ′ = mr ′dr ′ and mr ′ = ρ ′ =

ord(c ′) < q− 1. We have r ′ = (qn− 1)/R′, and gcd(q− 1, R′) = (q− 1)/mr ′ > 1. Moreover r ′ - qm− 1, for 1 ≤ m ≤ n− 1.
Let us remove the last condition and define r̂ ′ = (qn − 1)/̂R′, such that R̂′ | qn − 1, and gcd(q− 1, R̂′) = (q− 1)/mr ′ > 1.

Lemma 10. Let c ′ ∈ F×q be nonprimitive, where ρ
′
= ord(c ′) = mr ′ < q− 1. Then

1
nφ(ρ ′)

∑
r̂ ′
φ(̂r ′) =

qn − 1
a(q− 1)2

,

where the sum runs over all r̂ ′, defined as r̂ ′ = qn−1
R̂′
, with gcd(q− 1, R̂′) = q−1

mr′
=
q−1
ρ′
.

Proof. Suppose c ′ ∈ F×q be such that ρ
′
= ord(c ′) = mr ′ = p1 l1 . . . pklk | q − 1, where 0 ≤ li ≤ gi, for i ∈ S1. Let r̂ ′ =

(qn−1)/̂R′, where gcd(q−1, R̂′) = (q−1)/mr ′ = p
g1−l1
1 . . . pgk−lkk . This implies that R̂′ = pg1−l11 . . . pgk−lkk pk+1ck+1 . . . pt ct , with

0 ≤ ci ≤ ei, for i ∈ S2. Therefore, for di = ei − ci and i ∈ S2, r̂ ′ can be considered as r̂ ′ = p
e1−g1+l1
1 . . . pek−gk+lkk pdk+1k+1 . . . p

dt
t .

Then

1
nφ(ρ ′)

∑
r̂ ′
φ(̂r ′) =

1

a(pg11 . . . p
gk
k )φ(p

l1
1 . . . p

lk
k )

∑
dk+1,...dt

φ

((
k∏
s=1

pses−gs+ls
)

t∏
u=k+1

pudu
)

=

φ

(
k∏
s=1
pses−gs+ls

)
a(pg11 . . . p

gk
k )φ(p1 l1 . . . pklk)

(
t∏

u=k+1

eu∑
du=0

φ(pudu)

)

=

k∏
s=1
(ps − 1)pses−gs+ls−1

a
k∏
s=1
(ps − 1)psgs+ls−1

(
t∏

u=k+1

pueu
)

=

(
1
a

k∏
s=1

pses−2gs
)(

t∏
u=k+1

pueu
)
=

qn − 1
a(q− 1)2

. �

Theorem 11. If n = a(q− 1), for some integer a. Then for any nonprimitive constant c ′ ∈ F×q , we have N(n, c
′, q) ≤ qn−1

a(q−1)2
.

Proof. For the nonprimitive c ′ ∈ F×q , let ρ
′
= ord(c ′). Then by Lemma 10,

qn − 1
a(q− 1)2

=
1

nφ(ρ ′)

∑
r̂ ′
φ(̂r ′) ≥

1
nφ(ρ ′)

∑
r′∈Dn
mr′=ρ

′

φ(r ′) = N(n, c ′, q). �

If n = a(q− 1), then we have the following restatement of Lemma 2.
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Table 3
Distribution of polynomials of degree n = a(q− 1) over a finite field Fq .

Tr Cons
a1 · · · aj · · · aq−1 Total

a0 y1 · · · yj · · · yq−1 N0(n, q)
a1 x1 · · · xj · · · xq−1 N1(n, q)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

aq−1 x1 · · · xj · · · xq−1 Nq−1(n, q)
Total N(n, 1, q) · · · N(n, j, q) · · · N(n, q− 1, q) N(n, q)

Lemma 12. Let n = a(q− 1) for some integer a, and c ∈ F×q be any constant. Then for any two nonzero traces γ and δ, we have
Nγ (n, c, q) = Nδ(n, c, q).

This means that, when n = a(q − 1), for any i, l ∈ {1, 2, . . . , q − 1}, and j ∈ {0, 1, . . . , q − 1}, we have xi,j = xl,j. So
we let xj represent xi,j. Moreover, for γ ∈ F×q , let Nγ (n, aj, q) = xj, and N0(n, aj, q) = yj, where j ∈ {1, 2, . . . , q − 1}; see
Table 3. In Table 3, we have the same rows for different γ ∈ F×q . In this case, let Aj be the number of repeated entries of the
column aj, where 1 ≤ j ≤ q− 1. Clearly Aj = q− 1. Thus for a given nonzero constant c (or c ′), Eq. (4) changes to

yc + (q− 1)xc = N(n, c, q). (9)

Then using Eq. (9), and Theorem 9, we have the following bounds for xc .

Theorem 13. Let n = a(q − 1), such that q − 1 = pg11 p
g2
2 . . . p

gk
k , q

n
− 1 = pe11 p

e2
2 . . . p

ek
k p
ek+1
k+1 . . . p

et
t satisfies p

e1
1 p
e2
2 . . . p

ek
k -

qm − 1, for m multiple of q− 1, and m < n. Then for any primitive constant c ∈ F×q we have∣∣∣∣xc − qn − qn−1a(q− 1)3

∣∣∣∣ ≤ 2
(q− 1)2

q
n
2 .

Proof. Let n = a(q − 1), for some integer a, and c = aj be a primitive constant from F×q , for some 1 ≤ j ≤ q − 1. Then
Aj = q− 1, and ρ = ord(c) = q− 1. Suppose that q and n are such that p

e1
1 p
e2
2 . . . p

ek
k - qm − 1, formmultiple of q− 1, and

m < n. Then by Theorem 9, the lower and upper bounds for xc given in Lemma 3 change to

qn − qn−1

a(q− 1)3
−

2q
n
2

(q− 1)2
≤ xc ≤

qn − qn−1

a(q− 1)3
+

2q
n
2

(q− 1)2
.

Wenote that the upper bound does not require the condition pe11 p
e2
2 . . . p

ek
k - qm−1, formmultiple of q−1, andm < n. �

The difference between our lower bound and Moisio’s lower bound is

qn − qn−1

a(q− 1)3
−

2
(q− 1)2

q
n
2 −

qn − 1
aq(q− 1)2

+
2
q− 1

q
n
2 =

1
(q− 1)2

(
2q

n
2 (q− 2)+

1
aq

)
,

which is always positive. This shows that our lower bound is better.
The difference between our upper bound and Moisio’s upper bound is

qn − qn−1

a(q− 1)3
+

2
(q− 1)2

q
n
2 −

qn − 1
aq(q− 1)2

−
2
q− 1

q
n
2 =

1
(q− 1)2

(
2q

n
2 (2− q)+

1
aq

)
,

which is always negative if q ≥ 3. This shows that our upper bound is better.
Table 4 compares our lower and upper boundswithWan bounds given in (5), andMoisio bounds given in (7) for different

finite fieldsFq, and degree n = q−1. In each column, the entry [x, y] of the table, represents the corresponding [lower bound,
upper bound].
Now let c ′ ∈ F×q be a nonprimitive constant with ρ

′
= ord(c ′). Using Theorems 6 and 11, we have the following bounds

for xc′ .

Theorem 14. Suppose (q, n) is a lps pair, and n = a(q− 1), for some integer a. Let c ′ ∈ F×q be a nonprimitive constant. If pt is
the largest prime in the factorization of qn − 1, then we have(

1− 1
pt

)
(qn − 1)− qn−1 − 2a(q− 1)q

n
2 + 1

a(q− 1)3
≤ xc′ ≤

qn − qn−1 + 2a(q− 1)q
n
2

a(q− 1)3
.
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Table 4
Bounds for xc , for different finite fields Fq , when n = q− 1.

q Wan [11] Moisio [9] Our bounds Min/Max

4 [0, 9.78] [0, 5.39] [0, 4.407] 1
5 [0, 26.56] [0, 16] [3.109, 12.484] [7, 8]
7 [295.36, 638.36] [401.78, 531.94] [438.273, 495.439] [466, 471]
8 [4729.24, 5970.52] [5126.36, 5573.38] [5261.212, 5438.537] 5344
9 [72273.52, 74938.92] [73877.78, 75590] [74426.342, 75041.436] 74691
11 [23,531,161, 23,627,792] [23,563,189, 23,595,764] [23,574,645, 23,584,308] [23,578,887, 23,580,368]

Table 5
Bounds for xc′ , for different finite fields Fq , with n = q− 1.

q Wan [11] Moisio [9] Our bounds Min/Max

4 [0, 9.78] [0, 5.39] [0, 3.56] 2
5 [0, 26.56] [0, 16] [3.94, 10.94] [7, 8]
7 [295.36, 638.36] [401.78, 531.94] [435.139, 485.917] [458, 471]
8 [4729.24, 5970.52] [5126.36, 5573.38] [5272.626, 5408.986] [5337, 5360]
9 [72273.52, 74938.92] [73877.78, 75590] [74093.32, 74938.922] [74700, 74754]
11 [23,531,161, 23,627,792] [23,563,189, 23,595,764] [23,574,323, 23,582,697] [23,578,378, 23,579,568]

Proof. Let n = a(q− 1), for some integer a. For any nonprimitive constant c ′ ∈ F×q we have yc′ + (q− 1)xc′ = N(n, c
′, q).

By Eq. (6) we have

qn−1 − 1
a(q− 1)2

−
2
q− 1

q
n
2 ≤ yc′ ≤

qn−1 − 1
a(q− 1)2

+
2
q− 1

q
n
2 .

If we add (q− 1)xc′ to this inequality, then

qn−1 − 1
a(q− 1)2

−
2q

n
2

q− 1
+ (q− 1)xc′ ≤ N(n, c ′, q) ≤

qn−1 − 1
a(q− 1)2

+
2q

n
2

q− 1
+ (q− 1)xc′ ,

therefore, we obtain

N(n, c ′, q)
q− 1

−
qn−1 − 1
a(q− 1)3

−
2q

n
2

(q− 1)2
≤ xc′ ≤

N(n, c ′, q)
q− 1

−
qn−1 − 1
a(q− 1)3

+
2q

n
2

(q− 1)2
.

Since n = a(q− 1) then by Theorem 11 we have N(n, c ′, q) ≤ qn−1
a(q−1)2

, which simplifies the upper bound for xc′ to

qn − qn−1 + 2a(q− 1)q
n
2

a(q− 1)3
.

An argument similar to Theorem 6 gives the lower bound for xc′ . �

For the same reason as above, our upper bound is better than Moisio’s result as long as q ≥ 3 and our lower bound is
better if pt is of size q

n
2−1 or larger.

In Table 5 we compare our bounds for xc′ withWan andMoisio bounds, when n = q−1 and for different finite fields Fq.

Remark. For any given finite field Fq and given degree n such that q − 1 - n, we know that Ar,j < q − 1. Indeed, let γ and

δ be two nonzero elements in Fq. Thus,
(
γ

δ

)n
6= 1, and by Lemma 2 we have Nγ (n, c, q) = Nδ

(
n, c

(
δ
γ

)n
, q
)
6= Nδ(n, c, q).

However, we do not know whether we can still improve upper bounds in this case.
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