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Abstract 

In this work we study three extended higher-order KdV-type equations. The Lax-type equation, the Sawada–Kotera-type equation and the 
CDG-type equation are derived from the extended KdV equation. We use the simplified Hirota’s direct method to derive multiple soliton 
solutions for each equation. We show that each model gives multiple soliton solutions, where the structures of the obtained solutions differ 
from the solutions of the canonical form of these equations. 
© 2016 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

The celebrated KdV equation is used to model [1–14] the
ropagation of weakly nonlinear water waves in long, nar-
ow, shallow channels. It also arises in other areas such as
ydro magnetic waves in a cold plasma, ion-acoustic waves,
nd acoustic waves in harmonic crystals. It also incorporates
eading-order nonlinearity and dispersion. If the second-order
erms are retained then the extended Korteweg-de Vries equa-
ion (eKdV) takes the form [1–7] 

 t + u x + α(λuu x + u 3 x ) 

+ α2 (c 1 u 

2 u x + c 2 u x u 2x + c 3 uu 3 x + c 4 u 5 x ) , (1) 

here α � 1 is a non-dimensional measure of the small wave
mplitude relative to depth, and the parameters c 1 , c 2 , c 3 , and
 4 are the coefficients of the higher-order order terms, and its
alues depend on the physical context. The coefficient λ is a
on-zero constant. Eq. (1) describes the evolution of steeper
aves with shorter wavelengths than in the KdV equation

1,2] . Unlike the standard family of the fifth-order KdV equa-
ions, the eKdV includes two linear dispersive terms, namely
 and u , and four nonlinear terms. 
3 x 5 x 
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It is well known that the KdV equation and the fifth-order
dV equation are completely integrable equations, and both
ive multiple soliton solutions. The question whether the ex-
ended Korteweg-de Vries equation (eKdV) (1) is integrable
r not. This question was addressed thoroughly in [1–6] .
archant et al. [1,2] showed that the extended Eq. (1) be-

omes a member of the KdV family of integrable equations
or the special case 

 1 = 1 , c 2 = 

2 

3 

, c 3 = 

1 

3 

, c 4 = 

1 

3 

, (2) 

nd hence it gives multiple soliton solutions. Moreover, Wang
t al. [3] examined the integrability of this equation for the
pecific cases of Lax-type and Sawada–Kotera type forms.
n [3] , the Bell polynomials approach is used and Bäcklund
ransformation, and Lax pair for these forms were derived for
pecific values of the parameters c i , 1 ≤ i ≤ 4, and the exis-
ence of the Lax pair confirms the integrability of (1) for these
pecific values. In [6] , the authors employed the concept of
seudopotential to achieve Lax pair and singularity manifold
quation for (1) , and its integrability is justified in the sense
hat it admits the Lax pair. In [4,5] , another approach was
sed to investigate the integrability of (1) for specific values
f the parameters. 
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In [1,2] , Eq. (1) was established and studied for the soliton
interaction and the resonant flow of a fluid over typography.
In [3] , the study for this equation was carried out using Bell
polynomials for the derivation of soliton and periodic solu-
tions. However, Dullin et al. [4,5] used the Kodama transfor-
mation given in [7,8] to transform the Camassa–Holm equa-
tion to the integrable fifth-order KdV equation, referred to, in
[4,5] , by KdV5, given by 

u t + u x + 3 uu x + 5 α2 (uu x x x + 2 u x u xx ) + 

15 

2 

λ2 

μ
u 

2 u x 

+ μ(λ2 u x x x x x + u x x x ) = 0, (3)

which works as a model for the shallow water waves with
surface tension, u ( x , t ) describes the fluid velocity, λ2 and μ

are the length scales [4–5]. 
Setting c 1 = 45 c 4 , c 2 = c 3 = 15 c 4 , c 4 = β, λ = 6 leads to

an extended Sawada–Kotera equation (eSK) given as [3] 

u t + u x + α(6 uu x + u 3 x ) 

+ α2 β(45 u 

2 u x + 15 u x u 2x + 15 uu 3 x + u 5 x ) . (4)

However, setting c 1 = 180c 4 , c 2 = c 3 = 30c 4 , c 4 = β, λ = 12
gives an extended Caudrey–Dodd–Gibbon equation (eCDG)
given as 

u t + u x + α(12uu x + u 3 x ) 

+ α2 β(180u 

2 u x + 30u x u 2x + 30uu 3 x + u 5 x ) . (5)

Moreover, setting c 1 = 30c 4 , c 2 = 20c 4 , c 3 = 10c 4 , c 4 =
β, λ = 6 gives an extended Lax equation (eLax) given as 

u t + u x + α(6 uu x + u 3 x ) 

+ α2 β(30u 

2 u x + 20u x u 2x + 10uu 3 x + u 5 x ) . (6)

The extended higher-order KdV Eqs. (4) –(6) involve the
two linear dispersive terms u 3 x and u 5 x in addition to four non-
linear terms when compared to the standard Sawada–Kotera,
Caudrey–Dodd–Gibbon, and Lax equations. Moreover, these
equations can reduce to a series of integrable models or can
describe such physical phenomena as the amplitude of the
shallow-water wave and/or surface wave in fluids [6] . 

We point out that the extended KdV Eq. (1) describes the
evolution of steeper waves with shorter wavelength than in the
KdV equation [1,2] . The extended KdV Eq. (1) can reduce
to a series of integrable models or can describe such physical
phenomena as the amplitude of the shallow-water wave and/or
surface wave in fluids [3,6] . 

The dynamics of shallow water wave flow attracted huge
number of works in a variety of fields [15–32] . The reported
works were focused on studying a variety of aspects, such
as integrability, Lax pairs, Bäcklund transformation, conser-
vation laws, multiple soliton solutions, and various other as-
pects. Towards these goals, many powerful methods have been
used to highlight the various features of the examined equa-
tions. Examples of the methods that have been used are the
Hirota bilinear method [10] , the simplified Hirota’s method
[11] , the Bäcklund transformation method, Darboux transfor-
mation, Pfaffian technique, the inverse scattering method, the
ainlevé analysis [23,24] , the generalized symmetry method,
he subsidiary ordinary differential equation method, the cou-
led amplitude-phase formulation, the sine-cosine method,
he sech-tanh method, the mapping and the deformation ap-
roach, and many other methods. Hirota’s bilinear method
10] , and the simplified Hirota’s method developed in [11] are
he commonly used methods. The simplified Hirota’s method
11] does not depend on the construction of the bilinear forms,
nstead it assumes that the multi-soliton solutions can be as-
umed as polynomials of exponential functions. The computer
ymbolic systems such as Maple and Mathematica allow us
o perform complicated and tedious calculations. 

In this work we plan to use the simplified Hirota’s method
o formally derive multiple soliton solutions for the extended
awada–Kotera Eq. (4) , the extended CDG Eq. (5) , and the
xtended Lax Eq. (6) . Moreover, the work will show the dis-
inct physical structures of the obtained solutions regarding
he dispersion relations and the phase shifts as well. We will
lso show that the extension aspect did not kill the multiple
oliton solutions given by the canonical forms. 

. The extended Sawada–Kotera equation 

In this section we will study the extended Sawada–Kotera
quation (eSK) 

 t + u x + α(6 uu x + u 3 x ) 

+ α2 β(45 u 

2 u x + 15 u x u 2x + 15 uu 3 x + u 5 x ) . (7)

o determine the dispersion relation for (7) we substitute 

(x, t ) = e θi , θi = k i x − c i t, (8)

nto the linear terms of (7) and solve the resulting equation
or the dispersion relation c i to find that 

 i = k i + αk 3 i + α2 βk 5 i , i = 1 , 2, 3 . (9)

onsequently, the phase variables read 

i = k i x −
(
k i + αk 3 i + α2 βk 5 i 

)
t, i = 1 , 2, 3 . (10)

o determine the single soliton solution, we use the transfor-
ation 

(x, t ) = R( ln f (x)) xx , (11)

here the auxiliary function f ( x , t ), for the single soliton so-
ution is given by 

f (x, t ) = 1 + e k 1 x−( k 1 + αk 3 1 + α2 βk 5 1 ) t . (12)

ubstituting (11) and (12) into (7) and solving for R we find

 = 2. (13)

his in turn gives the single soliton solution as 

(x, t ) = 

2k 2 1 e 
k 1 x−( k 1 + αk 3 1 + α2 βk 5 1 ) t 

( 1 + e k 1 x−(k 1 + αk 3 1 + α2 βk 5 1 ) t ) 2 
. (14)

Fig. 1 below shows the soliton solution (14) for k 1 =
 , α = 1 , β = 1 , −3 ≤ x ≤ 3 , −3 ≤ t ≤ 3 
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Fig. 1. The soliton solution u ( x , t ) for k 1 = 1 , α = 1 , β = 1 , −3 ≤ x ≤
3 , −3 ≤ t ≤ 3 . 
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Fig. 2. The two soliton solutions u ( x , t ) for k 1 = 1 , k 2 = 2, α = 1 , β = 

1 , −6 ≤ x ≤ 6 , −6 ≤ t ≤ 6 . 
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For the two soliton solutions we set the auxiliary function
s 

f (x, t ) = 1 + e θ1 + e θ2 + a 12 e 
θ1 + θ2 , (15)

here the phase variables θi , i = 1 , 2, 3 are given earlier in
10) , and a 12 is the phase shift that will be determined. Sub-
tituting (15) and (11) in (7) and solving for the phase shift
 12 , we find 

 12 = 

(k 1 − k 2 ) 2 
(
5 αβ(k 2 1 − k 1 k 2 + k 2 2 ) + 3 

)

(k 1 + k 2 ) 2 
(
5 αβ(k 2 1 + k 1 k 2 + k 2 2 ) + 3 

), (16) 

hich can be generalized to 

 i j = 

(k i − k j ) 2 (5 αβ(k 2 i − k i k j + k 2 j ) + 3) 

(k i + k j ) 2 (5 αβ(k 2 i − k i k j + k 2 j ) + 3) 
, 1 ≤ i < j ≤ 3 , 

(17) 

rovided that 

(k i + k j ) 
2 
(
5 αβ(k 2 i − k i k j + k 2 j ) + 3 

) � = 0. (18)

t is obvious that the phase shifts are affected by the parame-
ers α and β as shown. The obtained phase shifts are different
han the phase shifts of the standard Sawada–Kotera equation
hich is usually given by 

 i j = 

(k i − k j ) 2 
(

k 2 i − k i k j + k 2 j 

)

(k i + k j ) 2 
(

k 2 i − k i k j + k 2 j 

), 1 ≤ i < j ≤ 3 . (19) 

ubstituting (15) and (16) into (11) gives the two soliton so-
utions for the extended Sawada–Kotera Eq. (7) . 

It is interesting to point out that Eq. (7) does not show any
esonant phenomenon because the phase shift term a ij cannot
e 0 or ∞ for | k 1 | � = | k 2 |. 
It is worth noting the obtained two-soliton solutions pos-
ess distinct physical structures when compared with the two
oliton solutions of the standard Sawada–Kotera equation due
o the change in phase shifts. 

Fig. 2 below shows the two soliton solutions for k 1 =
 , k 2 = 2, α = 1 , β = 1 , −6 ≤ x ≤ 6 , −6 ≤ t ≤ 6 

For the three soliton solutions, we set the auxiliary function
y 

f (x, t ) = 1 + e θ1 + e θ2 + e θ3 + a 12 e 
θ1 + θ2 + a 13 e 

θ1 + θ3 

+ a 23 e 
θ2 + θ3 + b 123 e 

θ1 + θ2 + θ3 . (20) 

roceeding as before, we find 

 123 = a 12 a 23 a 13 . (21)

he three soliton solutions are obtained by substituting
20) into (11) . This shows that the eSK Eq. (7) gives N -
oliton solutions for finite N , where N ≥ 1. The obtained
hree soliton solutions have distinct physical structures com-
ared to that obtained by the standard SK equation. 

Fig. 3 below shows the three soliton solutions
or k 1 = 1 , k 2 = 1 . 2, k 3 = 1 . 4, α = 1 , β = 1 , −10 ≤ x ≤ 10,

10 ≤ t ≤ 10

. The extended Caudrey–Dodd–Gibbon equation 

In this section we will study the extended Caudrey–Dodd–
ibbon equation (eCDG) 

 t + u x + α(12uu x + u 3 x ) 

+ α2 β(180u 

2 u x + 30u x u 2x + 30uu 3 x + u 5 x ) . (22) 

lthough the standard Sawada–Kotera equation and the stan-
ard Caudrey–Dodd–Gibbon equation were derived on the
ame basis, but the coefficients of the nonlinear terms in both
quations are different. 
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Fig. 3. The three soliton solutions u ( x , t ) for k 1 = 1 , k 2 = 1 . 2, k 3 = 1 . 4, α = 

1 , β = 1 , −10 ≤ x ≤ 10, −10 ≤ t ≤ 10. 
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To determine the dispersion relation for (22) we substitute

u(x, t ) = e θi , θi = k i x − c i t, (23)

into the linear terms of (22) and proceeding as before to get
the dispersion relation c i as 

c i = k i + αk 3 i + α2 βk 5 i , i = 1 , 2, 3 . (24)

Consequently, the phase variables read 

θi = k i x −
(
k i + αk 3 i + α2 βk 5 i 

)
t, i = 1 , 2, 3 . (25)

To determine the single soliton solution, we use the transfor-
mation 

u(x, t ) = R( ln f (x)) xx , (26)

where the auxiliary function f ( x , t ), for the single soliton so-
lution is given by 

f (x, t ) = 1 + e k 1 x−( k 1 + αk 3 1 + α2 βk 5 1 ) t . (27)

Substituting (26) and (27) into (22) and solving for R we find

R = 1 . (28)

This in turn gives the single soliton solution as 

u(x, t ) = 

k 2 1 e 
k 1 x−( k 1 + αk 3 1 + α2 βk 5 1 ) t 

(1 + e k 1 x−(k 1 + αk 3 1 + α2 βk 5 1 ) t ) 2 
. (29)

For the two soliton solutions we set the auxiliary function
as 

f (x, t ) = 1 + e θ1 + e θ2 + a 12 e 
θ1 + θ2 , (30)

where the phase variables θi , i = 1 , 2, 3 are given earlier in
(25) , and a 12 is the phase shift that will be determined. Sub-
stituting (30) and (26) in (22) and solving for the phase shift
a 12 , we find 

a 12 = 

(k 1 − k 2 ) 2 
(
5 αβ(k 2 1 − k 1 k 2 + k 2 2 ) + 3 

)

(k 1 + k 2 ) 2 
(
5 αβ(k 2 1 + k 1 k 2 + k 2 2 ) + 3 

), (31)
hich can be generalized to 

 i j = 

(k i − k j ) 2 (5 αβ(k 2 i − k i k j + k 2 j ) + 3) 

(k i + k j ) 2 (5 αβ(k 2 i − k i k j + k 2 j ) + 3) 
, 1 ≤ i < j ≤ 3 . 

(32)

t is obvious that the phase shifts are affected by the parame-
ers α and β as shown. The obtained phase shifts are different
han the phase shifts of the standard Caudrey–Dodd–Gibbon
quation which is usually given by 

 i j = 

(k i − k j ) 2 (k 2 i − k i k j + k 2 j ) 

(k i + k j ) 2 (k 2 i − k i k j + k 2 j ) 
, 1 ≤ i < j ≤ 3 . (33)

It is interesting to point out that Eq. (7) does not show any
esonant phenomenon because the phase shift term a ij cannot
e 0 or ∞ for | k 1 | � = | k 2 |. 

Substituting (30) and (31) into (26) gives the two soliton
olutions for the extended Caudrey–Dodd–Gibbon Eq. (22) .
t is worth noting the obtained two-soliton solutions possess
istinct physical structures when compared with the two soli-
on solutions of the standard Caudrey–Dodd–Gibbon equation
ue to the change in phase shifts. 

For the three soliton solutions, we set the auxiliary function
y 

f (x, t ) = 1 + e θ1 + e θ2 + e θ3 + a 12 e 
θ1 + θ2 + a 13 e 

θ1 + θ3 

+ a 23 e 
θ2 + θ3 + b 123 e 

θ1 + θ2 + θ3 . (34)

roceeding as before, we find 

 123 = a 12 a 23 a 13 . (35)

he three soliton solutions are obtained by substituting
34) into (26) . This shows that the eCDG Eq. (22) gives N -
oliton solutions for finite N , where N ≥ 1. The obtained three
olitons solutions have distinct physical structures compared
o that obtained by the standard SK equation. 

It is worth noting that the solutions of the eCDG equation
re different than the solutions obtained for the eSK equation
ecause of the difference in the coefficient R for both equa-
ions. The amplitude of the solutions for the eSK equation is
wice than that of the eCDG equation. 

. The extended Lax equation 

In this section we will study the extended Lax equation
eLax) 

 t + u x + α(6 uu x + u 3 x ) 

+ α2 β(30u 

2 u x + 20u x u 2x + 10uu 3 x + u 5 x ) . (36)

o determine the dispersion relation for (36) we substitute 

(x, t ) = e θi , θi = k i x − c i t, (37)

nto the linear terms of (36) we find the dispersion relation
 i as 

 i = k i + αk 3 i + α2 βk 5 i , i = 1 , 2, 3 . (38)

onsequently, the phase variables read 

i = k i x −
(
k i + αk 3 i + α2 βk 5 i 

)
t, i = 1 , 2, 3 . (39)
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[
[
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o determine the single soliton solution, we use the transfor-
ation 

(x, t ) = R( ln f (x)) xx , (40)

here the auxiliary function f ( x , t ), for the single soliton so-
ution is given by 

f (x, t ) = 1 + e k 1 x−( k 1 + αk 3 1 + α2 βk 5 1 ) t . (41)

ubstituting (40) and (41) into (36) and solving for R we find

 = 2. (42) 

his in turn gives the single soliton solution as 

(x, t ) = 

2k 2 1 e 
k 1 x−( k 1 + αk 3 1 + α2 βk 5 1 ) t 

( 1 + e k 1 x−(k 1 + αk 3 1 + α2 βk 5 1 ) t ) 2 
. (43) 

For the two soliton solutions we set the auxiliary function
s 

f (x, t ) = 1 + e θ1 + e θ2 + a 12 e 
θ1 + θ2 , (44)

here the phase variables θi , i = 1 , 2, 3 are given earlier in
39) , and a 12 is the phase shift that will be determined. Sub-
tituting (44) in (36) and solving for the phase shift a 12 , we
nd 

 12 = 

(k 1 − k 2 ) 2 

(k 1 + k 2 ) 2 
, (45) 

hich can be generalized to 

 i j = 

(k i − k j ) 2 

(k i + k j ) 2 
, 1 ≤ i < j ≤ 3 . (46)

nlike the eSK and the eCDG equations, the phase shifts are
ot affected by the parameters α and β. The obtained phase
hifts are exactly the same phase shifts of the standard Lax
quation. 

It is interesting to point out that Eq. (7) does not show any
esonant phenomenon because the phase shift term a ij cannot
e 0 or ∞ for | k 1 | � = | k 2 |. 

Substituting (44) and (45) into (40) gives the two soliton
olutions for the extended Lax Eq. (36) . It is worth noting the
btained two-soliton solutions possess distinct physical struc-
ures when compared with the two soliton solutions of the
tandard Lax equation due to the existence of the parameters

and β. 
For the three soliton solutions, we set the auxiliary function

y 

f (x, t ) = 1 + e θ1 + e θ2 + e θ3 + a 12 e 
θ1 + θ2 + a 13 e 

θ1 + θ3 

+ a 23 e 
θ2 + θ3 + b 123 e 

θ1 + θ2 + θ3 . (47) 

roceeding as before, we find 

 123 = a 12 a 23 a 13 . (48)
he three soliton solutions are obtained as presented earlier.
his shows that the eLax Eq. (7) gives N -soliton solutions

or finite N , where N ≥ 1. 

. Discussion 

In this work we studied three extended higher-order KdV-
ype equation, namely the eSK equation, the eCDG equation,
nd the eLax equation. We showed that the three extended
quations give multiple soliton solutions with distinct physi-
al structures. Although the dispersion relations are the same
or the three extended equations, but the soliton solutions are
istinct. Moreover, the eSK and the eCDG equations possess
he same phase shift, which is affected by the parameters α
nd β, whereas the eLax equation retained the same phase
hift as the standard Lax equation. We used the simplified
irota’s method to formally derive the multiple soliton solu-

ions for the three extended equation. 
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