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Polyethylenimines (PEIs) are highly efficient non-viral transfectants, but can induce cell death through poorly
understood necrotic and apoptotic processes aswell as autophagy. Throughhigh resolution respirometry studies
in H1299 cells we demonstrate that the 25 kDa branched polyethylenimine (25k-PEI-B), in a concentration and
time-dependent manner, facilitates mitochondrial proton leak and inhibits the electron transport system. These
events were associatedwith gradual reduction of themitochondrialmembrane potential andmitochondrial ATP
synthesis. The intracellular ATP levels further declined as a consequence of PEI-mediated plasma membrane
damage and subsequent ATP leakage to the extracellular medium. Studies with freshly isolated mouse liver
mitochondria corroborated with bioenergetic findings and demonstrated parallel polycation concentration-
and time-dependent changes in state 2 and state 4o oxygen flux as well as lowered ADP phosphorylation
(state 3) and mitochondrial ATP synthesis. Polycation-mediated reduction of electron transport system activity
was further demonstrated in ‘broken mitochondria’ (freeze-thawed mitochondrial preparations). Moreover, by
using both high-resolution respirometry and spectrophotometry analysis of cytochrome c oxidase activity we
were able to identify complex IV (cytochrome c oxidase) as a likely specific site of PEI mediated inhibitionwithin
the electron transport system. Unraveling themechanisms of PEI-mediatedmitochondrial energy crisis is central
for combinatorial design of safer polymeric non-viral gene delivery systems.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Synthetic polycations have gained increasing attention as non-viral
delivery systems for nucleic acid therapeutics [1–3]. Polycations such
as polyethylenimines (PEIs) and their derivatives are effective transfec-
tion reagents by their capacity to compact nucleic acids into polyplexes,
thereby protecting the nucleic acids from degradation, as well as
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promoting their successful delivery into a wide range of cells [1,3–8].
The majority of polyplexes enter cells via clathrin-mediated endocyto-
sis, but there aremany other suggested internalizationmechanisms, in-
cluding caveolae-mediated pathways as well as internalization through
polycation-mediated plasma membrane perturbation/destabilization
processes [3,9–14]. Despite the fact that synthetic polycations are effec-
tive non-viral candidates, it is of great concern that the polycations
showing the best transfection efficiency, typically also display higher
cytotoxicity [3,4,9–11].

PEIs are the best investigated polycationic vectors existing in both
linear and branched morphology [3,15]. The 25 kDa branched PEI
(25k-PEI-B) is among the most efficient polycationic transfection
agents, but also induces severe cytotoxicity in clinically relevant
human cell lines [10]. Accordingly, there have been numerous empir-
ical and combinatorial approaches to lessen PEI-induced cytotoxicity.
Some of these modifications have reduced cytotoxicity, but at the ex-
pense of poor transfection efficacy and low duration period-specific
gene expression or silencing; however, in most cases cytotoxicity
still persists when examined closely [3,4]. The underlying mecha-
nisms of PEI-induced cytotoxicity are complex, multifaceted and not
fully understood. A number of studies have shown that PEI can induce
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cell death through multiple pathways (e.g., necrosis, apoptosis and
autophagy) with mitochondrial involvement [9,11,16–18]. Indeed,
mitochondria play a vital role in cellular energy metabolism and
the mitochondrial membrane potential (Δψm) is a key indicator of
cell viability; loss of Δψm is associated with cellular stress and cell
death, and dissipation of Δψm may promote apoptosis [19]. The
Δψm is generated from the build-up of proton-driven electrochemi-
cal gradient across the inner mitochondrial membrane, as a result
of the activity of the protein complexes of the electron transport system
(ETS) and the integrity of the mitochondrial inner membrane [20,21].
Electrons that originate from the oxidation of reduced nicotinamide
adenine dinucleotide (NADH) by complex I (NADH-ubiquinone
oxidoreductase; CI), and from oxidation of succinate by complex
II (succinate-ubiquinone oxidoreductase; CII), flow through the electron
transport system with molecular oxygen being the final electron accep-
tor [22]. Electron transport through the ETS is coupledwith proton trans-
location by the inner membrane complexes I, III (ubiquinol-cytochrome
c oxidoreductase; CIII) and IV (cytochrome c oxidase; CIV). This activity
generates the electrochemical proton gradient, which is utilized by the
mitochondrial F0/F1-ATP synthase to produce ATP [20,23]. The proton
pumps of the electron transport system, together with the ATP synthase,
create a proton circuit across the inner membrane, which is central to
mitochondrial bioenergetics and cellular homeostasis [20–24]. This inte-
grated process of mitochondrial respiration is referred to as oxidative
phosphorylation (OXPHOS) and the inability of mitochondria to suffi-
ciently produce ATP can lead to energy depletion and cellular stress,
and may induce cell death through different pathways [25–29].

Earlier studies have shown that exposure of various human cell lines
to PEI and PEI/DNA complexes initiates loss of Δψm [10] as well as cyto-
chrome c (cyt c) release from the mitochondrial intermembrane space
[9,11]. Furthermore, studies with isolated mitochondria have demon-
strated PEI-mediated inhibition of respiration, dissipation of Δψm and
large amplitude osmotic swelling [30]. These observations strongly in-
dicate that cytoplasmic PEI may perturb mitochondrial membranes
and interfere with electron transport processes. Accordingly, we have
now examined the effect of 25k-PEI-B on bioenergetic processes with
a specific focus on mitochondrial proton leak and ETS capacity in
H1299 cell line as well as in freshly isolated mouse liver mitochondria
and ‘brokenmitochondria’ (freeze-thawedmitochondrial preparations).
A better understanding of these events could open the path for design-
ing safer polymers through combinatorial approaches for transfection
purposes and achieving clinically acceptable duration period-specific
gene expression or silencing.
2. Materials and methods

2.1. Materials

The 25k-PEI-B (dissolved in milli-Q H2O) and cyt c oxidase assay kit
were purchased from Sigma-Aldrich (Denmark). The ATPlite lumines-
cence assay system was purchased from Perkin Elmer (Skovlunde,
Denmark). Hoechst-33342, MitoTracker Green (MTG), propidium
iodide (PI) and tetramethyl rhodamine methyl ester (TMRM) were
purchased from Life Technologies Europe BV (Denmark). All other
materials were purchased from Sigma-Aldrich (Denmark).
2.2. Cell culture

H1299 cells (ATCC number: CRL-5803; Sigma-Aldrich) were
cultured in RPMI-1640 medium at 37 °C with 0.1 mg/mL penicillin/
streptomycin, 2 mM L-Glutamine and 10% FBS in 21% O2 and 5% CO2.
Cells were harvested at 80–90% confluence and not allowed to exceed
12 passages. Experiments pertaining to H1299 cells were performed
at 60–70% confluence.
2.3. Live cell imaging and measurements of mitochondrial membrane
potential in H1299 cells

H1299 cells were seeded (8.0 × 104 cells/well) in 200 μL in μ-slide
8 well-plates (Ibidi, Denmark). Cells were grown to 60–70% confluency
and thereafter stained with the mitochondrial dyes MTG (300 nM)
and TMRM (200 nM) as well as with the nuclear dye Hoechst-33342
(5 μg/mL) for 20 min at 37 °C. MTG accumulates into polarized mito-
chondria and binds covalently to intramitochondrial protein thiols
where it remains bound after depolarization, whereas TMRM accumu-
lates in a Δψm-dependent manner and leaks out of mitochondria after
reduction in Δψm [31–34]. After staining, cells were washed twice and
subjected to 10 μg/mL 25k-PEI-B in growth medium at 37 °C followed
by live cell imaging. Imaging was performed on a Leica AF6000LX mi-
croscope equipped with a 63× (numerical aperture = 1.47) oil objec-
tive using 1.6× magnification. Images were acquired with appropriate
red (excitation with band pass = 555/25 nm, emission with band
pass = 605/52 nm), green (excitation with band pass = 470/40 nm,
emission with band pass = 525/50 nm) and blue (excitation with
band pass = 360/40 nm, emission with band pass = 470/40 nm) fil-
ters, respectively. In addition, differential interference contrast (DIC)
images were taken simultaneously to visualize morphological changes.
Z-stacking was performed using appropriate sectioning steps. Alter-
ations of TMRM and MTG fluorescence intensity were quantified with
FACS (BD FACS Array™ Cell Analysis) (10,000 events were counted) at
different time intervals of PEI exposure. Cell viability was followed
by FACS and microscopy. Briefly, cells were stained with the nucle-
ar dye Hoechst-33342 (1 μg/mL, 15 min, 37 °C) and washed twice
and stained with 1 μg/mL PI for 10 min at 37 °C. Cells were then
incubated with 10 μg/mL 25k-PEI-B for 90 min at 37 °C before
analysis.

2.4. Isolation of mouse liver mitochondria

Mouse liver mitochondria were isolated from young female NMRI
mice (approximately 8–12 weeks old and 35–40 g in body weight).
All animals used in this study were housed in a light/dark phase
cycle of 12 h with free access to food and water. The animals were
killed by cervical dislocation and the liver was rapidly removed, rinsed
and minced with scissors, in ice-cold isolation medium (mannitol
225 mM, sucrose 75 mM, Tris–HCl 5 mM, EGTA 0.1 mM and BSA
5 mg/mL, pH 7.0). The liver was subsequently homogenized in a
Potter–Elvehjem glass homogenizer using a motor-driven Teflon-pestle.
The liver homogenate was centrifuged for 5 min at 800 ×g, the superna-
tant was decanted and the centrifugation step was repeated again.
The supernatant was then centrifuged for 10 min at 9000 ×g and the
resulting pellet was suspended in isolation medium without BSA and
centrifuged for 10 min at 10,000 ×g. The final mitochondrial pellet was
suspended in isolationmediumwithout BSA, to afinal protein concentra-
tion of approximately 40 mg/mL. All procedures were carried out on ice
and the centrifugation steps were performed at 4 °C. Experiments
were performed using mitochondrial preparations with high respi-
ratory control ratios (RCRs of 8–9) indicating that the isolated mito-
chondria are of high functional quality with a high capacity for
oxidation of respiratory substrates, effective ATP synthesis and a
low degree of proton leak [35,36].

2.5. High-resolution respirometry

Respiration in intact cells, freshly isolated mitochondria and freeze-
thawedmitochondrial preparationswasmonitoredwith high-resolution
respirometry (OROBOROS Oxygraph-2 k, Innsbruck, Austria) using a
chamber volume set to 2 mL [37]. Calibration with air-saturated
medium was performed daily. Data acquisition and analysis were
carried out using Datlab software (OROBOROS Instruments).
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2.5.1. Intact H1299 cells
H1299 cells were suspended (in growth medium) in the 2 mL

glass chamber at a density of 2.5 × 105 cells/mL at 37 °C and there-
after investigated using a phosphorylation control protocol [38]
(Supplementary Fig. S1). Cellular respiration was first allowed to
stabilize at steady-state without any additions to the cell medium.
At steady-state respiration (O2 consumption), the respiratory flux
is constant. This defines the ROUTINE respiration state (i.e. the
physiological coupling state controlled by cellular energy demands).
After observing ROUTINE state for 10 min, PEI or H2O (control) was
added to the chamber. After incubation with PEI (at 5, 30 or 60 min),
the ATP synthase was inhibited by addition of oligomycin (2 μg/mL)
in order to detect the level of LEAK respiration. The LEAK state of
respiration is independent of ADP phosphorylation, and mainly oc-
curs due to proton leak from the mitochondrial intermembrane
space [38–40]. The maximal capacity of the ETS was obtained by
stepwise titrations (0.5 μM) with the protonophore, carbonyl cya-
nide m-chlorophenylhydrazone (CCCP) until maximal respiratory
flux could be detected [38]. Following this, respiration was sequen-
tially inhibited by addition of rotenone (Rote) at 0.5 μM, to selectively
inhibit CI, and then antimycin A (Anti-A) at 2.5 μM, to inhibit the
Fig. 1. The relationship betweenmitochondrial membrane potential (Δψm) and cell death follow
Hoechst-33342 in growthmedium for 20 min at 37 °C. After staining, cellswerewashed twice a
imaging at different time intervals, panel (a). MTG accumulates in the mitochondria independ
TMRM and MTG were both initially taken up only by polarized mitochondria, the gradual los
MTG indicate loss of Δψm on PEI challenge. This is also confirmed in the loss of yellow in the ov
rescence intensity by FACS, whereas the scatterplots in panel (c) represent changes in cellu
PEI-mediated cell death events monitored by propidium iodide (PI) staining. PI nuclear stainin
activity of CIII. The resulting state provides ameasure of residual oxygen
consumption (ROX). Mitochondrial respiration was corrected for oxy-
gen flux due to instrumental background and ROX [37–39]. The rate
of mitochondrial ATP synthesis (oligomycin-sensitive respiration) was
calculated as the difference between ROUTINE respiration and LEAK
respiration.

2.5.2. Freshly isolated mouse liver mitochondria
Respiration in isolated mitochondria was investigated at 25 °C in a

mitochondrial respiration medium (MIR05) containing EGTA 0.5 mM,
MgCl2 3 mM, K-lactobionate 60 mM, Taurine 20 mM, KH2PO4 10 mM,
HEPES 20 mM, sucrose 110 mM and BSA free from fatty acids 1 g/L,
pH 7.1 [38]. Respiring mitochondria were supplemented with respi-
ratory substrates (glutamate 5 mM, malate 5 mM and succinate
10 mM) for combined electron flow through CI and CII [39]. In all
experiments, the following protocol was applied (Supplementary
Fig. S2), using a mitochondrial protein content of 0.2–0.3 mg/mL.
Briefly, leak mitochondrial respiration (state 2) was first allowed
to stabilize in the presence of respiratory substrates without the
addition of ADP to the respiration medium. Next, 25k-PEI-B or H2O
(control) was added to the mitochondrial suspension and incubated
ing PEI challenge inH1299 cells. Cells were loadedwithMTG, TMRMand the nuclear dye
nd challengedwith 25k-PEI-B (10 μg/mL) in growthmediumat 37 °C followed by live cell
ent of the Δψm, whereas TMRM accumulates in a Δψm-dependent manner. Since cationic
s of TMRM red fluorescence and recovery of the green fluorescence of covalently bound
erlay images. Scale bar = 25 μm. Panel (b) shows quantification of TMRM and MTG fluo-
lar size (FS) and granularity (SS) following PEI exposure. Panel (d) is representative of
g becomes prominent from 60 min and onward. Scale bar = 20 μm.
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for 15 or 30 min, followed by addition of ADP at saturating concentra-
tion (2.5 mM). This results in maximal, ADP-stimulated respiration
(state 3) and ATP synthesis by the mitochondrial F0/F1-ATP synthase
[39,41]. Subsequent addition of oligomycin (2 μg/mL) was added to
achieve non-phosphorylating leak respiration (state 4o), mainly driven
by proton leak from the mitochondrial intermembrane space after
oligomycin-mediated inhibition of the ATP synthase [39,40]. Finally,
respiration was selectively inhibited first by addition of rotenone at
0.5 μM and next Anti-A at 2.5 μM, to inhibit CI and CIII, respectively,
providing measure of ROX. Mitochondrial respiration was corrected
for oxygen flux due to instrumental background and ROX [38,39].
Mitochondrial ATP synthesis was calculated as the difference be-
tween state 3 and state 4o.

2.5.3. ‘Broken mitochondrial’ preparation
The interference of 25k-PEI-B with components of the ETS was

investigated in a ‘broken mitochondrial’ preparation (0.3–0.4 mg/mL
final protein concentration) at 25 °C in MIR05. ‘Broken mitochondria’
were obtained by three freezing–thawing cycle disruption of isolated
mouse liver mitochondria suspended in isolation medium (mannitol
225 mM, sucrose 75 mM, Tris–HCl 5 mM, EGTA 0.1 mM, at pH 7.0).
A combination of succinate (10 mM) and NADH (1 mM) was used to
divert electrons simultaneously through CI and CII, together with exter-
nal addition of cyt c (10 μM) to obtain steady flow of electrons from CIII
to CIV [38,39]. Additions of 25k-PEI-B (1 μg/mL per step) were applied
to investigate the potential interference of PEI with the protein com-
plexes of the electron transport system. At the end of each experiment,
0.5 mM potassium cyanide (KCN) was added to obtain a measure of
ROX. Oxygen consumption by the ETS was corrected for oxygen flux
due to instrumental background and ROX [38,39]. In addition, the effect
of PEI on electron flow through CI–CIII–CIV was investigated in ‘broken
mitochondria’ in the presence of NADH (1 mM) to divert electrons
through CI, together with external addition of cyt c (10 μM) in order
to obtain a steady flow of electrons from CIII to CIV [38,39]. Further-
more, the effect of PEI on electron flow through CII–CIII–CIV was inves-
tigated in the presence of succinate (10 mM) to divert electrons
through CII, together with rotenone (2.5 μM) to inhibit CI and external
addition of cyt c (10 μM) to obtain steady flow of electrons from CIII to
CIV [38,39]. Finally, the activity of CIV was investigated in the presence
of 0.5 mM N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD), 2 mM
ascorbate (Asc), 10 μM cyt c, 2.5 μM rotenone, 5 mM malonic acid
(Mna) and 2.5 μM Anti-A following sequential additions of different
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concentrations of 25k-PEI-B. Finally, 100 mM sodium azide (NaN3)
was added to inhibit CIV activity, providing measure of ROX. Oxygen
consumption by the ETS was corrected for oxygen flux due to instru-
mental background and ROX [38,39].

2.6. Spectrophotometric analysis of CIV activity

The activity of CIV was investigated in a ‘broken mitochondrial’
preparation (4.8 μg final protein concentration per sample) in the
presence of different concentrations of 25k-PEI-B using cyt c oxidase
assay kit (Sigma-Aldrich). Briefly, the CIV activity was monitored at
λ = 550 nm in a Tecan microplate reader (Infinite M200, Tecan
Nordic AB, Sweden) and following absorbance measurements, cal-
culations of CIV activity (nmol/min/mg) were performed according
to manufacturer's instructions.

2.7. ATP determination

The concentration of ATP was determined using a modified method
based on the ATPlite luminescence assay system (Perkin-Elmer).
Briefly, H1299 cell suspensions (2.5 × 105 cells/mL) were incubated
with 25k-PEI-B for appropriate times at 37 °C in growth medium. In
parallel, experiments were done using high-resolution respirometry.
Following incubation, the cell pellet was separated from the medium
by centrifugation at 500 ×g for 5 min at 4 °C in order to obtain sepa-
rate measurements of intra- and extracellular ATP. After separation
the samples were left on ice to slow down degradation of the ATP
molecules and the samples were quickly mixed with lysis solution
(2:1 medium:cell lysis buffer) (ATPlite, Perkin Elmer). ATP concen-
trations were measured based on triplicate aliquots taken from the
sample in 3:1 ratio with substrate solution (ATPlite, Perkin Elmer).
Luminescence was recorded in a Tecan microplate reader (Infinite
M200, Tecan Nordic AB, Sweden).

2.8. Trypan blue exclusion test

Trypan blue staining was used to investigate the effects of PEI
exposure on plasma membrane damage. Briefly, suspensions of
2.5 × 105 cells/mL were incubated with 25k-PEI-B at 37 °C in growth
medium for appropriate times. Following PEI exposure, cells were
stained with trypan blue and counted under the microscope. Data is
presented as % of cells excluding trypan blue.

2.9. Statistical analysis

Results are expressed as means ± SD from at least three inde-
pendent experiments except stated otherwise. Statistical analyses
and comparison of different groups in relation to one or two factors
were performed with one-way ANOVA or two-way ANOVA as appro-
priate. The Bonferroni method was subsequently used to correct
p values after multiple comparisons to calculate statistical significance.

image of Fig.�1
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Values of p b 0.05 post Bonferroni correctionswere taken as the level of
significance.
3. Results

3.1. Loss of Δψm precedes cell death in H1299 cells on PEI exposure

The loss of Δψm plays a key role in mitochondrial-mediated cell
death [19]. Accordingly, we followed the effect of PEI on Δψm in
H1299 cells co-loaded with MTG and TMRM. PEI (10 μg/mL) induced
gradual time-dependent loss of Δψm starting within 10 min of expo-
sure (Fig. 1a, b). However, the FS/SS scatterplots, where FS reflects cell
size and SS cell granularity, indicated that by 30 min of PEI exposure the
majority of cells (represented in a contour of equal probability density
in the distribution of untreated cells) are in viable state (Fig. 1c). Obser-
vations with H1299 cells stained with PI and Hoechst-33342 (Fig. 1d)
further corroborate with these findings. Cell death, however, be-
comes prominent at longer exposure time (90 min). Collectively,
these results show that H1299 cells are highly sensitive to PEI expo-
sure and may serve as a convenient model to investigate the likely
mechanism(s) by which PEI could induce mitochondrial failure at
early time points (under 30 min), where the majority of cells are
still in viable state.
3.2. PEI-mediated changes on mitochondrial respiratory states in
intact cells

The results in Fig. 2 show how PEI at different concentrations
severely affects various respiratory states in H1299 cells, based on a
standardized phosphorylation control titration protocol (Supplementary
Figs. S1, S3 and S4). PEI affected ROUTINE respiration in a concentration
and time-dependentmanner (Fig. 2a).Within 5 min of addition, PEI sig-
nificantly increased O2 flux at concentrations above 5 μg/mL. This initial
PEI concentration-dependent respiratory increase, however, was
followed by a gradual decline over time. The effect was more prom-
inent with a PEI concentration of 10 μg/mL (starting at 30 min),
but with lower concentrations (5 μg/mL) the respiratory decline
(O2 flux) became significantly different at later time points (60 min).

In parallel with ROUTINE respiration, PEI also increased LEAK res-
piration in a concentration-dependent manner at 5 min of exposure
(Fig. 2b). By 30 min, the PEI-mediated increase in LEAK respiration
declined and the values were comparable with the control incubation.
Only at 60 min the decline was significantly lower with a PEI concen-
tration of 10 μg/mL (Fig. 2b). The decline phase became more prom-
inent with higher PEI concentrations and observable within 30 min
of exposure (data not shown). PEI was also found to significantly in-
hibit the maximal capacity of the ETS, again in a concentration- and
time-dependent manner (Fig. 2c). Here, PEI at 3 μg/mL was capable

image of Fig.�1


Fig. 2. The effect of PEI concentration on respiratory states and ATP synthesis in H1299 cells. Respiration (indicated as the rate of oxygen consumption or O2 flux) was evaluated at
different stages (ROUTINE, LEAK, ETS and ATP synthesis) on PEI challenge (3–10 μg/mL). Statistical analyses were performed with two-way ANOVA, using Bonferroni multiple
comparison correction to calculate significance (*p b 0.05, **p b 0.01).
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of significantly reducing ETS after 30 min of incubation. Furthermore,
the results in Fig. 2d show that PEI affects mitochondrial ATP synthesis
(oligomycin-sensitive respiration). The reduced capacity of intact mito-
chondria to synthesize ATP is significantly observed with PEI levels of
5 μg/mL at longer periods of time (60 min) as well as with higher
concentrations but at shorter periods of incubation (30 min).

Next, we calculated the effect of PEI concentration and exposure
time on corresponding respiratory flux ratios (RFRs) (Table 1). The
RFRs are defined as O2 flux in different respiratory control states,
normalized for maximum flux of the ETS capacity, acquiring theoret-
ically lower and upper limits of 0.0 and 1.0 [38,39]. PEI increased RFR
values in a time- and concentration-dependent manner. However,
at 10 μg/mL PEI-augmented RFR values declined on longer exposure
time when compared with controlled cells. The ROUTINE control ratio
(R/E) is the ratio of ROUTINE (R) respiration and ETS (E) capacity; this
gives an estimate of how close ROUTINE respiration operates to the
ETS capacity. An increasing R/E is indicative of increasing cellular ATP
demand, mitochondrial uncoupling and/or the limitation of respiratory
Table 1
Flux ratios in intact cells following incubation with 25k-PEI-B.

25k-PEI-B RCR “R/E” LCR “L/E”

Time
[min]

5 30 60 5 30

Control 0.229 ± 0.010 0,233 ± 0.006 0.235 ± 0.008 0.034 ± 0.004 0.035
3 μg/mL 0.238 ± 0.002 0.266 ± 0.014* 0.313 ± 0.036** 0.042 ± 0.001 0.039
5 μg/mL 0.250 ± 0.002 0.331 ± 0.022** 0.367 ± 0.025** 0.049 ± 0.003** 0.053
10 μg/mL 0.404 ± 0.020** 0.362 ± 0.013** 0.303 ± 0.007** 0.113 ± 0.009** 0.075

Flux ratios are calculated as the means ± SD for 3 parallel experiments. Statistical analyses we
calculate significance (*p b 0.05; **p b 0.01). The ROUTINE control ratio (R/E) is the ratio of ROU
respiration operates to the ETS capacity. The LEAK control ratio (L/E) is the ratio of LEAK(L) resp
the ETS capacity remains constant. The netROUTINE control ratio ((R-L)/E) represents phospho
5 μg/mL PEI the increase in LEAK respiration (Fig. 2b) is fully compensated by increasing ROUT
capacity by impaired activity of ETS components [38]. The LEAK control
ratio (L/E) is the ratio of LEAK (L) respiration and ETS capacity. When
the ETS capacity remains constant, L/E provides an estimation of mito-
chondrial uncoupling. Pathological uncoupling can be caused by toxic
external agents and is thus distinct from intrinsic uncoupling [38]. The
data summarized in Table 1 indicates that the early concentration-
dependent increases in L/E ratios are a result of PEI mediated
uncoupling of the mitochondria as LEAK respiration is significantly
increased following 5 min incubation with 5 μg/mL PEI (Fig. 2b),
whereas the ETS capacity remains constant (Fig. 2c). The netROUTINE
control ratio ((R-L)/E) represents the phosphorylation related respi-
ration as a fraction of ETS capacity. This provides an estimation of cell
functioning with respect to its bioenergetic limit [38]. The early
(5 min) increase in LEAK respiration at lower PEI concentrations
(3 and 5 μg/mL) (Fig. 2b) is fully compensated by increased ROUTINE
respiration (Fig. 2a). Consequently, the (R-L)/E is unaffected and mi-
tochondrial ATP synthesis is maintained at a constant rate (Fig. 2d).
At later time points (30 and 60 min), the changes in (R-L)/E result
netRCR “(R-L)/E”

60 5 30 60

± 0.002 0.036 ± 0.003 0.194 ± 0.004 0.198 ± 0.007 0.199 ± 0.005
± 0.004 0.052 ± 0.010** 0.197 ± 0.002 0.227 ± 0.014 0.262 ± 0.026**
± 0.003** 0.058 ± 0.006** 0.202 ± 0.004 0.278 ± 0.020** 0.307 ± 0.019**
± 0.007** 0.066 ± 0.012** 0.292 ± 0.011** 0.286 ± 0.017** 0.238 ± 0.017**

re performed with two-way ANOVA, using Bonferroni multiple comparison correction to
TINE (R) respiration and ETS (E) capacity. The R/E gives an estimate of how close ROUTINE
iration and ETS capacity. The L/E provides an estimation ofmitochondrial uncouplingwhen
rylation related respiration as a fraction of ETS capacity. After 5 min exposure with 3 and
INE respiration (Fig. 2a) and therefore no changes are observed in the (R-L)/E.

image of Fig.�2


Fig. 3. The effect of PEI concentration on mitochondrial proton leak in isolated mouse liver mitochondria. Panels (a) and (b) show the effect of PEI concentration on state 2 and 4o
respirations, respectively at two different time points. Bars represent the mean ± SD of 5 parallel experiments. Statistical analyses (with respect to control and between indicated
pairs) were performed with repeated measurement one-way ANOVA, using Bonferroni multiple comparison correction to calculate significance (*p b 0.05, **p b 0.01).
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from gradual decline of the ETS capacity following PEI exposure
(Fig. 2c) thus driving cells to utilize more of their respiratory capac-
ity to maintain constant ATP synthesis.

3.3. PEI-mediated changes on respiratory states in freshly isolated mouse
liver mitochondria

The results in Fig. 3 show the effect of different PEI concentration
on the respiratory functions of well-coupled, freshly isolated mouse
liver mitochondria at two different time points. PEI exposure for
15 min significantly increased both state 2 and state 4o O2 fluxes
(Fig. 3a & b). Increased O2 flux during state 4o respiration is indicative
of accelerated proton leak or proton transfer across the inner mito-
chondrial membrane [35,38,39]. The increased proton leak, however,
declined after longer incubation periods (30 min) with higher PEI
levels (5 and 10 μg/mL). Furthermore, PEI significantly lowered the
ability of the mitochondria to phosphorylate ADP (state 3) in a
time- and concentration-dependent manner (Fig. 4a). Notably, the
lowest PEI-concentration tested (3 μg/mL) increased proton leak sig-
nificantly after 15 min (Fig. 3a & b), although state 3 respiration was
not declined until after 30 min incubation (Fig. 4a). Correlating with
the observed PEI-mediated effect on state 3 and state 4o respiration,
mitochondrial ATP synthesis (oligomycin-sensitive respiration) also
significantly decreased at all tested PEI concentrations (Fig. 4b; repre-
sentative oxygraph traces are shown in Supplementary Figs. S5–S7).

The results in Table 2 summarize the calculatedmitochondrial respi-
ratory control ratios (RCRs) as indicators of PEI-induced mitochondrial
dysfunction. High RCR values imply high mitochondrial capacity for
oxidation of respiratory substrates, ATP synthesis and a low degree of
proton leak [35]. The results clearly show that RCR values decrease sig-
nificantly in response to the increasing concentrations of the polycation
(Table 2).
3.4. PEI acts as a potent inhibitor of ETS activity in ‘broken mitochondria’

We next examined the consequence of exposing ETS components
directly to PEI. Therefore, the activity of the ETS (O2 flux) was moni-
tored using a ‘broken mitochondrial’ preparation following the addi-
tion of PEI in the presence of combined electron flow into the ETS
through CI and CII [39].

These results strongly suggest that PEI is a potent inhibitor of the
ETS even at 1 μg/mL (Supplementary Fig. S8). To pinpoint the specific
site of PEI mediated inhibition within the ETS, we used a substrate
combination to feed electrons specifically to either CI or CII. The results
in Fig. 5a–d show that PEI both impairs electron transport through CI–
CIII–CIV and CII–CIII–CIV, suggesting that PEI is acting as an inhibitor
of electron flow downstream of both CI and CII. Notably, the CIV cata-
lyzes transfer of electrons from cyt c to oxygen through electrostatic
interactions [42] and due to its polycationic nature PEI could perhaps in-
terferewith these processes. By using both high-resolution respirometry
and spectrophotometric-based cyt c oxidase activity measurements, we
found that even at very low concentrations (0.1–0.5 μg/mL) PEI acts as a
potent inhibitor of CIV activity (Figs. 5e–f & 6).
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Fig. 4. The concentration-dependent effect of PEI on mitochondrial state 3 respiration and ATP synthesis (oligomycin-sensitive respiration) in isolated mouse liver mitochondria.
Bars represent the mean ± SD of 5 parallel experiments. Statistical analyses (with respect to control and between indicated pairs) were performed with repeated measurement
one-way ANOVA, using Bonferroni multiple comparison correction to calculate significance (*p b 0.05, **p b 0.01).
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3.5. The effect of PEI on intracellular ATP levels and plasma
membrane integrity

Addition of PEI to H1299 cells dramatically reduced the levels of
intracellular ATP in a concentration-dependent manner (Fig. 7a).
This is fully in line with the abovementioned observations on PEI-
mediated proton leak, impaired ETS capacity and decreased ATP syn-
thesis. However, the extent of ATP loss remains similar at different
time points for each particular PEI concentration. In parallel, the
extracellular ATP levels increased on increasing PEI concentration
(Fig. 7b), but the accumulated ATP levels did not fully account for
the total loss of intracellular ATP. This presumably indicates reduced
mitochondrial ATP synthesis (or increased cellular ATP consumption),
which is in line with the results in Figs. 2 & 4. The data in Fig. 7c further
show that PEI dramatically reduces plasmamembrane integrity even at
low concentrations (3 μg/mL); this may account for the appearance of
extracellular ATP.
Table 2
Mitochondrial respiratory control ratio (RCR) (state 3/state 4o).

25k-PEI-B Control 3 μg/mL 5 μg/mL 10 μg/mL

[15 min] 8.3 ± 0.173 6.5 ± 0.503** 4.9 ± 0.789** 2.1 ± 0.251**
[30 min] 8.1 ± 0.255 5.9 ± 0.301** 3.8 ± 0.439** 2.0 ± 0.311**

RCR is calculated as mean ± SD for 5 parallel experiments. Statistical analyses were
performed with two-way ANOVA and Bonferroni multiple comparison correction to
calculate significance (**p b 0.01).
4. Discussion

To the best of our knowledge, this is the first study demonstrating
concentration- and time-dependent effect of PEI on mitochondrial
proton leak and its inhibitory effect on the ETS in intact cells. Indeed,
we have now demonstrated that extracellular PEI at a concentration
range of 3–5 μg/mL can rapidly (within 5 min) induce mild mito-
chondrial uncoupling in H1299 cells. This is shown by the fact that
the increase in L/E ratio (Table 1) occurs only due to increased proton
leak as a result of increased LEAK respiration, whereas the ETS capac-
ity remains unchanged (indicative of PEI-mediated proton leak).
Interestingly, subsequent to PEI-induced increase in mitochondrial
proton leak, PEI also caused a concentration-dependent decline in
proton leak at later time points. This suggests that PEI exerts additional
effects on mitochondrial functions. Moreover, PEI further induced sig-
nificant concentration- and time-dependent inhibitory effect on the
ETS capacity in intact cells, which presumably is due to impairment of
substrate oxidation [38]. It should be emphasized that although mito-
chondrial permeabilization could lead to reduced OXPHOS capacity,mi-
tochondrial permeabilization alone is not capable of inhibiting electron
transfer and substrate oxidation by the ETS components [20,21,43–45].
However, reduction of state 3 respiration in isolated mitochondria
could be induced by impaired substrate oxidation [35]. Therefore, we
speculate that PEI has an inhibitory role on the ETS components. Earlier
attempts with other types of polycations (e.g., polylysines) demon-
strated their inhibitory effect on CIV activity [46]. In line with these
suggestions, experiments with ‘broken mitochondrial’ preparations
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Fig. 5. The inhibitory effect of PEI on the electron transport system activity in ‘broken mitochondria’. Oxygen consumption (O2 flux) was measured in a substrate combination of NADH
and cyt c or combination of succinate, rotenone (Rote) and cyt c for specific electron flux throughCI–CIII–CIV or CII–CIII–CIV, respectively.Moreover, the activity of CIVwasmeasuredwith
combination of TMPD, ascorbate (Asc), cyt c, rotenone, antimycin-A and malonic acid. Panels (a) and (c) represent high resolution respirometry and representative trace of oxygen flux
through CI–CIII–CIV and CII–CIII–CIV in ‘brokenmitochondria’, respectively. Oxygen consumptionwasmeasured on five cumulative additions of 25k-PEI-B (1 μg/mL per addition). Panels
(b) and (d) show reduction of CI–CIII–CIV and CII–CIII–CIV activity in ‘broken mitochondria’ exposed to cumulative concentrations of PEI relative to control, respectively. Bars represent
themean ± SD of 4 parallel experiments. Panel (e) shows high-resolution respirometry and representative trace of oxygen flux through CIV in ‘brokenmitochondria’. Oxygen consump-
tion was measured on five cumulative additions of 25k-PEI-B (first addition: 0.1 μg/mL, second addition: 0.4 μg/mL, third addition: 0.5 μg/mL, fourth and fifth additions: 1 μg/mL each).
Panel (f) shows relative reduction of CIV activity in ‘brokenmitochondria’ following exposure to different concentrations of PEI. Bars represent themean ± SD of 4 parallel experiments.
Statistical analyses were performed with one-way ANOVA, using Bonferroni multiple comparison correction to calculate significance (*p b 0.05, **p b 0.01).
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confirmed that PEI inhibits electron flow and substrate oxidation by
the ETS due to its potent inhibitory effect at least on CIV activity even
at very low concentrations. The observation that PEI inhibits ETS
activity correlates well with the fact that the early increase of mito-
chondrial proton leak following PEI exposure declines again at later
time points. Consequently, ETS translocates fewer protons over the
inner membrane and therefore fewer protons are available in the
intermembrane space to leak back through the inner membrane
into the matrix, explaining partially why the early acceleration of
mitochondrial proton leak following PEI exposure declines with
longer incubation times. Collectively, the experimental evidence
shows that in addition to induce mitochondrial proton leak, PEI
acts as a potent inhibitor of the ETS by inhibiting the activity of CIV.

PEI-mediated mitochondrial destabilization is conceivably a con-
sequence of the membrane perturbation properties of the polycation
and formation of nanoscale pores in a similar manner to the function
of pore-forming peptides [3]. These processes are presumably similar
to the function of pore-forming peptides such as alamethicin, which
also possesses high affinity toward mitochondrial membranes as their
membrane insertion and pore forming ability are largely driven by the
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Fig. 6. Determination of the inhibitory effect of PEI on CIV activity in ‘brokenmitochondria’
by spectrophotometric analysis of cytochrome c oxidase activity. Bars represent the
mean ± SD of 3 parallel experiments. Statistical analyses were performed with
one-way ANOVA, using Bonferroni multiple comparison correction to calculate
significance (*p b 0.05, **p b 0.01).
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Δψm [47]. These pore-forming peptides induce nonspecific permeability
changes, which can result in swelling and disruption of the mitochon-
dria [48]. Similarly, 25k-PEI-B was recently shown to induce swelling
of isolated rat liver mitochondria at low concentrations [30]. On the
basis of these speculations, the cytoplasmic concentration of functional
PEI must be sufficiently enough to induce the observed mitochondrial
perturbations. PEI enters cytoplasm most likely through plasma mem-
brane, as a result of electrostatic interactions and its detergent activity
Fig. 7. The time- and concentration-dependent effect of PEI on intracellular ATP depletion
challenge with increasing concentrations of 25k-PEI-B at different time points. Cells treated w
comparison of intra- and extracellular ATP levels at 1 hour incubation with 25k-PEI-B. In (a) an
were performed with one-way ANOVA, using Bonferroni multiple comparison correction
cells (based on trypan blue exclusion test) after challenge with PEI at indicated concentra
[3], and endosome destabilization (most likely arising from PEI-
mediated membrane fragment micellization) [3,49]. Recent studies
also attest that fluorescently labeled extracellular PEI reaches mito-
chondria in intact cells [17].

Mitochondrial ATP synthesis is dependent on the electrochemical
proton gradient [20,21]. Correspondingly, we observed significant
reduction in mitochondrial ATP synthesis and drop in intracellular
ATP levels after PEI exposure, which may partly arise due to increased
ATP consumption. We also found that the intracellular ATP depletion
was partly a consequence of PEI induced damage to the plasma mem-
brane and ATP leakage. Previous studies have shown that PEI can in-
duce cell death through both apoptotic and necrotic pathways [4,10].
It has also been suggested that mild reductions in intracellular ATP
levels could trigger apoptosis, whereas profound ATP depletion may
initiate necrosis [27,28,50]. It is therefore conceivable that PEI-induced
necrotic and/or apoptotic cell death processes are driven by themagni-
tude of bioenergetic crisis (mitochondrial uncoupling, impaired ETS
activity and diminished ATP synthesis) and the extent of plasma
membrane destabilization, which in turn depends on the initial PEI
concentration. Accordingly, PEI could induce apoptosis in a stochas-
tic manner, with different cells entering apoptosis at different times
depending on the extent of plasma membrane damage, intracellular
PEI levels and its effect on mitochondrial ATP synthesis. With pro-
found plasma membrane damage ATP leakage is accelerated, which
together with diminished ATP synthesis may trigger cell death
predominantly through necrosis. The 25k-PEI-B also accumulates
in lysosomes without inducing change in lysosomal pH [49].
and plasma membrane integrity. Panel (a) shows intracellular ATP levels following
ith potassium cyanide (KCN, 0.5 mM) were used as a positive control. Panel (b) shows
d (b) the bars represent the mean ± SD of three parallel experiments. Statistical analyses
to calculate significance (*p b 0.05, **p b 0.01). Panel (c) shows percentage of viable
tions.
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Additionally, subsequent PEI-mediated lysosomal membrane perturba-
tions may also contribute to cellular stress through possible release of
lysosomal cathepsins, which are endowed with the capacity to cleave
Bid [3]. Likewise, a role for PEI-mediated perturbation of endoplasmic
reticulum cannot be disregarded, which could also lead to energy crisis
and cellular stress through activation of procaspase 12 [3]. These possi-
bilities are currently under investigation.

In summary, this study has offered new insights as how branched
PEIs could initiate mitochondrial failure and induce bioenergetic crisis
through direct effect of PEI on mitochondria. Further structure–activity
studies are still necessary to unravel the effect of PEI architecture and
size on mitochondrial processes and energetic functions both directly
and through PEI-mediated perturbation of other organelles. Indeed,
a bettermolecular understanding of PEI-mediatedmitochondrial failure
events and cellular bioenergetic crisis could open the path for rational
combinatorial design and construction of efficient and safer polycations
(and other polymers) for nucleic acid delivery.
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