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Abstract Understanding the molecular pathway(s) of antioxi-
dant gene regulation is of crucial importance for developing anti-
oxidant-inducing agents for the intervention of oxidative cardiac
disorders. Accordingly, this study was undertaken to determine
the role of Nrf2 signaling in the basal expression as well as the
chemical inducibility of endogenous antioxidants and phase 2 en-
zymes in cardiac fibroblasts. The basal expression of a scope of
key cellular antioxidants and phase 2 enzymes was significantly
lower in cardiac fibroblasts derived from Nrf2�/� mice than
those from wild type control. These include catalase, reduced
glutathione (GSH), glutathione reductase (GR), GSH S-trans-
ferase (GST), and NAD(P)H:quinone oxidoreductase-1
(NQO1). Incubation of Nrf2+/+ cardiac fibroblasts with 3H-
1,2-dithiole-3-thione (D3T) led to a significant induction of
superoxide dismutase (SOD), catalase, GSH, GR, glutathione
peroxidase (GPx), GST, and NQO1. The inducibility of SOD,
catalase, GSH, GR, GST, and NQO1, but not GPx by D3T
was completely abolished in Nrf2�/� cells. The Nrf2�/� cardiac
fibroblasts were much more sensitive to reactive oxygen and
nitrogen species-mediated cytotoxicity. Upregulation of antioxi-
dants and phase 2 enzymes by D3T in Nrf2+/+ cardiac fibroblasts
resulted in a dramatically increased resistance to the above spe-
cies-induced cytotoxicity. In contrast, D3T-treatment of the
Nrf2�/� cells only provided a slight cytoprotection. Taken to-
gether, this study demonstrates for the first time that Nrf2 is crit-
ically involved in the regulation of the basal expression and
chemical induction of a number of antioxidants and phase 2 en-
zymes in cardiac fibroblasts, and is an important factor in con-
trolling cardiac cellular susceptibility to reactive oxygen and
nitrogen species-induced cytotoxicity.
� 2005 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Substantial evidence supports a critical role for reactive oxy-

gen and nitrogen species in the development of various forms

of cardiac disorders [1–3]. Accordingly, exogenous antioxida-

tive compounds have been used for the preventive and/or ther-

apeutic intervention of oxidative cardiac disorders [1,3,4].

Another strategy for protecting against oxidative cardiac in-

jury may be via chemically mediated upregulation of endoge-

nous antioxidants and phase 2 enzymes (enzymes involved in

detoxification of electrophilic xenobiotics) in cardiac tissue/

cells. Such a strategy relies on a profound understanding of

the chemical inducibility of cardiac antioxidants and phase 2

enzymes, as well as the underlying signaling mechanisms.

Recently, Nrf2 has been demonstrated to be a critical tran-

scription factor that binds to the antioxidant response element

in the promoter region of a number of genes, encoding for

antioxidative and phase 2 enzymes in several types of cells

and tissues [5–7]. However, whether Nrf2 signaling also con-

trols the expression of antioxidants and phase 2 enzymes in

cardiac cells has not been previously reported in the literature.

Cardiac tissue is primarily made of two major types of cells:

cardiomyocytes and fibroblasts. In fact, the number of fibro-

blasts in cardiac tissue exceeds that of cardiomyocytes. Cardiac

fibroblasts play important roles in both cardiac physiology and

pathophysiology [8]. These cells are critically involved in car-

diac tissue remodeling [8]. Recently, several studies have sug-

gested that injury and/or death of fibroblasts may be

involved in cardiac disorders, such as dilated cardiomyopathy

[9–11]. While there are studies on the antioxidative and phase 2

enzymes, and their chemical regulation in cardiomyocytes,

studies on the regulation of antioxidative and phase 2 defenses

in cardiac fibroblasts are lacking. Accordingly, this study was

undertaken to determine the role of Nrf2 signaling in the basal

expression as well as the chemical induction of endogenous

antioxidants and phase 2 enzymes in neonatal cardiac fibro-

blasts derived from Nrf2-null and wild type mice. Our results

demonstrate for the first time that Nrf2 is critically involved

in the regulation of both basal expression and chemical induc-

ibility of a number of endogenous antioxidants and phase 2 en-

zymes in cardiac fibroblasts, and is an important factor in

controlling cardiac cellular susceptibility to reactive oxygen

and nitrogen species-induced cytotoxicity.
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2. Materials and methods

2.1. Materials
3H-1,2-Dithiole-3-thione (D3T) with a purity of 99.8% was gener-

ously provided by Dr. Mary Tanga at SRI International (Menlo Park,
CA) and Dr. Linda Brady at National Institute of Mental Health
(Bethesda, MD). Dulbecco�s modified Eagle�s medium (DMEM), pen-
icillin, streptomycin, fetal bovine serum (FBS), and Dulbecco�s phos-
phate buffered saline (PBS) were from Gibco-Invitrogen (Carlsbad,
CA). All other chemicals and reagents were from Sigma Chemical
(St. Louis, MO). Tissue culture flasks and 24-well tissue culture plates
were from Corning (Corning, NY).
2.2. Animals and genotyping
Breeding pairs of Nrf2+/� (ICR/Sv129) mice were obtained from a

colony at Tsukuba University and maintained in the animal facility
at The Ohio State University Medical Center. Nrf2+/+ and Nrf2�/�

mice were generated following the breeding procedures described pre-
viously [12]. Purina laboratory animal chow (Richmond, IN) and
water were available ad libitum. Genotypes (Nrf2+/+, Nrf2�/�, and
Nrf2+/�) of the animals were determined by polymerase chain reaction
(PCR) amplification of genomic DNA from tails. PCR amplification
was carried out using three different primers, 5 0-TGGACGGGAC-
TATTGAAGGCTG-3 0 (sense for Nrf2+/+ and Nrf2�/�), 5 0-CGCCT-
TTTCAGTAGATGGAGG-3 0 (antisense for Nrf2+/+), and 5 0-
GCGGATTGACCGTAATGGGATAGG-3 0 (antisense for LacZ).
All of the animal procedures were approved by the Institutional Ani-
mal Care and Use Committee at The Ohio State University Medical
Center.

2.3. Isolation and culture of neonatal cardiac fibroblasts
Neonatal mice at the age of 1–3 days were euthanized via cervical

dislocation. The hearts were removed aseptically and rinsed exten-
sively with ice-cold PBS. The ventricles were then minced into small
pieces. The cardiac cells were dissociated at 37 �C for 15 min with an
enzyme solution (0.25% trypsin in PBS). The cells released from the
first digestion were discarded, whereas the cells from subsequent
digestion were added to an equal volume of ice-cold DMEM supple-
mented with 10% FBS, 100 U/ml penicillin, and 100 lg/ml streptomy-
cin (culture medium). The cells were pelleted by centrifugation at
200 · g for 10 min. The resulting cell pellets were resuspended in
the above culture medium, and plated into 150 cm2 tissue culture
flasks. The cells were incubated at 37 �C for 2 h in a humidified atmo-
sphere of 5% CO2 to allow the cardiac fibroblasts to attach to the
flasks. After this incubation, the non-attached cells were discarded,
and the flasks were rinsed twice with culture medium to remove
any residual unattached cells. The attached fibroblasts were continu-
ously cultured in fresh culture medium, and used for experiments
within 2 weeks after isolation.
2.4. Preparation of cell extract
Cardiac fibroblasts were collected and resuspended in ice-cold 50

mM potassium phosphate buffer, pH 7.4, containing 2 mM EDTA.
The cells were sonicated, followed by centrifugation at 13000 · g for
10 min at 4 �C. The resulting supernatants were collected and the pro-
tein concentrations were quantified with Bio-Rad protein assay dye
(Hercules, CA) using bovine serum albumin as the standard. The sam-
ples were kept on ice for measurement of the antioxidants and phase 2
enzymes within 2–3 h, as described below.
2.5. Assay for cellular superoxide dismutase activity
Total cellular superoxide dismutase (SOD) activity was determined

by the method of Spitz and Oberley [13] with slight modifications. In
brief, the reaction mix (prepared freshly) contained in 50 mM potas-
sium phosphate buffer, pH 7.8, 1.33 mM diethylenetriaminepentaacetic
acid, 1.0 U/ml catalase, 70 lM nitroblue tetrazolium, 0.2 mM xan-
thine, 50 lM mM bathocuproinedisulfonic acid, and 0.13 mg/ml bo-
vine serum albumin. 0.8 ml of the reaction mix was added to each
cuvette, followed by addition of 100 ll of sample. The cuvettes were
incubated at 37 �C for 3 min. The reaction was then initiated by adding
100 ll of xanthine oxidase (XO) (0.1 U/ml). The formation of forma-
zan blue was monitored at 560 nm, 37 �C for 5 min. The sample total
SOD activity was calculated using a concurrently run SOD (Sigma
Chemical) standard curve, and expressed as units per mg of cellular
protein.

2.6. Assay for cellular catalase activity
The method of Aebi [14] was used to measure the catalase activity. In

brief, to a quartz cuvette, 0.65 ml of 50 mMpotassium phosphate buffer
(pH 7.0) and 50 ll of sample were added. The reaction was started by
adding 0.3 ml of 30 mM H2O2. The decomposition of H2O2 was mon-
itored at 240 nm, 25 �C for 2 min. The catalase activity was expressed as
lmol of H2O2 consumed per min per mg of cellular protein.
2.7. Assay for cellular glutathione content
The cellular glutathione (GSH) content was measured according to

the procedures described previously by Cao and Li [15]. Briefly, 10 ll
of the cell extract sample was incubated with 12.5 ll of 25% HPO3, and
37 ll of 0.1 M sodium phosphate buffer containing 5 mM EDTA, pH
8.0 at 4 �C for 10 min. The samples were centrifuged at 13000 · g for
5 min at 4 �C. The resulting supernatant (10 ll) was incubated with
0.1 ml of o-phthalaldehyde solution (0.1% in methanol) and 1.89 ml
of the above phosphate buffer for 15 min at room temperature. Fluo-
rescence was then read using a Perkin–Elmer luminescence spectrome-
ter (LS50B) at an excitation wavelength of 350 nm and an emission
wavelength of 420 nm. Cellular GSH content was calculated using a
concurrently run GSH (Sigma Chemical) standard curve and expressed
as nmol of GSH per mg of cellular protein.
2.8. Assay for cellular glutathione reductase activity
Cellular glutathione reductase (GR) activity was measured by the

method of Wheeler et al. [16] according to the procedures previously
described [15]. GR activity was calculated using the extinction coeffi-
cient of 6.22 mM�1 cm�1, and expressed as nmol of NADPH con-
sumed per min per mg of cellular protein.

2.9. Assay for cellular GSH peroxidase activity
Cellular glutathione peroxidase (GPx) activity was measured by the

method of Flohe and Gunzler [17]. Briefly, to an assay cuvette contain-
ing 0.5 ml of 50 mM potassium phosphate (pH 7.0), 1 mM EDTA, and
2 mM sodium azide, 100 ll of sample, 100 ll of 10 mMGSH, 100 ll of
glutathione reductase (2.4 U/ml), and 100 ll of 1.5 mM NADPH were
added. The cuvette was incubated at 37 �C for 3 min. After addition of
100 ll of 2 mM H2O2, the rate of NADPH consumption was moni-
tored at 340 nm, 37 �C for 5 min. This was designated as the total rate
of NADPH consumption. The non-enzyme-dependent consumption of
NADPH was also measured as above except that the 100 ll of sample
was replaced by 100 ll of sample buffer. The rate of enzyme-dependent
NADPH consumption was obtained by subtracting the non-enzyme-
dependent NADPH consumption rate from the total NADPH
consumption rate. GPx activity was calculated using the extinction
coefficient of 6.22 mM�1 cm�1, and expressed as nmol of NADPH
consumed per min per mg of cellular protein.

2.10. Assay for cellular glutathione S-transferase activity
Cellular glutathione S-transferase (GST) activity was measured by

the method of Habig et al. [18] according to the procedures described
previously [15]. 1-Chloro-2,3-dinitrobenzene (CDNB) was used as the
substrate for GST. GST activity was calculated using the extinction
coefficient of 9.6 mM�1 cm�1, and expressed as nmol of CDNB–
GSH conjugate formed per min per mg of cellular protein.
2.11. Assay for cellular NAD(P)H: Quinone oxidoreductase 1 activity
Cellular NAD(P)H:quinone oxidoreductase 1 (NQO1) activity was

determined according to the procedures described previously [15].
Briefly, the reaction mix (prepared freshly) contained 50 mM Tris–
HCl, pH 7.5, 0.08% Triton X-100, 0.25 mM NADPH, 80 lM 2,6-
dichloroindophenol (DCIP) in the presence or absence of 60 lM
dicumarol. To an assay cuvette, 0.695 ml of reaction mix was added.
The reaction was started by adding 5 ll of sample, and the 2-electron
reduction of DCIP was monitored at 600 nm, 25 �C for 3 min. The
dicumarol-inhibitable NQO1 activity was calculated using the extinc-
tion coefficient of 21.0 mM�1 cm�1, and expressed as nmol of DCIP re-
duced per min per mg of cellular protein.
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2.12. RT-PCR analysis
Total RNA from cardiac fibroblasts was extracted using Trizol re-

agent (Invitrogen, Carlsbad, CA) following the manufacturer�s instruc-
tion. cDNA synthesis and subsequent PCR reaction were performed
using Superscript II One-Step system (Invitrogen) in a volume of
25 ll according to manufacturer�s instruction. The cycling conditions
for RT-PCR were as following: 50 �C for 30 min (reverse transcrip-
tion), 94 �C for 2 min (pre-denaturation), followed by 25 cycles of
PCR amplification process including denaturing at 94 �C for 15 s,
annealing at 57 �C for 30 s, and extension at 72 �C for 45 s, and by
1 cycle of final extension at 72 �C for 10 min. The sequences of the
PCR primers for NOQ1 are: 5 0-CCATTCTGAAAGGCTGGTTTG-
3 0 (sense), 5 0-CTAGCTTTGATCTGGTTGTC-3 0 (antisense). PCR
products were separated by 1% agarose gel electrophoresis. Gels were
stained with 0.5 lg/ml solution of ethidium bromide for 30 min fol-
lowed by another 30 min destaining in water. The gels were then ana-
lyzed under ultraviolet light using Alpha Innotech Imaging system. In
this study, a standard curve using 6.25–200 ng of total RNA was in-
cluded in each assay so as to reliably estimate changes in NOQ1
mRNA levels, as described before [19].

2.13. MTT reduction assay
Cell viability was determined by a slightly modified 3-[4,5-dimethyl-

thiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay
as described previously [15]. In brief, cells were plated into 24-well tis-
sue culture plates. After incubation of the cells with chemicals in
DMEM supplemented with 0.5% FBS at 37 �C for 24 h, 50 ll of
MTT (2 mg/ml PBS) was added to each well. The plates were incu-
bated at 37 �C for another 2 h. Media were removed and wells were
rinsed with PBS. To each well 0.6 ml of mix of dimethyl sulfoxide, iso-
propanol and deionized water (1:4:5) was added at room temperature
to solubilize the formazan crystals. The dissolved formazan was then
transferred into semi-micro cuvettes, and the absorbance was mea-
sured at 570 nm.

2.14. Statistical analyses
All data are expressed as means ± S.E.M. from at least three inde-

pendent experiments. Differences between mean values of multiple
groups were analyzed by one-way analysis of variance (ANOVA) or
Student t test. Statistical significance was considered at P < 0.05.
3. Results

3.1. Basal levels of antioxidants and phase 2 enzymes in Nrf2+/+

and Nrf2�/� cardiac fibroblasts

Table 1 summaries the basal levels/activities of a scope of

key cellular antioxidants and phase 2 enzymes in cardiac fibro-

blasts derived from Nrf2-null and wild type mice. Except for

SOD and GPx, the levels/activities of all other antioxidants

and phase 2 enzymes examined, including catalase, GSH,

GR, GST, and NQO1 were significantly lower in Nrf2�/� car-

diac fibroblasts than Nrf2+/+ cells. Notably, the activity for

GST and NQO1 in Nrf2�/� cells was about 2 and 6 times lower

than that in Nrf2+/+ cells, respectively (Table 1).
Table 1
Basal levels of antioxidants and phase 2 enzymes in cardiac fibroblasts
isolated from Nrf2+/+ and Nrf2�/� mice

Antioxidants/phase 2 enzymes Nrf2+/+ cells Nrf2�/� cells

SOD (units/mg protein) 5.28 ± 0.92 5.29 ± 0.93
Catalase (lmol/min/mg protein) 13.39 ± 1.07 9.90 ± 0.62\

GSH (nmol/mg protein) 77.15 ± 5.15 55.7 ± 7.9\

GR (nmol/min/mg protein) 62.84 ± 6.27 50.47 ± 2.74\

GPx (nmol/min/mg protein) 26.63 ± 5.35 22.23 ± 4.46
GST (nmol/min/mg protein) 152.19 ± 8.80 80.58 ± 7.39\

NQO1 (nmol/min/mg protein) 85.98 ± 18.41 15.73 ± 1.77\

Data represent means ± S.E.M. from 4 to 7 separate experiemnts.
3.2. Inducibility of SOD and catalase by D3T in Nrf2+/+ and

Nrf2�/� cardiac fibroblasts

SOD and catalase are two important antioxidants in mam-

malian cells, which work coordinately in the detoxification of

superoxide and H2O2 to eventually form water and molecular

oxygen [20]. As shown in Fig. 1A, incubation of Nrf2+/+ cells

with 50 and 100 lM D3T for 48 h resulted in a significant 40–

45% increase in SOD activity. A 20–40% elevation in catalase

activity was seen in Nrf2+/+ cells after incubation with 25–

100 lM D3T (Fig. 1B). The D3T inducibility of both SOD

and catalase was completely abolished in Nrf2�/� cardiac

fibroblasts (Fig. 1).

3.3. Inducibility of GSH, GR, and GPx by D3T in Nrf2+/+ and

Nrf2�/� cardiac fibroblasts

GSH and GSH-linked enzymes, including GR and GPx are

critical enzymes involved in the detoxication of both reactive

oxygen and nitrogen species, and have been shown to be protec-

tive against various forms of cardiac disorders [21,22]. As shown

in Fig. 2, both GSH and GR in Nrf2+/+ cardiac fibroblasts were

markedly induced by all three concentrations of D3T in a con-

centration-dependent manner. A significant 55% increase in

GSH level was seen with 25 lM D3T; incubation of Nrf2+/+

cells with 50 and 100 lM D3T led to a 65% and 140% increase

of GSH level, respectively (Fig. 2A). Similarly, D3T treatment
Fig. 1. Effects of D3T treatment on SOD (panel A) and catalase (panel
B) activities in Nrf2+/+ and Nrf2�/� cardiac fibroblasts. Cells were
incubated with the indicated concentrations of D3T for 48 h. Cellular
SOD and catalase activities were measured as described in Section 2.
Values represent means±S.E.M. from 4 to 6 independent experiments.
*Significantly different from 0 lM D3T.
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also caused a significant concentration-dependent elevation of

cellular GR activity in Nrf2+/+ fibroblasts; a maximum 70% in-

crease in GR activity was seen with 100 lM D3T (Fig. 2B). In

contrast, incubation of Nrf2�/� cells with 25–100 lM D3T did

not lead to any significant increase in the level/activity of GSH

and GR (Fig. 2A and B). Incubation of either Nrf2+/+ or

Nrf2�/� cardiac fibroblasts with 25–100 lM D3T resulted in a

similar marked induction (70–150% increase) of GPx in a

D3T concentration-dependent fashion (Fig. 2C).
Fig. 2. Effects of D3T treatment on GSH content (panel A), and GR
(panel B) and GPx (panel C) activities in Nrf2+/+ and Nrf2�/� cardiac
fibroblasts. Cells were incubated with the indicated concentrations of
D3T for 48 h. Cellular GSH content, and GR and GPx activities were
measured as described in Section 2. Values represent means ± S.E.M.
from 4 to 6 independent experiments. *Significantly different from
0 lM D3T; #significantly different from 25 and 50 lM D3T (panel A)
or 25 lM D3T (panels B and C).
3.4. Inducibility of GST and NQO1 by D3T in Nrf2+/+ and

Nrf2�/� cardiac fibroblasts

GST and NQO1 are two important phase 2 enzymes, in-

volved in the detoxification of electrophilic chemicals, includ-

ing carcinogens and cardiovascular toxicants [23–26].

Recently, these two enzymes have been demonstrated to pro-

tect against oxidative cell injury via acting as antioxidative en-

zymes [24–28]. As shown in Fig. 3A, incubation of Nrf2+/+

cells with 25, 50, and 100 lM D3T for 48 h resulted in a signif-

icant 25%, 40%, and 70% increase in GST activity, respec-

tively. Notably, a 5.5-, 8-, and 12-fold induction of NQO1

was observed in Nrf2+/+ cells after incubation with 25, 50,

and 100 lM D3T, respectively (Fig. 3B). In Nrf2+/+ cardiac

fibroblasts, NQO1 was the most inducible protein among the

7 D3T-inducible antioxidants and phase 2 enzymes examined

(Figs. 1–3). In contrast to what were observed with Nrf2+/+

cells, neither GST nor NQO1 in Nrf2�/� cells was induced

by incubation with 25–100 lM D3T for 48 h (Fig. 3A and

B). Because of the dramatic inducibility of NQO1 enzyme by

D3T in an Nrf2-dependent manner, we also examined the

induction of the mRNA for this phase 2 protein by D3T in

both Nrf2+/+ and Nrf2�/� cardiac fibroblasts. As shown in

Fig. 4, incubation of Nrf2+/+ cells with 100 lM D3T for 3–

48 h led to a remarkable 3–20-fold induction of the NQO1
Fig. 3. Effects D3T treatment on GST (panel A) and NQO1 (panel B)
activities in Nrf2+/+ and Nrf2�/� cardiac fibroblasts. Cells were
incubated with the indicated concentrations of D3T for 48 h. Cellular
GST and NQO1 activities were measured as described in Section 2.
Values represent means ± S.E.M. from 4 to 6 independent experi-
ments. *Significantly different from 0 lM D3T; #significantly different
from 25 lM D3T; $significantly different from 50 lM D3T.



Fig. 4. Time-dependent induction of NQO1 mRNA expression by
D3T in Nrf2+/+ and Nrf2�/� cardiac fibroblasts. Pictures in panels A
and B are representative gels showing the mRNA expression of NQO1
at the indicated time points after treatment with 100 lM D3T in
Nrf2+/+ and Nrf2�/� cardiac fibroblasts, respectively. Panel C,
quantitative analysis of NQO1 mRNA expression at the indicated
time points after treatment with 100 lM D3T. Values in panel C
represent means ± S.E.M. from four independent experiments. *Sig-
nificantly different from 0 h.

Fig. 5. XO/xanthine-induced cytotoxicity in Nrf2+/+ and Nrf2�/�

cardiac fibroblasts and the protective effects of D3T pretreatment.
Cells were incubated with or without 100 lM D3T for 48 h, followed
by incubation with various concentrations of XO in the presence of
0.5 mM xanthine for another 24 h. After this incubation, cell viability
was determined using MTT reduction assay. Values represent
means ± S.E.M. from three independent experiments. *Significantly
different from Nrf2(�/�) control; #significantly different from
Nrf2(+/+) control; $significantly different from Nrf2(�/�) control.

Fig. 6. SIN-1-induced cytotoxicity in Nrf2+/+ and Nrf2�/� cardiac
fibroblasts and the protective effects of D3T pretreatment. Cells were
incubated with or without 100 lM D3T for 48 h, followed by
incubation with the indicated concentrations of SIN-1 for another
24 h. After this incubation, cell viability was determined using MTT
reduction assay. Values represent means ± S.E.M. from three inde-
pendent experiments. *Significantly different from Nrf2(�/�) control;
#significantly different from Nrf2(+/+) control; $significantly different
from Nrf2(�/�) control.
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mRNA. Notably, a 17-fold increase in NQO1 mRNA level

was still seen at 48 h after incubation of the Nrf2+/+ cells with

D3T, indicating that the upregulation of this phase 2 gene

expression by D3T is long lasting. The D3T-mediated eleva-

tion of NQO1 mRNA was completely ablated in Nrf2�/� cells.

In this experiment, 4 times more RNA from Nrf2�/� cells was

used for the RT-PCR analysis due to the lower basal expres-

sion of NQO1 mRNA in Nrf2�/� cells as compared with wild

type cells (data not shown).

3.5. XO/xanthine-induced cytotoxicity in Nrf2+/+ and Nrf2�/�

cardiac fibroblasts and the protective effects of D3T

pretreatment

Since both the basal expression and D3T-inducibility of the

antioxidative and phase 2 defenses were diminished in cardiac

fibroblasts derived from Nrf2�/� mice, we examined if these

cells were more sensitive to oxidative injury than wild type

cells. As shown in Fig. 5, Nrf2�/� cardiac fibroblasts exhibited

a significantly increased sensitivity to XO/xanthine-induced

cytotoxicity. The LC50 in Nrf2+/+ and Nrf2�/� cells was esti-

mated to be 7.8 and 4.5 mU/ml of XO, respectively. Pretreat-

ment of Nrf2+/+ cardiac fibroblasts with D3T led to a

marked protection against XO/xanthine-induced cytotoxicity,

as indicated by a marked increase of LC50 from 7.8 to

17.8 mU/ml of XO (Fig. 5). In contrast, D3T pretreatment

of Nrf2�/� cardiac fibroblasts only afforded a slight protection

on XO/xanthine-elicited cytotoxicity, as reflected by a slight in-

crease of LC50 from 4.5 to 6.4 mU/ml of XO (Fig. 4). Since

sensitivity to oxidative stress depends on the cell density, we

examined if Nrf2+/+ and Nrf2�/� cardiac fibroblasts prolifer-

ated differently in culture. We observed that the Nrf2�/� cells
proliferated similarly as the wild type cells, and the cell density

at the time of exposure to the oxidative insult did not differ be-

tween Nrf2+/+ and Nrf2�/� cells (data not shown).

3.6. SIN-1-induced cytotoxicity in Nrf2+/+ and Nrf2�/� cardiac

cells and the protective effects of D3T pretreatment

SIN-1 is commonly used to generate the reactive nitrogen

species, peroxynitrite, which is a potent oxidant and

electrophile [19,29–31]. As shown in Fig. 6, the Nrf2�/� cardiac

fibroblasts showed a markedly increased susceptibility to SIN-

1-induced cytotoxicity as compared with Nrf2+/+ cells. The

LC50 for SIN-1 in Nrf2+/+ and Nrf2�/� cells was 335 and

168 lM, respectively. Pretreatment of Nrf2+/+ cells with D3T

resulted in a dramatically increased resistance to SIN-1-in-

duced cytotoxicity, as indicated by a remarkable increase of

LC50 from 335 to >800 lM. However, the cytotoxicity of

SIN-1 in Nrf2�/� cells was only marginally protected by
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D3T pretreatment, as reflected by a slight increase of LC50

from 168 to 210 lM (Fig. 6).
4. Discussion

A number of recent studies have demonstrated that Nrf2 is a

key transcription factor in regulating the expression of a vari-

ety of cytoprotective genes in various types of cells/tissues [5–

7]. However, the role of this signaling mechanism in regulating

the expression of antioxidants and phase 2 enzymes in cardiac

cells has not been previously investigated. The results of this

study clearly demonstrated that the basal levels of several

key antioxidants and phase 2 enzymes, including catalase,

GSH, GR, GST, and NQO1 were significantly lower in

Nrf2�/� cardiac fibroblasts as compared with those in

Nrf2+/+ cells. Most notably, the basal expression of both

GST and NQO1 was dramatically reduced in Nrf2�/� cells,

which is in line with previous observations that the constitutive

expression of these 2 genes are highly regulated by Nrf2 signal-

ing [32,33]. In contrast, the basal levels of SOD and GPx did

not differ between Nrf2+/+ and Nrf2�/� cells, suggesting that

Nrf2 signaling was not involved in the regulation of the basal

expression of these two antioxidative enzymes in cardiac fibro-

blasts. The varying degree of decrease in the levels/activities of

the antioxidants and phase 2 enzymes in Nrf2�/� fibroblasts

suggested that the dependence of basal expression of the cellu-

lar defenses on Nrf2 signaling varied with different antioxida-

tive and phase 2 genes.

Incubation of Nrf2+/+ cells with the chemoprotective agent,

D3T led to a significant induction of all the 7 antioxidants and

phase 2 enzymes examined in this study (Figs. 1–3). Although

the basal level of total SOD did not differ between Nrf2+/+ and

Nrf2�/� fibroblasts, D3T significantly elevated the SOD activ-

ity in Nrf2+/+ cells, whereas the D3T inducibility of SOD was

completely diminished in Nrf2�/� cells. This result indicated

that Nrf2 signaling played an essential role in the induction

of SOD by D3T in cardiac fibroblasts. This observation is in

agreement with previous reports that MnSOD gene expression

in hepatic cells was induced by D3T in an Nrf2-dependent

manner [32,33]. The complete abolishment of the D3T-medi-

ated induction of catalase in Nrf2�/� cells (Fig. 1B) pointed

to an essential role for Nrf2 in chemical induction of catalase

in cardiac fibroblasts. The Nrf2-dependent induction of cata-

lase by D3T in cultured cells or animals had not been previ-

ously reported in the literature.

Nrf2 was also reported to critically regulate the chemical

induction of gene expression of GR and c-glutamylcysteine li-

gase, a key enzyme in GSH biosynthesis [32,33]. In consistent

with this notion, the induction of both GSH and GR by D3T

was completely ablated in Nrf2�/� cells (Fig. 2A and B), con-

firming a critical role for Nrf2 signaling in the chemical induc-

ibility of both GSH and GR in cardiac fibroblasts. Incubation

of Nrf2+/+ cardiac fibroblasts with D3T also led to a marked

increase (70–150%) of cellular GPx activity (Fig. 2C). Previous

studies showed that as compared with other antioxidative en-

zymes, GPx was the least inducible enzyme by D3T in a num-

ber of cell types, including cardiomyocytes [33,34, unpublished

observations]. The mechanisms underlying the high D3T-

inducibility of GPx in cardiac fibroblasts warrant further

investigation. In contrast to other antioxidants, the inducibility

of GPx by D3T was not altered in Nrf2�/� cardiac fibroblasts.
This observation suggested that the D3T-mediated upregula-

tion of GPx in cardiac fibroblasts occurred via Nrf2-indepen-

dent mechanism(s).

GST and NQO1 have recently been extensively investigated

regarding the regulatory role of Nrf2 signaling in their gene

expression [5–7,32,33]. In both cell cultures and animal studies,

these two enzymes were shown to be highly inducible by vari-

ous chemoprotective agents, including D3T [32–34]. Consis-

tently, we observed that incubation of Nrf2+/+ cardiac

fibroblasts with D3T led to a marked induction of these two

enzymes in a concentration-dependent fashion (Fig. 3). The

ability of D3T to induce both GST and NQO1 was completely

abolished in Nrf2�/� cells, pointing to an indispensable role for

Nrf2 signaling in the chemical induction of these two enzymes

in cardiac fibroblasts. The remarkable 5.5–12-fold induction of

NQO1 activity seen in Nrf2+/+ cardiac fibroblasts after incuba-

tion with 25–100 lM D3T (Fig. 3B) was unexpected. This high

degree induction of NQO1 activity by D3T was not observed

in any previous studies with other types of cells, including

cardiomyocytes, where usually a 2-3-fold induction of this en-

zyme was seen after incubation of the cells with 25–100 lM
D3T for 24–48 h [34–36]. In agreement with the increased

NQO1 activity induced by D3T, the mRNA level of NOQ1

in Nrf2+/+ cardiac fibroblasts was also dramatically elevated

by D3T treatment, whereas such inducibility of the NQO1

mRNA by D3T was completely abolished in Nrf2�/� cells

(Fig. 4). The high inducibility of NQO1 gene expression by

D3T via Nrf2 signaling in cardiac fibroblasts may have impor-

tant implications in view of the recent observation that NQO1

is capable of scavenging superoxide [28].

The profile of suppressed induction of endogenous antioxi-

dants and phase 2 enzymes in Nrf2�/� cardiac fibroblasts

was not specific to D3T. In data not shown, the induction of

antioxidants and phase 2 enzymes by resveratrol and a-lipoic
acid was also diminished in the Nrf2�/� cardiac fibroblasts.

These results suggested that Nrf2 signaling might be a com-

mon molecular mechanism governing the inducibility of anti-

oxidants and phase 2 enzymes by various chemoprotective

agents in cardiac cells.

Since Nrf2�/� cardiac fibroblasts exhibited reduced basal

levels as well as D3T-inducibility of antioxidants and phase 2

enzymes, we determined if these cells were more susceptible

to reactive oxygen and nitrogen species-induced injury. In this

regard, cytotoxicity induced by XO/xanthine and SIN-1 was

examined. XO in the presence of xanthine is able to generate

both superoxide and H2O2, and has been implicated in various

forms of oxidative cardiac injury [37,38]. SIN-1 undergoes

autooxidation at physiological pH to generate both superoxide

and nitric oxide, leading to the formation of peroxynitrite, a

potent oxidant and electrophile [39]. As such, SIN-1 is com-

monly used as a peroxynitrite generator for studying the path-

ophysiological effects of peroxynitrite in various biological

systems [19,29–31]. As expected, the cytotoxicity induced

by XO/xanthine or SIN-1 was significantly augmented in

Nrf2�/� cardiac fibroblasts as compared with wild type cells

(Figs. 5 and 6). The marked induction of cellular antioxidants

and phase 2 enzymes by D3T in Nrf2+/+ fibroblasts was also

accompanied by a dramatically increased resistance of these

cells to the cytotoxicity elicited by XO/xanthine or SIN-1.

The increased resistance of the D3T-pretreated Nrf2+/+ cardiac

fibroblasts to XO/xanthine- or SIN-1-induced cytotoxicity was

apparently due to the augmented cellular defenses in those
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D3T-pretreated cells. The cytoprotective effects of D3T pre-

treatment on XO/xanthine- or SIN-1-induced toxicity were lar-

gely ablated in the Nrf2�/� cardiac fibroblasts, where the

induction by D3T of all the antioxidants and phase 2 enzymes

examined in this study except for GPx was completely abol-

ished. The above results strongly indicated that disruption of

the Nrf2 signaling sensitized cardiac fibroblasts to reactive

oxygen and nitrogen species-induced toxicity, and diminished

the cytoprotective effects of D3T on cytotoxicity elicited

by the above insults. Although, the above results suggested

that the diminished induction of antioxidants and phase 2 en-

zymes by D3T in Nrf2�/� cardiac fibroblasts most likely ac-

counted for the increased sensitivity of these cells to reactive

oxygen and nitrogen species-induced cytotoxicity, the possible

involvement of other Nrf2-regulated cell surviving factor(s)

could not be excluded.

In conclusion, the results of this study demonstrate conclu-

sively that Nrf2 is critically involved in the regulation of both

basal expression and chemical induction of a number of

endogenous antioxidants and phase 2 enzymes in cardiac fibro-

blasts. Nrf2 signaling appears to be an important mechanism

in controlling cardiac fibroblast susceptibility to reactive oxy-

gen and nitrogen species-induced cytotoxicty. Since cardiac

fibroblasts represent an important cell population in cardiac

tissue, and play critical roles in cardiac pathophysiology

[8–11], Nrf2-mediated regulation of antioxidants and phase 2

enzymes in these cells is of importance for protection against

oxidative cardiac disorders.
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