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Abstract

That the scalar field theories with no dimensional couplings possess local scale invariance (LSI) via the curvature gauging
is utilized to show that the Goldstone boson, released by the spontaneous LSI breakdown, is swallowed by the spacetime
curvature in order to generate Newton’s constant in the same spirit as the induction of vector boson masses via spontaneous
gauge symmetry breaking. For Einstein gravity to be reproduced correctly, the Goldstone boson of spontaneous LSI breaking
must be endowed with ghost dynamics. The matter sector, taken to be the standard model spectrum, gains full LS| property with
the physical Higgs boson acting as the Goldstone boson released by LS| breakdown at the weak scale. The pattern of particle
masses is identical to that of the standard model. There are unitary LS| gauges in which either the Goldstone ghost from gravity
sector or the Higgs boson from matter sector is eliminated from the spectrum. The heavy right-handed neutrinos as well as
softly broken supersymmetry naturally fit into the nonlinearly realized LSI framework.
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1. Introduction bility that the Newton’s constant might in fact mark
the scale of resizing invariance breakdown.
The conditions for global scale invariance does not

sional couplings are invariant under global rescalings dePend on if the spacetime is flat or curved: all that is
of coordinates and fields [1,2]. The scale invariance needed is to guarantee the absence of dimensional con-

is blatantly violated in nature at least by the existing Stnts in the Lagrangian. One notes that rescaling of
abundance of massive particles. Though one expectsthe event coordinates is equivalent to that of the met-
an approximate invariance in matter sector at distancesC €nsor as they lead to identical effects on the event
sufficiently shorter than the Compton wavelengths of SeParations. Interesting effects start arising when one
the particles, there is no such prescription for scaling Promotes the global invariance to a local one. In this

violation in the gravity sector since Newton's constant €2S€, even if the Lagrangian is free of any dimensional
defines the shortest length scale below which gravity parameter, the scale invariance is not automatic at all.
becomes strong and a field-theoretic description of na- FOF férmions and bosons the global invariance guaran-

ture breaks down. This observation entails the possi- tees the local one (in complete contradiction with local
gauge invariance). For scalar fields, however, there is

no local invariance even if the global one holds (simi-
E-mail addresstdemir@physics.iztech.edu.tr (D.A. Demir). lar to what happens in gauge theories). Therefore, the

The Lagrangian field theories bearing no dimen-
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local scale invariance in scalar field theories with no grangian field theories with no dimensional couplings
dimensional couplings can be achieved only by in- possess GSI. For definiteness, consider a real scalar
troducing an Abelian gauge field, i.e., Weyl's vector field ¢ (x) described by the diffeomorphic invariant

field [1]. However, it has long been known [3] and will

_be ful]y detailed in Sec’glon 2 that various operators _ d4x\/—_g[g‘“’VM¢Vv¢ +A¢4], (1)
involving Weyl's gauge field are equivalent to certain

combinations of the curvature tensors. This then sug- where is a dimensionless parameter, and (x) is

gests that the spacetime curvature acts as the gaugene spacetime metric with determinant= det(g,.,)
field of local rescaling transformations. As will be an-  5ng signaturg—, +, +, +). This action is invariant

alyzed in Section 3 this observation will lead to a full | nder the resizingsc, — e“x, (or equivalently
restoration of the local resizing invariance Wlth.anor)- guv — €¢*®g,, due to diffeomorphism invariance)
linear sigma model such that the Einstein-Hilbertis ang ¢ — ¢4“0p when wg is constant andd, =

boson masses in spontaneously broken gauge theoriesgrycially on the global nature afo. Indeed, the action
The Goldstone boson released by spontaneous breakypove is not invariant under local resizings

down of local scale symmetry assumes ghost character

if the Einstein—Hilbert term is to come out correctly. ¢ (x) — %™ g (x),
The Io_caI scale invariance is a highly restrictive sym- (1) > 220 () @
metry in that no local operators other than Wey! grav- Sy 8w

ity, Einstein—Hilbert term and cosmological constant gue to the inhomogeneous terms generated by its
(dressed by the nonlinear sigma model field) are al- kinetic part. Clearly, local resizings are not unitary
lowed. transformations since conformal weighy of ¢ and
Matter sector will be analyzed in Section 4 within  the conformal factow (x) are both real. For the action

in a fully scale-invariant framework in which masses o possess local scale invariance (LSI) one has to,
of the particles will be related to electroweak breaking in analogy with gauge theories, promovg, to a
rather than the resizing invariance breaking. It will gauge-covariant derivativ®, = V,, + dyA, with

be shown that, it is possible to go to unitary gauges Ay — A, — V,o so thatD,¢ — e%“D,¢ under

for local scale invariance where (i) either gravity the transformations in Eq. (2). This procedure, known
sector is described by Weyl plus Einstein gravity as eyl gauging [1], makes the action Eq. (1) locally

with a cosmological constant, and the matter sector scale invariant at the expense of introducing an extra
is precisely that of the standard model with yet-to- yector field into the spectrum

be discovered Higgs boson, (ii) or the gravity sector

is a scalar-tensor theory with now-physical Goldstone 4 1 e
ghost, and the matter sector is precisely what has been dxv=g ﬂgg 8" FuvFap
established by experiment and what is predicted by

standard model with an important difference: there + "' D¢ Dy + M)“], (3)
is no Higgs boson to search for. Either gauge has

observable consequences. In addition, heavy right- \where Fu = VA, — V,A,. Obviously, A, has

handed neutrinos, needed to induce tiny masses fOfnothing to do with e|ectromagnetism or some other
active flavors, can be direCtly inCOfporated into the local unitary Symmetry princip|e_ |nstead’ it must be,
locally scale invariant scheme. if ever, related to gravity since the local symmetry that
A, implements concerns the point-dependentresizing
of the spacetime coordinates. This viewpoint is further
2. From global to local scaleinvariance supported by the observations made in [4], that is, the

specific structure made out of the vector boson
The global scale invariance (GSI) of a physical sys-

tem refers to its immunity to resizing of coordinates

1
. VA, —ALA, — g8 P Ay A 4
and fields [2] by constant amounts. In general, La- ~*V ~ fnfv T Z8mE T Aallp @)
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transforms in exactly the same way as

1 1
Ry — éRguv

though this is not of much help for reinterpreting the

: ®)
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resizing invariant object

V=8 W/LVA'OWMM,O, 9)

where the Weyl tensor

vector boson sector as a gravitational effect since the W,,,” = R,”

specific structure (4) can arise in an action only as
an irrelevant operator. However, it still gives a clue
to eliminatingA,, from the system using appropriate
combinations of curvature tensors and the scalar field.
Indeed, theA,-dependent part of the scalar kinetic
term transforms as

V=g [&""Du¢Du¢p — V6 V.9]
- \/__g[gHVDM‘PDv(p — VoV,
+dy(~V, Voo + 2+ dg) V0 Vyw)g?]  (6)

which is nothing but the transformation property of

V=8¢ R¢? @)

provided that{. = 1/6 anddy = —1. This simple
result, which might have also been guessed from [3],
implies the similarity relation

V—=¢[g"" Du¢Dy + 1$"]
~ V=g [g" VYo + tRY? + 19] €)

which provides a firm foundation for the viewpoint

that the Ricci scalar is the gauge field of the LSI.

Indeed, the kinetic term of the action Eq. (1) gains
exact invariance under the local resizings via the
Ricci gaugingg"'v, Vv, — g"'V,V, — {.R which

is similar to the construction of the gauge-covariant

derivative. Physically, the curvature scalar acts as a

connection field for restoring the change in the scalar
kinetic term under local resizing of the coordinates.
Having done with the scalar sector, what remains
to analyze is thei,, kinetic term in Eq. (3). This term
does obviously possess exact LSI. On the other hand
in the gravitational sector there is one and only one

1 The curvature tensors are defined Rs= g"" Ry, Ry =
g” Rypvy., and

R;kap :3vpp/4k _8/LFPVA+Fa/4AFan - Favkppau_

with the connection coefficients

1
IrPup=rry, = Egpa(augva + 0v8uo — 9o guv)-

1
- E(gMARS — guARﬁ + gl Ry — gﬁRM)

1
+ ZR(gu180 — gv1.80) (10)

6

is the traceless part of the Riemann tengty,,”
and satisfies all of its properties except the Bianchi
identity. In addition, it is conformal invariant for the
given index positions. Clearly, with the same logic that
lead to Eq. (8), theA,, kinetic term is equivalent to
Eg. (9). In this sense Weyl gravity in Eq. (9) serves
as ‘the kinetic term’ of the spacetime curvature—the
gauge field of the LSI.

The programme of promoting the global conformal
invariance to a local symmetry principle, in the light
of gauge-gravity equivalence relations derived above,
ends by embedding the scalar field theory in Eq. (1)
into the action
/d4x\/_—g|:_4d%£wwkﬂwump

— (8"'V, Vo + LRP? + w“)},
(11)

where y is a dimensionless constant. In conclusion
the scalar field theory in Eq. (1) gains full LSI via

the curvature gauging. The Weyl contribution, which
satisfies the equivalence relation

2
Wisa? W, = 2g1 " Ry R — Z R (12)

after using the Gauss—Bonnet theorem, is a higher

'derivative contribution since the Riemann curvature is

already quadratic itv,,.

3. Gravitational sector

Consider the locally rescaling invariant Abelian
gauge theory in Eq. (3). This local invariance can be
broken in various ways one of which being an explicit
mass term forA,,. Indeed, the action for a massive
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vector boson
1
/d4x V=3 [—@g"“g”ﬁ FuvFap
¢

— %Mﬁg’”AuAv} (13)
does obviously vary witt,, — A, — V,o. Is it pos-
sible to restore the LSI? The answer to this question
is provided by the fact that a vector boson can never
acquire a mass unless the spectrum contains an ex
actly massless scalar particle. An additional fact is that
every spontaneously broken continuous symmetry re-
leases a massless scalar [5], and if the symmetry unde
concern refers to a local invariance these scalars are
swallowed [6] by the vector bosons to develop their
longitudinal polarization states as required of a mas-
sive vector boson. En passant, one notes that mass
lessness of the requisite scalar field is a key property
needed for both generating a mass for the vector bo-
son and preserving the LSI of the interactions. Letting
U (x) be the scalar field sought for arfdbe the scale

of spontaneous LSI breakdown, the massive Abelian
gauge model of Eq. (13) gains full LSl via the embed-
ding

1
/d4x\/ —8 [_WguagvﬂF/wFaﬂ
U

1 1
— Efz(g’“’DMUDVU + EAfZU“)]
(14)

where U (x) — U™y (x) under local resizings,
and it can be parameterized &igx) = ¢*)/f where

7 (x) is the Goldstone boson released by the sponta-
neous LSI breakdownt (x) — 7 (x) + fw(x). This
action is unique in that it includes all possible terms
allowed by LSI. Furthermore, it directly follows from
Eq. (3) via the replacement(x) — fe@™®)/f Con-
sequently, the LSI, which is explicitly broken by
the gauge boson mass, can be realized nonlinearly
by widening the spectrum with a nonlinear sigma
model fieldU (x). However, the two actions, Egs. (13)
and (14), are physically identical since one can al-
ways go to the unitary gaudé(x) = 1 usingw(x) =
—m(x)/f in which case Eq. (14) reduces to Eq. (13)
with M2 = d? f2 and Af*/4 representing an addi-
tional LSI breaking source. Hence, restoration of the
resizing symmetry in Eqg. (13) does not lead to any

s B 584 (2004) 133-140

physical novelty. Despite this, however, the Goldstone
boson formalism is a highly powerful tool for elucidat-
ing the ultraviolet physics. First, by becoming strongly
coupled at energies 47 M 4, it enables one to deter-
mine the scale and symmetries of the ultraviolet com-
pletion. Next, it enables one to determine the size and
structure of the higher-dimensional operators by sim-
ple power counting.

That the LSI can be restored using a nonlinear
sigma model has important implications for the grav-

itational sector. Indeed, in the same spirit that the
gauge-gravity correspondence relations derived in the

IJast section have bridged the Weyl-gauged scalar the-

ory in Eq. (3) to the gravitational action in Eq. (11),
the gravitational equivalent of Eq. (14) can be readily
written down as

/d4x v—g |:

S[g/un Ul= _#Wﬂmpwuvk/}

U

1
— EKfz<;CRU2 + g™V, UV, U

1 2.4
+rvt)|

where one may visualize Ricci scalar as the ‘mass
term’ and Weyl contribution as the ‘kinetic term’ un-
der the curvature gauging. This Ricci-gauged nonlin-
ear sigma model reveals certain important aspects of
the gravitational interactions:

(15)

e Phenomenologically, the LS| breaking scale must
be well inside the Planckian territory:

2
_ My
e

where Mp; = (87 GNewton Y2 is the reduced
Planck mass. Saying differently, the invariance
under local resizing of coordinates and fields must
be spontaneously broken arouk G2 o2
beyond which the theory must be completed (by
string theory).

The transition from Eq. (13) to Eq. (14) makes
it clear that the overall sign of the sigma model
Lagrangian is fixed by the sign of the gauge bo-
son mass term. In fact, it has to be negative to
avoid tachyonic behavior fod,,, and this very
fact guarantees that the corresponding Goldstone
boson has positive kinetic energy. These observa-

f? (16)



D.A. Demir / Physics Letters B 584 (2004) 133-140 137

tions hold also foiS[g,..,, U] which reduces to

14

U
1 2 1 2
~ e (wr2?)] an

in the unitary gauge{/ = 1. The first term is
the Weyl contribution which always possesses LSI
like the kinetic term of massive vector bosdn.
The last term is nothing but the cosmological
constant

A=k M5)\? (18)
2¢c

whose sign is determined by thatof, and whose
size is naturally Planckian. On the other hand,
the term proportional to the curvature scalar re-
produces the Einstein—Hilbert term if and only
if x = —1 (within the conventions mentioned in
footnote 1). This, however, implies that the Gold-
stone bosont(x) assumes negative kinetic en-
ergy, i.e., it behaves as a ghost [7]. In other words
the unitary gaugd/ (x) = 1, is not necessarily the
energetically preferred state; at finitgx) there
may exist states with lower energy unless the non-
linearities neutralize the ghost dynamics. This un-
wanted aspect of[g.., U], however, is not spe-
cial to the nonlinear sigma model. In fact, even the
unitary gauge action Eq. (17) contains ghosts due
to the Weyl contribution which is quartic in the
derivatives [8]. Consequently, the resizing invari-
ant action in Eqg. (15) contains ghosts from both
nonlinear sigma model and Weyl contribution. In
a way this is expected: the spacetime curvature
swallows a Goldstone ghost to generate the New-
ton’s constant because it already includes ghost
degrees of freedom. The implications of two coex-
isting ghost sectors as well as their mutual effects
on the gravity loops require a separate analysis to
extend [8] to the framework of Eq. (15).

The Goldstone boson picture is particularly useful
in determining the structure and size of the higher
dimension operators. Given the unitary gauge ac-
tion in Eq. (17), in principle, one may add as
many higher dimension operators as possible pro-
vided that the general covariance is respected.
However, from the window of the nonlinear sigma

modelS[g.,, U], each such operator has to com-
ply with the LSI requirements. The volume ele-
mentd*x /=g, though diffeomorphically invari-
ant, changes with the rescalings of the metric ten-
sor. This implies that the Lagrangian of Eq. (15)
does not admit any additional operator structure
no matter what combinations of curvature tensors
and sigma model field are considered. In fact, only
the operators involving powers Qf—g times the
Lagrangian possess LSI. For instance, operators
of the form[/—g ((.RU? + g"'V, UV, U)]" or
[V/—8 Wy, ?WHY 1" are automatically invari-
ant. However, all such operators are in obvious
conflict with general covariance since the determi-
nant of the metric tensor as well @éx are den-
sities rather than tensors and hence the only co-
variant combination ig*x ,/—g. All these no-go
cases enforce the inference that the higher order
interactions are allowed to arise only in a nonlo-
cal fashion, i.e., in a way involving only the pow-
ers of S[g,v, U] itself. For example, a functional
dependence of the formf*Si«-Ul would gener-
ate higher order nonlocal interactions in a way re-
specting LSI, general covariance and the action
principle.

In conclusion, the Einstein-Hilbert teri/2) M3 R

can be viewed as arising from the spontaneous break-
down of the LSI at the Planck scale. The Goldstone
boson released by the spontaneous breakdown gains
ghosty dynamics in accord with the ghost degrees of
freedom contained in the Weyl contribution. The non-
linearly realized LSl is a highly restrictive symmetry

in that it allows no operator structure other than those
contained inS[g,,, U]; in particular, higher dimen-
sion operators can arise only in a nonlocal way.

4. Matter sector

The Goldstone ghost, released by the spontaneous
breakdown of the local resizing invariance, is swal-
lowed by the spacetime curvature, the gauge field of
the LSI, so as to generate the Newton’s constant. In
the matter sector, which comprises at least the known
fermions and vector bosons, there is no field to gauge
the resizing invariance. In principle, somehow naively,
one might envision all the mass parameters in the mat-
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ter sector as spurions with appropriate conformal di-  The matter action possesses exact LS| thanks to
mensions so that the LSI always holds. This view is the presence of no dimensionful parameter and thanks
similar to that of [9], and essentially requires each to proper Ricci gauging of the Higgs kinetic term.
mass parameter to be dressed by some nonlinear sigma herefore, the direct sum of the two actions, Egs. (15)
model field. Then the main problem is to determine and (19), provides a locally resizing invariant descrip-
the origin and role of this field for enabling matter tion of gravity and matter. It is clear that the Higgs
sector to gain exact LSI. First of all, the scale of LSI sector cannot realize spontane@®@d(2); andU (1)y
breakdown is enormously large compared to even the breaking except for cases in which the curvature scalar
heaviest particle, the top quark, hence the existing pat- develops a constant negative value at the right scale
tern of particle masses must follow from the spon- (presumably in a higher-dimensional context [11]).
taneous breakdown of some other symmetry. Next, Then what is the meaning of a constapt back-
experimental results on various relations among the ground? How does it permeate the space so as to pro-
masses and couplings of vector bosons and fermionsvide already observed masses for fermions and vec-
suggest that symmetries of the standard model of elec-tor bosons? It is useful to answer these questions from
troweak interactions must be kept as the basic machin-the angle of LS| and gauge invariance, and possible
ery. In the standard model, masses of the intermedi- gauge fixing thereof. First of all, the three Goldstone
ate vector bosons needed to complete the Fermi the-modes contained itVsy(x) generate the requisite he-
ory are envisioned to correspond to the unitary gauge licity states for relevant gauge bosons and fermions

of a linear sigma model, the Higgs sector, with lo-
cal SU(2); x U(1)y invariance. The standard mat-
ter, made up of three families of quarks and leptons,
SU(2), andU(1)y gauge bosons and the Higgs dou-
blet, can be coupled to gravity as

/d4x v—g[~¢""(D.H)'D,H — t.RH'H

A(HTH)? + AL], (19)

whereD,, represents covariant derivative with respect

to both SU(2); and U(1)y gauge groups, and L

stands for gauge boson and fermion kinetic terms

including the Yukawa couplings of fermions to the

Higgs doublet. The Higgs field can be parameterized
1

H = —Uswm(x)

as
\/— ¢0('() ’

where Usy(x) is a generalSU(2); element which

(20)

with a generaU(2); x U(1)y rotation. This proce-
dure does notinterfere with the LSI requirements since
Goldstone bosons are blind to the spacetime curvature.
In this gauge, the unitary gauge, mass of each flavor is
proportional togo(x) that can always be parameter-
ized as

do(x) = Moe /Mo, (21)

where My stands for the characteristic scale¢gfx)
andh(x) for its inhomogeneity. With this very form of
¢o(x) the Higgs sector of Eq. (19) becomes a replica
of theU (x) dependentterms in Eq. (15): they have, re-
spectively, the mass scaldf and Mp/\/¢., and the
sigma model fieldg™ ®)/f ande)/Mo_ |ndeed, after
inserting Eq. (21) forpo(x), the standard model La-
grangian acts as possessing a Goldstone raodere-
leased by LSI breakdown &fp. Indeed, it ise*)/Mo
that couples to the curvature scalar—the gauge field
of the LSI. However, this is just a similarity since the
scale of spontaneo®J(2);, x U(1)y breakdown has

comprises charged and neutral Goldstone degreesalready been fixed by experimentto kg ~ 250 GeV

of freedom. Note that these Goldstone bosons, in
any parametrization of the Higgs doublet, do not
couple to the curvature scalar [10]. This implies that

in which case the pattern of fermion and vector boson
masses is the one predicted by standard model. It is
worthy of emphasizing tha/o does not follow from

Goldstone bosons are not Ricci gaugeable, or that the minimization of the Higgs potential; it is the ex-

they remain intact to resizing transformations, or that

periment itself which forced/p to a nonzero value

the mechanisms which generate Newton’s constantwhereby implying to a spontaneous breakdown of
and the electroweak scale are entirely independent.SU(2); x U(1)y. This scheme corresponds precisely

Consequently, it is the norm of the Higgs doublet
¢o(x) that is sensitive to varying system size.

to that of [9] in that the whole system respects LSI
since all-dimensional parameters of the Lagrangian
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are dressed by/'*)/Mo in matter sector, and by *)/f tectors; however, there is no physical Higgs boson—
in the gravity sector. Here one recalls an important dif- it has been used up for fixing the LSI to a specific
ference between the gravity and matter sectors: while gauge. Obvious enough, in the absence of a funda-
h(x) is a true scalar fieldr (x) is a ghost though both  mental scalar, the tiny numbe¥y/Mp,, though re-
transform as a Goldstone boson under local resizings. mains unexplained, is radiatively stable, i.e., there is
The locally resizing invariant description of matter no gauge hierarchy problem all. These observations
and gravity, Eq. (15) plus Eg. (19), consists of two can in fact be tested in near future: in case the LHC
mass scalesMpi/+/Z. and Mp which respectively  fails to detect a Higgs boson signal this particular LSI
correspond to the spontaneous LSI aBd(2); x gauge might be favored.
U(1)y breakdowns. Though they are of different Clearly, in this gauge the gravitational sector is de-
origins, either of these two scales can be rendered scribed by a scalar-tensor theory rather than a pure
a hard LSI breaking source by using the invariance tensor theory. However, the scalar figldx), unlike
under LSI transformations in close similarity to the Brans—Dicke type models, is not responsible for gen-
fact that the freedom 0BU(2), rotations eliminated  erating the Newton’s constant because it is already
all three Goldstone bosons from the standard spectrumthere. Moreover, the matter sector already feeds rather
and hence revealed the physical particle spectrum. It small but hard?(Mg) contributions to Newton’s con-
is convenient to discuss two distinct unitary gauge stant and the cosmological constant. The fate of the

choices: Goldstone bosom (x) is determined by its interac-
tions with gravity and matter in that its effective mass
e Unitary LSI gauge: gravity sector.his possibil- as well as couplings to gravity and matter are all af-

ity has already been discussed in the last section. With fected at the loop level. Being a highly interesting pos-
a local resizing transformatio@(x) = —m(x)/f the sibility, one notes that in case(x) is forced to con-
LSI action Eq. (15) can be reduced to that in Eq. (17) dense with a linearly-growing-in-time vacuum expec-
which includes the Einstein—Hilbert term, the Weyl tation value then the resulting lump @{x) can fill in
gravity and the cosmological constant. The Weyl grav- the universe as a nondiluting fluid which is indistin-
ity is expected to be important only at short distances guishable from the cosmological constant [12].

since its contribution to the static gravitational poten-

tial varies ase=2/Mpi/r. The cosmological constant Having done with the electroweak breaking and as-
turns out to beO(Mél) naturally; however, its experi-  sociated unitary LS| gauges, it is timely to discuss the
mental value is known to be 120 orders of magnitude neutrino masses. The see-saw mechanism provides a
smaller. Possible understanding of this discrepancy, viable framework for generating rather tiny neutrino
for which there is no intention in this work, might masses [13]. The right-handed neutrino, a standard
come from the modification of the gravitational laws model singlet, weighs near the Planck scale, and its in-

at far infrared rather than at ultraviolet. tegration out of the spectrum gives a méZ{Mé/MR)
Itis clear that in this gauge the particle spectrum of the to active flavors in agreement with data. Unlike the
matter sector remains unchanged. In other wards), masses of charged fermions and gauge bosons, the

is the physical Higgs boson to be searched for at the mass term of the right-handed neutritg v’ vé +
LHC. The main difference from the standard picture h.c. can be incorporated into the LSI framework via
is that the Higgs boson has a direct coupling to the U (x) dressingMRUv£v§+h.c. where nowMpg, like
curvature scalar so that its invisible width is enhanced Mp, is envisioned to follow from the spontaneous

due to graviton emission. breakdown of the local resizing symmetry.
e Unitary LSI gauge: matter sectolf one per- In the discussions above matter sector has been
forms a local resizing transformation with(x) = restricted to standard model spectrum. However, this

—h(x)/Mp thenh(x) gets completely eliminated from  is not necessary. In fact, the minimal model must be
Eq. (19) leaving thus no Higgs boson to search for. extended at least for generating enough CP violation
In other words, the gauge bosons and fermions asto create the baryon asymmetry of the universe. When
well as their couplings are precisely the ones predicted the Higgs sector is extended to two distir&it(2) .

by the standard model and measured at the LEP de-doublets, for instance, one cannot eliminate all the
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Higgs bosons from the spectrum; there is always with one exception, there is no Higgs boson to search
at least one CP-even boson, heavy or light, to be for. The heavy right-handed neutrino can be directly
seen at collider searches. On the other hand, low- included in the LSI framework, and the matter sector
energy supersymmetry offers another viable extension can be replaced by extended models like two-doublet
of the minimal model. In this case, the hidden sector models or supersymmetry.
fields which acquire vacuum expectation values at the
intermediate scale to gener&TeV) soft masses can
be included into the LSI framework just like the mass  Acknowledgements
terms for the right-handed neutrinos.
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