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Abstract

That the scalar field theories with no dimensional couplings possess local scale invariance (LSI) via the curvature
is utilized to show that the Goldstone boson, released by the spontaneous LSI breakdown, is swallowed by the s
curvature in order to generate Newton’s constant in the same spirit as the induction of vector boson masses via sp
gauge symmetry breaking. For Einstein gravity to be reproduced correctly, the Goldstone boson of spontaneous LSI
must be endowed with ghost dynamics. The matter sector, taken to be the standard model spectrum, gains full LSI pro
the physical Higgs boson acting as the Goldstone boson released by LSI breakdown at the weak scale. The pattern
masses is identical to that of the standard model. There are unitary LSI gauges in which either the Goldstone ghost fro
sector or the Higgs boson from matter sector is eliminated from the spectrum. The heavy right-handed neutrinos a
softly broken supersymmetry naturally fit into the nonlinearly realized LSI framework.
 2004 Elsevier B.V.Open access under CC BY license.
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1. Introduction

The Lagrangian field theories bearing no dime
sional couplings are invariant under global rescali
of coordinates and fields [1,2]. The scale invarian
is blatantly violated in nature at least by the exist
abundance of massive particles. Though one exp
an approximate invariance in matter sector at distan
sufficiently shorter than the Compton wavelengths
the particles, there is no such prescription for sca
violation in the gravity sector since Newton’s consta
defines the shortest length scale below which gra
becomes strong and a field-theoretic description of
ture breaks down. This observation entails the po
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bility that the Newton’s constant might in fact ma
the scale of resizing invariance breakdown.

The conditions for global scale invariance does
depend on if the spacetime is flat or curved: all tha
needed is to guarantee the absence of dimensional
stants in the Lagrangian. One notes that rescalin
the event coordinates is equivalent to that of the m
ric tensor as they lead to identical effects on the ev
separations. Interesting effects start arising when
promotes the global invariance to a local one. In t
case, even if the Lagrangian is free of any dimensio
parameter, the scale invariance is not automatic a
For fermions and bosons the global invariance gua
tees the local one (in complete contradiction with lo
gauge invariance). For scalar fields, however, ther
no local invariance even if the global one holds (sim
lar to what happens in gauge theories). Therefore
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local scale invariance in scalar field theories with
dimensional couplings can be achieved only by
troducing an Abelian gauge field, i.e., Weyl’s vec
field [1]. However, it has long been known [3] and w
be fully detailed in Section 2 that various operat
involving Weyl’s gauge field are equivalent to certa
combinations of the curvature tensors. This then s
gests that the spacetime curvature acts as the g
field of local rescaling transformations. As will be a
alyzed in Section 3 this observation will lead to a f
restoration of the local resizing invariance with a no
linear sigma model such that the Einstein–Hilber
generated in the same way as the formation of ve
boson masses in spontaneously broken gauge theo
The Goldstone boson released by spontaneous b
down of local scale symmetry assumes ghost chara
if the Einstein–Hilbert term is to come out correct
The local scale invariance is a highly restrictive sy
metry in that no local operators other than Weyl gr
ity, Einstein–Hilbert term and cosmological consta
(dressed by the nonlinear sigma model field) are
lowed.

Matter sector will be analyzed in Section 4 with
in a fully scale-invariant framework in which mass
of the particles will be related to electroweak break
rather than the resizing invariance breaking. It w
be shown that, it is possible to go to unitary gau
for local scale invariance where (i) either grav
sector is described by Weyl plus Einstein grav
with a cosmological constant, and the matter se
is precisely that of the standard model with yet-
be discovered Higgs boson, (ii) or the gravity sec
is a scalar-tensor theory with now-physical Goldsto
ghost, and the matter sector is precisely what has b
established by experiment and what is predicted
standard model with an important difference: th
is no Higgs boson to search for. Either gauge
observable consequences. In addition, heavy ri
handed neutrinos, needed to induce tiny masses
active flavors, can be directly incorporated into t
locally scale invariant scheme.

2. From global to local scale invariance

The global scale invariance (GSI) of a physical s
tem refers to its immunity to resizing of coordinat
and fields [2] by constant amounts. In general,
e

.
-

grangian field theories with no dimensional couplin
possess GSI. For definiteness, consider a real s
field φ(x) described by the diffeomorphic invariant

(1)−
∫

d4x
√−g

[
gµν∇µφ∇νφ + λφ4],

whereλ is a dimensionless parameter, andgµν(x) is
the spacetime metric with determinantg ≡ det(gµν)
and signature(−,+,+,+). This action is invarian
under the resizingsxµ → eω0xµ (or equivalently
gµν → e2ω0gµν due to diffeomorphism invariance
and φ → edφω0φ when ω0 is constant anddφ =
−1. However, this very symmetry property depen
crucially on the global nature ofω0. Indeed, the action
above is not invariant under local resizings

φ(x)→ edφω(x)φ(x),

(2)gµν(x)→ e2ω(x)gµν(x)

due to the inhomogeneous terms generated by
kinetic part. Clearly, local resizings are not unita
transformations since conformal weightdφ of φ and
the conformal factorω(x) are both real. For the actio
to possess local scale invariance (LSI) one has
in analogy with gauge theories, promote∇µ to a
gauge-covariant derivativeDµ ≡ ∇µ + dφAµ with
Aµ → Aµ − ∇µω so thatDµφ → edφωDµφ under
the transformations in Eq. (2). This procedure, kno
as Weyl gauging [1], makes the action Eq. (1) loca
scale invariant at the expense of introducing an e
vector field into the spectrum

(3)

−
∫

d4x
√−g

[
1

4d2
φ

gµαgνβFµνFαβ

+ gµνDµφDνφ + λφ4
]
,

where Fµν = ∇µAν − ∇νAµ. Obviously, Aµ has
nothing to do with electromagnetism or some ot
local unitary symmetry principle. Instead, it must b
if ever, related to gravity since the local symmetry th
Aµ implements concerns the point-dependent resiz
of the spacetime coordinates. This viewpoint is furt
supported by the observations made in [4], that is,
specific structure made out of the vector boson

(4)∇µAν −AµAν − 1

2
gµνg

αβAαAβ
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transforms in exactly the same way as1

(5)−1

2

(
Rµν − 1

6
Rgµν

)

though this is not of much help for reinterpreting t
vector boson sector as a gravitational effect since
specific structure (4) can arise in an action only
an irrelevant operator. However, it still gives a cl
to eliminatingAµ from the system using appropria
combinations of curvature tensors and the scalar fi
Indeed, theAµ-dependent part of the scalar kine
term transforms as
√−g

[
gµνDµφDνφ − ∇µφ∇νφ

]
→ √−g

[
gµνDµφDνφ − ∇µφ∇νφ

(6)+ dφ
(−∇µ∇νω + (2+ dφ)∇µω∇νω

)
φ2]

which is nothing but the transformation property of

(7)
√−g ζcRφ

2

provided thatζc = 1/6 and dφ = −1. This simple
result, which might have also been guessed from
implies the similarity relation
√−g

[
gµνDµφDνφ + λφ4]

(8)∼ √−g
[
gµν∇µφ∇νφ + ζcRφ

2 + λφ4]
which provides a firm foundation for the viewpoi
that the Ricci scalar is the gauge field of the LS
Indeed, the kinetic term of the action Eq. (1) ga
exact invariance under the local resizings via
Ricci gauginggµν∇µ∇ν → gµν∇µ∇ν − ζcR which
is similar to the construction of the gauge-covari
derivative. Physically, the curvature scalar acts a
connection field for restoring the change in the sca
kinetic term under local resizing of the coordinates

Having done with the scalar sector, what rema
to analyze is theAµ kinetic term in Eq. (3). This term
does obviously possess exact LSI. On the other h
in the gravitational sector there is one and only o

1 The curvature tensors are defined asR = gµνRµµ, Rµν =
gρλRµρνλ, and

Rµνλ
ρ = ∂νΓ

ρ
µλ − ∂µΓ

ρ
νλ +Γ α

µλΓ
ρ
αν − Γ α

νλΓ
ρ
αµ

with the connection coefficients

Γ ρ
µν = Γ ρ

νµ = 1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σ gµν).
resizing invariant object

(9)
√−gWµνλ

ρWµνλ
ρ,

where the Weyl tensor

Wµνλ
ρ =Rµνλ

ρ

− 1

2

(
gµλR

ρ
ν − gνλR

ρ
µ + gρν Rµλ − gρµRλν

)

(10)+ 1

6
R

(
gµλg

ρ
ν − gνλg

ρ
µ

)
is the traceless part of the Riemann tensorRµνλ

ρ

and satisfies all of its properties except the Bian
identity. In addition, it is conformal invariant for th
given index positions. Clearly, with the same logic th
lead to Eq. (8), theAµ kinetic term is equivalent to
Eq. (9). In this sense Weyl gravity in Eq. (9) serv
as ‘the kinetic term’ of the spacetime curvature—
gauge field of the LSI.

The programme of promoting the global conform
invariance to a local symmetry principle, in the lig
of gauge-gravity equivalence relations derived abo
ends by embedding the scalar field theory in Eq.
into the action

(11)

∫
d4x

√−g

[
− γ

4d2
φ

Wµνλ
ρWµνλ

ρ

− (
gµν∇µφ∇νφ + ζcRφ

2 + λφ4)],

whereγ is a dimensionless constant. In conclus
the scalar field theory in Eq. (1) gains full LSI v
the curvature gauging. The Weyl contribution, whi
satisfies the equivalence relation

(12)Wµνλ
ρWµνλ

ρ ≡ 2gµαgνβRµνR
αβ − 2

3
R2

after using the Gauss–Bonnet theorem, is a hig
derivative contribution since the Riemann curvatur
already quadratic in∇µ.

3. Gravitational sector

Consider the locally rescaling invariant Abelia
gauge theory in Eq. (3). This local invariance can
broken in various ways one of which being an expl
mass term forAµ. Indeed, the action for a massiv



136 D.A. Demir / Physics Letters B 584 (2004) 133–140

tion
ver
ex

hat
re-

nde
are

eir
as-
ass
erty
bo-
ing

lian
d-

,

nta-

ms

y
arly
a

3)
al-

3)
i-
the
ny

ne
t-
ly

r-
m-

and
im-

ear
v-

the
the

the-
),
ily

ass
-

lin-
s of

ust

ce
ust

(by

es
el
o-
to

one
rva-
vector boson

(13)

∫
d4x

√−g

[
− 1

4d2
φ

gµαgνβFµνFαβ

− 1

2
M2

Ag
µνAµAν

]

does obviously vary withAµ →Aµ − ∇µω. Is it pos-
sible to restore the LSI? The answer to this ques
is provided by the fact that a vector boson can ne
acquire a mass unless the spectrum contains an
actly massless scalar particle. An additional fact is t
every spontaneously broken continuous symmetry
leases a massless scalar [5], and if the symmetry u
concern refers to a local invariance these scalars
swallowed [6] by the vector bosons to develop th
longitudinal polarization states as required of a m
sive vector boson. En passant, one notes that m
lessness of the requisite scalar field is a key prop
needed for both generating a mass for the vector
son and preserving the LSI of the interactions. Lett
U(x) be the scalar field sought for andf be the scale
of spontaneous LSI breakdown, the massive Abe
gauge model of Eq. (13) gains full LSI via the embe
ding

(14)

∫
d4x

√−g

[
− 1

4d2
U

gµαgνβFµνFαβ

− 1

2
f 2

(
gµνDµUDνU + 1

2
λf 2U4

)]
,

where U(x) → edUω(x)U(x) under local resizings
and it can be parameterized asU(x) = eπ(x)/f where
π(x) is the Goldstone boson released by the spo
neous LSI breakdown:π(x) → π(x) + fω(x). This
action is unique in that it includes all possible ter
allowed by LSI. Furthermore, it directly follows from
Eq. (3) via the replacementφ(x)→ f edUπ(x)/f . Con-
sequently, the LSI, which is explicitly broken b
the gauge boson mass, can be realized nonline
by widening the spectrum with a nonlinear sigm
model fieldU(x). However, the two actions, Eqs. (1
and (14), are physically identical since one can
ways go to the unitary gaugeU(x) = 1 usingω(x) =
−π(x)/f in which case Eq. (14) reduces to Eq. (1
with M2

A = d2
Uf

2 and λf 4/4 representing an add
tional LSI breaking source. Hence, restoration of
resizing symmetry in Eq. (13) does not lead to a
-

r

-

physical novelty. Despite this, however, the Goldsto
boson formalism is a highly powerful tool for elucida
ing the ultraviolet physics. First, by becoming strong
coupled at energies∼ 4πMA, it enables one to dete
mine the scale and symmetries of the ultraviolet co
pletion. Next, it enables one to determine the size
structure of the higher-dimensional operators by s
ple power counting.

That the LSI can be restored using a nonlin
sigma model has important implications for the gra
itational sector. Indeed, in the same spirit that
gauge-gravity correspondence relations derived in
last section have bridged the Weyl-gauged scalar
ory in Eq. (3) to the gravitational action in Eq. (11
the gravitational equivalent of Eq. (14) can be read
written down as

S[gµν,U ] =
∫

d4x
√−g

[
− γ

4d2
U

Wµνλ
ρWµνλ

ρ

(15)

− 1

2
κf 2

(
ζcRU

2 + gµν∇µU∇νU

+ 1

2
λf 2U4

)]
,

where one may visualize Ricci scalar as the ‘m
term’ and Weyl contribution as the ‘kinetic term’ un
der the curvature gauging. This Ricci-gauged non
ear sigma model reveals certain important aspect
the gravitational interactions:

• Phenomenologically, the LSI breaking scale m
be well inside the Planckian territory:

(16)f 2 = M2
Pl

ζc
,

where MPl = (8πGNewton)
−1/2 is the reduced

Planck mass. Saying differently, the invarian
under local resizing of coordinates and fields m
be spontaneously broken around(6πG−1

Newton)
1/2

beyond which the theory must be completed
string theory).

• The transition from Eq. (13) to Eq. (14) mak
it clear that the overall sign of the sigma mod
Lagrangian is fixed by the sign of the gauge b
son mass term. In fact, it has to be negative
avoid tachyonic behavior forAµ, and this very
fact guarantees that the corresponding Goldst
boson has positive kinetic energy. These obse
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tions hold also forS[gµν,U ] which reduces to

(17)

∫
d4x

√−g

[
− γ

4d2
U

Wµνλ
ρWµνλ

ρ

− 1

2
κf 2

(
ζcR + 1

2
λf 2

)]

in the unitary gauge,U = 1. The first term is
the Weyl contribution which always possesses L
like the kinetic term of massive vector bosonAµ.
The last term is nothing but the cosmologic
constant

(18)Λ= κλ

(
M2

Pl

2ζc

)2

whose sign is determined by that ofκλ, and whose
size is naturally Planckian. On the other ha
the term proportional to the curvature scalar
produces the Einstein–Hilbert term if and on
if κ = −1 (within the conventions mentioned
footnote 1). This, however, implies that the Go
stone bosonπ(x) assumes negative kinetic e
ergy, i.e., it behaves as a ghost [7]. In other wo
the unitary gauge,U(x)= 1, is not necessarily th
energetically preferred state; at finiteπ(x) there
may exist states with lower energy unless the n
linearities neutralize the ghost dynamics. This u
wanted aspect ofS[gµν,U ], however, is not spe
cial to the nonlinear sigma model. In fact, even
unitary gauge action Eq. (17) contains ghosts
to the Weyl contribution which is quartic in th
derivatives [8]. Consequently, the resizing inva
ant action in Eq. (15) contains ghosts from bo
nonlinear sigma model and Weyl contribution.
a way this is expected: the spacetime curvat
swallows a Goldstone ghost to generate the N
ton’s constant because it already includes gh
degrees of freedom. The implications of two coe
isting ghost sectors as well as their mutual effe
on the gravity loops require a separate analysi
extend [8] to the framework of Eq. (15).

• The Goldstone boson picture is particularly use
in determining the structure and size of the hig
dimension operators. Given the unitary gauge
tion in Eq. (17), in principle, one may add a
many higher dimension operators as possible p
vided that the general covariance is respec
However, from the window of the nonlinear sigm
modelS[gµν,U ], each such operator has to co
ply with the LSI requirements. The volume el
mentd4x

√−g, though diffeomorphically invari
ant, changes with the rescalings of the metric t
sor. This implies that the Lagrangian of Eq. (1
does not admit any additional operator struct
no matter what combinations of curvature tens
and sigma model field are considered. In fact, o
the operators involving powers of

√−g times the
Lagrangian possess LSI. For instance, opera
of the form[√−g (ζcRU

2 + gµν∇µU∇νU)]n or
[√−gWµνλ

ρWµνλ
ρ ]n are automatically invari

ant. However, all such operators are in obvio
conflict with general covariance since the deter
nant of the metric tensor as well asd4x are den-
sities rather than tensors and hence the only
variant combination isd4x

√−g. All these no-go
cases enforce the inference that the higher o
interactions are allowed to arise only in a non
cal fashion, i.e., in a way involving only the pow
ers ofS[gµν,U ] itself. For example, a functiona
dependence of the formeαS[gµν,U ] would gener-
ate higher order nonlocal interactions in a way
specting LSI, general covariance and the act
principle.

In conclusion, the Einstein–Hilbert term(1/2)M2
PlR

can be viewed as arising from the spontaneous br
down of the LSI at the Planck scale. The Goldsto
boson released by the spontaneous breakdown g
ghosty dynamics in accord with the ghost degree
freedom contained in the Weyl contribution. The no
linearly realized LSI is a highly restrictive symmet
in that it allows no operator structure other than th
contained inS[gµν,U ]; in particular, higher dimen
sion operators can arise only in a nonlocal way.

4. Matter sector

The Goldstone ghost, released by the spontan
breakdown of the local resizing invariance, is sw
lowed by the spacetime curvature, the gauge field
the LSI, so as to generate the Newton’s constan
the matter sector, which comprises at least the kn
fermions and vector bosons, there is no field to ga
the resizing invariance. In principle, somehow naive
one might envision all the mass parameters in the m
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ter sector as spurions with appropriate conformal
mensions so that the LSI always holds. This view
similar to that of [9], and essentially requires ea
mass parameter to be dressed by some nonlinear s
model field. Then the main problem is to determ
the origin and role of this field for enabling matt
sector to gain exact LSI. First of all, the scale of L
breakdown is enormously large compared to even
heaviest particle, the top quark, hence the existing
tern of particle masses must follow from the spo
taneous breakdown of some other symmetry. N
experimental results on various relations among
masses and couplings of vector bosons and ferm
suggest that symmetries of the standard model of e
troweak interactions must be kept as the basic mac
ery. In the standard model, masses of the interm
ate vector bosons needed to complete the Fermi
ory are envisioned to correspond to the unitary ga
of a linear sigma model, the Higgs sector, with
cal SU(2)L × U(1)Y invariance. The standard ma
ter, made up of three families of quarks and lepto
SU(2)L andU(1)Y gauge bosons and the Higgs do
blet, can be coupled to gravity as

(19)

∫
d4x

√−g
[−gµν(DµH)†DνH − ζcRH

†H

− λ
(
H †H

)2 +(L
]
,

whereDµ represents covariant derivative with resp
to both SU(2)L and U(1)Y gauge groups, and(L
stands for gauge boson and fermion kinetic ter
including the Yukawa couplings of fermions to th
Higgs doublet. The Higgs field can be parameteri
as

(20)H = 1√
2
USM(x)

(
0

φ0(x)

)
,

whereUSM(x) is a generalSU(2)L element which
comprises charged and neutral Goldstone deg
of freedom. Note that these Goldstone bosons
any parametrization of the Higgs doublet, do n
couple to the curvature scalar [10]. This implies th
Goldstone bosons are not Ricci gaugeable, or
they remain intact to resizing transformations, or t
the mechanisms which generate Newton’s cons
and the electroweak scale are entirely independ
Consequently, it is the norm of the Higgs doub
φ0(x) that is sensitive to varying system size.
a

The matter action possesses exact LSI thank
the presence of no dimensionful parameter and tha
to proper Ricci gauging of the Higgs kinetic term
Therefore, the direct sum of the two actions, Eqs. (
and (19), provides a locally resizing invariant descr
tion of gravity and matter. It is clear that the Hig
sector cannot realize spontaneousSU(2)L andU(1)Y
breaking except for cases in which the curvature sc
develops a constant negative value at the right s
(presumably in a higher-dimensional context [11
Then what is the meaning of a constantφ0 back-
ground? How does it permeate the space so as to
vide already observed masses for fermions and
tor bosons? It is useful to answer these questions f
the angle of LSI and gauge invariance, and poss
gauge fixing thereof. First of all, the three Goldsto
modes contained inUSM(x) generate the requisite h
licity states for relevant gauge bosons and fermi
with a generalSU(2)L × U(1)Y rotation. This proce
dure does not interfere with the LSI requirements si
Goldstone bosons are blind to the spacetime curva
In this gauge, the unitary gauge, mass of each flav
proportional toφ0(x) that can always be paramete
ized as

(21)φ0(x)=M0e
h(x)/M0,

whereM0 stands for the characteristic scale ofφ0(x)

andh(x) for its inhomogeneity. With this very form o
φ0(x) the Higgs sector of Eq. (19) becomes a rep
of theU(x) dependent terms in Eq. (15): they have,
spectively, the mass scalesM0 andMPl/

√
ζc, and the

sigma model fieldseπ(x)/f andeh(x)/M0. Indeed, after
inserting Eq. (21) forφ0(x), the standard model La
grangian acts as possessing a Goldstone modeh(x) re-
leased by LSI breakdown atM0. Indeed, it iseh(x)/M0

that couples to the curvature scalar—the gauge fi
of the LSI. However, this is just a similarity since th
scale of spontaneousSU(2)L ×U(1)Y breakdown has
already been fixed by experiment to beM0 
 250 GeV
in which case the pattern of fermion and vector bo
masses is the one predicted by standard model.
worthy of emphasizing thatM0 does not follow from
the minimization of the Higgs potential; it is the e
periment itself which forcesM0 to a nonzero value
whereby implying to a spontaneous breakdown
SU(2)L × U(1)Y . This scheme corresponds precis
to that of [9] in that the whole system respects L
since all-dimensional parameters of the Lagrang
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the
are dressed byeh(x)/M0 in matter sector, and byeπ(x)/f

in the gravity sector. Here one recalls an important
ference between the gravity and matter sectors: w
h(x) is a true scalar fieldπ(x) is a ghost though bot
transform as a Goldstone boson under local resizin

The locally resizing invariant description of matt
and gravity, Eq. (15) plus Eq. (19), consists of tw
mass scalesMPl/

√
ζc and M0 which respectively

correspond to the spontaneous LSI andSU(2)L ×
U(1)Y breakdowns. Though they are of differe
origins, either of these two scales can be rende
a hard LSI breaking source by using the invarian
under LSI transformations in close similarity to t
fact that the freedom ofSU(2)L rotations eliminated
all three Goldstone bosons from the standard spec
and hence revealed the physical particle spectrum
is convenient to discuss two distinct unitary gau
choices:

• Unitary LSI gauge: gravity sector.This possibil-
ity has already been discussed in the last section. W
a local resizing transformationω(x) = −π(x)/f the
LSI action Eq. (15) can be reduced to that in Eq. (
which includes the Einstein–Hilbert term, the We
gravity and the cosmological constant. The Weyl gr
ity is expected to be important only at short distan
since its contribution to the static gravitational pote
tial varies ase−2r/MPl/r. The cosmological constan
turns out to beO(M4

Pl) naturally; however, its exper
mental value is known to be 120 orders of magnitu
smaller. Possible understanding of this discrepa
for which there is no intention in this work, migh
come from the modification of the gravitational law
at far infrared rather than at ultraviolet.
It is clear that in this gauge the particle spectrum of
matter sector remains unchanged. In other words,h(x)

is the physical Higgs boson to be searched for at
LHC. The main difference from the standard pictu
is that the Higgs boson has a direct coupling to
curvature scalar so that its invisible width is enhan
due to graviton emission.

• Unitary LSI gauge: matter sector.If one per-
forms a local resizing transformation withω(x) =
−h(x)/M0 thenh(x) gets completely eliminated from
Eq. (19) leaving thus no Higgs boson to search
In other words, the gauge bosons and fermions
well as their couplings are precisely the ones predic
by the standard model and measured at the LEP
tectors; however, there is no physical Higgs boso
it has been used up for fixing the LSI to a spec
gauge. Obvious enough, in the absence of a fun
mental scalar, the tiny numberM0/MPl, though re-
mains unexplained, is radiatively stable, i.e., there
no gauge hierarchy problem all. These observat
can in fact be tested in near future: in case the L
fails to detect a Higgs boson signal this particular L
gauge might be favored.
Clearly, in this gauge the gravitational sector is d
scribed by a scalar-tensor theory rather than a p
tensor theory. However, the scalar fieldU(x), unlike
Brans–Dicke type models, is not responsible for g
erating the Newton’s constant because it is alre
there. Moreover, the matter sector already feeds ra
small but hardO(M0) contributions to Newton’s con
stant and the cosmological constant. The fate of
Goldstone bosonπ(x) is determined by its interac
tions with gravity and matter in that its effective ma
as well as couplings to gravity and matter are all
fected at the loop level. Being a highly interesting p
sibility, one notes that in caseπ(x) is forced to con-
dense with a linearly-growing-in-time vacuum expe
tation value then the resulting lump ofπ(x) can fill in
the universe as a nondiluting fluid which is indisti
guishable from the cosmological constant [12].

Having done with the electroweak breaking and
sociated unitary LSI gauges, it is timely to discuss
neutrino masses. The see-saw mechanism provid
viable framework for generating rather tiny neutri
masses [13]. The right-handed neutrino, a stand
model singlet, weighs near the Planck scale, and its
tegration out of the spectrum gives a massO(M2

0/MR)

to active flavors in agreement with data. Unlike t
masses of charged fermions and gauge bosons
mass term of the right-handed neutrinoMRν

T
Rν

c
R +

h.c. can be incorporated into the LSI framework v
U(x) dressing:MRUνTRν

c
R +h.c. where nowMR , like

MPl, is envisioned to follow from the spontaneo
breakdown of the local resizing symmetry.

In the discussions above matter sector has b
restricted to standard model spectrum. However,
is not necessary. In fact, the minimal model must
extended at least for generating enough CP viola
to create the baryon asymmetry of the universe. W
the Higgs sector is extended to two distinctSU(2)L
doublets, for instance, one cannot eliminate all
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Higgs bosons from the spectrum; there is alw
at least one CP-even boson, heavy or light, to
seen at collider searches. On the other hand, l
energy supersymmetry offers another viable exten
of the minimal model. In this case, the hidden sec
fields which acquire vacuum expectation values at
intermediate scale to generateO(TeV) soft masses ca
be included into the LSI framework just like the ma
terms for the right-handed neutrinos.

All the discussions above have been restricted
the classical action without a mention of the quant
effects. This has been necessitated by the consist
of the discussion since a combined analysis of ma
and gravity, in the absence of a quantum theor
description for the latter, can be performed on
at classical level. Indeed, the quantum effects
the matter sector lead to an explicit breakdown
the rescaling invariance [14]. In this sense, resiz
invariance, global or local, is an anomalous symme
However, one keeps in mind that a fully quantu
theoretic description of gravity plus matter mig
modify or put this problem into a different status.

5. Conclusions

There is a manifold of inferences one can dr
from the analysis of gravity and matter in the text. T
Goldstone ghost, released by the spontaneous br
down of the local resizing invariance, is swallowed
the spacetime curvature, the gauge field of the L
in order to generate the Newton’s constant. This p
cedure parallels precisely the generation of the v
tor boson masses in gauge theories with spontan
symmetry breaking. For the matter sector, in par
ular the standard model, the LSI forbids any expl
mass parameter for the Higgs field, and the phys
Higgs boson turns out to act as the Goldstone boso
spontaneous LSI breakdown at the electroweak sc
The total action, comprising gravity and matter s
tors, possesses exact LSI and its physical spectrum
be revealed by going to appropriate unitary gaug
There are two options: either the gravitational sec
is given by Weyl plus Einstein gravity with a cosm
logical term and the matter sector is exactly that
the standard model, or the gravitational sector is a
mented by the now-physical nonlinear sigma mo
field and the matter sector is that of the standard mo
-

with one exception, there is no Higgs boson to sea
for. The heavy right-handed neutrino can be direc
included in the LSI framework, and the matter sec
can be replaced by extended models like two-dou
models or supersymmetry.
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