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a b s t r a c t

In this paper, the asymptotic behavior of some n-species Lotka–Volterra cooperation
systemswith finite delays and impulsive perturbations at fixedmoments of time is studied.
By using the Lyapunov–Razumikhin method sufficient conditions for uniform asymptotic
stability of the solutions are obtained. We shall show, also, that the role of impulses in
controlling the behavior of solutions of impulsive differential equations is very important.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Owing to their theoretical and practical significance, the Lotka–Volterra systems with time delays have been studied
extensively. See, for example, [1–5] and the references cited therein. In addition to these, the books of Gopalsamy [6] and
Kuang [7] are good sources for these topics of Lotka–Volterra type systems.
Wei and Wang [5] are investigated the asymptotic behavior of the periodic solutions of the following Lotka–Volterra

cooperation system with finite delays

ẋi(t) = xi(t)

ri(t)− xi(t − τii(t))

ai(t)+
n∑
j=1
j6=i

bj(t)xj(t − τij(t))
− ci(t)xi(t)

 , (1.1)

where i, j = 1, . . . , n; t ≥ 0; xi(t) denotes the density of species i at themoment t; ri(t), ai(t), bi(t), ci(t) (i = 1, 2, . . . , n)
are the system parameters; 0 ≤ τij ≤ τ , τ = const .
However, in the study of the dynamic relationship between species, the effect of some impulsive factors has been ignored,

which existswidely in the realworld. For example, the birth ofmany species is an annual birth pulse or harvesting.Moreover,
the human beings have been harvesting or stocking species at some time, then the species is affected by another impulsive
type. Such factors have a great impact on the population growth. If we incorporate these impulsive factors into the model
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of population interaction, the model must be governed by impulsive functional differential system
ẋi(t) = xi(t)

ri(t)− xi(t − τii(t))

ai(t)+
n∑
j=1
j6=i

bj(t)xj(t − τij(t))
− ci(t)xi(t)

 , t 6= tk,

xi(t+k ) = xi(tk)+ Iik(xi(tk)), i = 1, . . . , n, k = 1, 2, . . . ,

(1.2)

where 0 < t1 < t2 < · · · and limk→∞ tk = ∞. The numbers xi(tk) and xi(t+k ) are, respectively, the population densities of
species i before and after impulse perturbation at the moment tk; and Iik are functions which characterize the magnitude of
the impulse effect on the species i at the moments tk.
The main purpose of this paper is to investigate the role of impulses in control of asymptotic behavior of system (1.2). By

means of piecewise continuous Lyapunov functions [8] and Razumikhin technique [9,10] sufficient conditions for uniform
asymptotic stability of a nonzero solution are obtained. An example is considered to illustrate our results. The example also
shows that by means of appropriate impulsive perturbations we can control the system’s population dynamics [11,1].

2. Preliminaries

Let R+ = [0,∞), Rn be the n-dimensional Euclidean space and ‖x‖ = |x1| + · · · + |x2| denote the norm of x ∈ Rn. Let
J ⊂ R be an interval. Define the following class of functions:

CB[ J, R] = {σ ∈ C[ J, R] : σ(t) is bounded on J} .

Let ϕ ∈ CB[[−τ , 0], Rn], ϕ = col(ϕ1, ϕ2, . . . , ϕn). We denote by x(t) = x(t; 0, ϕ) = col(x1(t; 0, ϕ), x2(t; 0, ϕ), . . . ,
xn(t; 0, ϕ)) the solution of system (1.2), satisfying the initial conditions{

xi(s; 0, ϕ) = ϕi(s), s ∈ [−τ , 0],
xi(0+; 0, ϕ) = ϕi(0), i = 1, . . . , n, (2.1)

and by J+(0, ϕ) — the maximal interval of type [0, β) in which the solution x(t; 0, ϕ) is defined.
Let ‖ϕ‖τ = maxs∈[−τ ,0] ‖ϕ(s)‖ be the norm of the function ϕ ∈ CB[[−τ , 0], Rn].
Introduce the following conditions:

H2.1. The functions ri(t), ai(t), bi(t) and ci(t) are continuous, positive and bounded on R+.
H2.2. 0 = t0 < t1 < t2 < · · · and limk→∞ tk = ∞.
H2.3. Iik ∈ C[R+, R], i = 1, 2, . . . , n, k = 1, 2, . . . .
H2.4. xi + Iik(xi) ≥ 0 for xi ∈ R+, i = 1, 2, . . . , n, k = 1, 2, . . . .

Given a continuous function g(t)which is defined on J , J ⊆ R, we set

gL = inf
t∈J
g(t), gM = sup

t∈J
g(t).

Introduce the following notations:

Gk = (tk−1, tk)× Rn+, k = 1, 2, . . . ; G = ∪∞k=1 Gk;

V0 = {V : [0,∞) × Rn+ → R+ : V ∈ C[G, R+], t ∈ [0,∞), V is locally Lipschitzian in x ∈ Rn+ on each of the sets Gk,
V (t−k , x) = V (tk, x) and V (t

+

k , x) = lim t→tk
t>tk
V (t, x) exists}.

For V ∈ V0 and for any (t, x) ∈ [tk−1, tk) × Rn+, the right-hand derivative of the function V ∈ V0 with respect to system
(1.2) is defined by

D+(1.2)V (t, x(t)) = lim
h→0+

sup
1
h

[
V (t + h, x(t + h))− V (t, x(t))

]
.

In the proofs of the main theorem, we shall use the following lemmas.

Lemma 2.1. Let the conditions H2.1–H2.3 hold.
Then J+(0, ϕ) = [0,∞).

Proof. Since the condition H2.1 holds, then from the existence theorem for the corresponding system without impulses
[6,7,5], it follows that the solution x(t) = x(t; 0, ϕ) of problem (1.2), (2.1) is defined on [0, t1] ∪ (tk, tk+1], k = 1, 2, . . . .
From conditions H2.2 and H2.3, we conclude that it is continuable for t ≥ 0. �
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Lemma 2.2. Assume that:
1. Conditions H2.1–H2.4 hold.
2. x(t) = x(t; 0, ϕ) = col(x1(t; 0, ϕ), x2(t; 0, ϕ), . . . , xn(t; 0, ϕ)) is a solution of (1.2), (2.1) such that

xi(s) = ϕi(s) ≥ 0, supϕi(s) <∞, ϕi(0) > 0,

1 ≤ i ≤ n.
Then xi(t) > 0, 1 ≤ i ≤ n, t ∈ [0,∞).

Lemma 2.3. Assume that:
1. Conditions of Lemma 2.2 hold.
2. The functions Iik are such that

−xi ≤ Iik(xi) ≤ 0 for xi ∈ R+, i = 1, 2, . . . , n, k = 1, 2, . . . .

Then there exist positive constants m and M <∞ such that

m ≤ xi(t) ≤ M, t ∈ [0,∞). (2.2)

The proofs of Lemmas 2.2 and 2.3 are similar to the proofs of Assertion 1 and Assertion 2 of Lemma 3.1 in [1] and we will
omit them here.

3. Uniform asymptotic stability

Let φ ∈ CB[[−τ , 0], Rn
+
], φ = col(φ1, φ2, . . . , φn) and x∗(t) = x∗(t; 0, φ) = col(x∗1(t; 0, φ), x

∗

2(t; 0, φ), . . . , x
∗
n(t; 0, φ))

be a solution of system (1.2), satisfying the initial conditions{
x∗i (s; 0, φ) = φi(s), s ∈ [−τ , 0],
x∗i (0

+
; 0, φ) = φi(0), i = 1, 2, . . . , n.

In the next, we shall suppose that

ϕi(s) ≥ 0, supϕi(s) <∞, ϕi(0) > 0,
φi(s) ≥ 0, supφi(s) <∞, φi(0) > 0, i = 1, 2, . . . , n.

Theorem 3.1. Assume that:
1. Conditions of Lemma 2.3 hold.
2. m ≤ xi + Iik(xi) ≤ M for m ≤ xi ≤ M, i = 1, 2, . . . , n, k = 1, 2, . . . .
3. There exists a nonnegative constant µ such that

m min
1≤i≤n

cLi ≥ µ+M
2
n∑
i=1

max
j6=i

bMj(
aLi +m

n∑
s=1
s6=i

bLs

)2 > 0.

Then the solution x∗(t) of system (1.2) is uniformly asymptotically stable.

Proof. Consider the Lyapunov function

V (t, x(t)) =
n∑
i=1

∣∣∣∣ln xi(t)x∗i (t)

∣∣∣∣ .
By Mean Value Theorem and by (2.2), it follows that for any closed interval contained in [0, t1] ∪ (tk, tk+1], k = 1, 2, . . .

and for all i = 1, 2, . . .

1
M
|xi(t)− x∗i (t)| ≤ | ln xi(t)− ln x

∗

i (t)| ≤
1
m
|xi(t)− x∗i (t)|. (3.1)

From the inequalities (3.1), we obtain

V (0+, x(0+)) =
n∑
i=1

| ln xi(0+)− ln x∗i (0
+)|

≤
1
m
|ϕi(0)− φi(0)| ≤

1
m
‖ϕ − φ‖τ . (3.2)
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For t > 0 and t = tk, k = 1, 2, . . . , we have

V (t+k , x(t
+

k )) =

n∑
i=1

∣∣∣∣ln xi(t+k )x∗i (t
+

k )

∣∣∣∣
=

n∑
i=1

∣∣∣∣ln xi(tk)+ Iik(xi(tk))x∗i (tk)+ Iik(x
∗

i (tk))

∣∣∣∣ ≤ n∑
i=1

∣∣∣∣ln Mm
∣∣∣∣ = n∑

i=1

∣∣∣ln m
M

∣∣∣
≤

n∑
i=1

∣∣∣∣ln xi(tk)x∗i (tk)

∣∣∣∣ = V (tk, x(tk)). (3.3)

For t ≥ 0 and t 6= tk, k = 1, 2, . . . , we have

D+(1.2)V (t, x(t)) =
n∑
i=1

(
ẋi(t)
xi(t)
−
ẋ∗i (t)
x∗i (t)

)
sgn

(
xi(t)− x∗i (t)

)

≤

n∑
i=1


− ci(t)|xi(t)− x∗i (t)| −

1

ai(t)+
n∑
j=1
j6=i

bj(t)x∗j (t − τij(t))
|xj(t − τij(t))− x∗j (t − τij(t))|

+

n∑
j=1
j6=i

bj(t)xi(t − τii(t))|xj(t − τij(t))− x∗j (t − τij(t))|(
ai(t)+

n∑
s=1
s6=i

bs(t)xs(t − τis(t))

)(
ai(t)+

n∑
s=1
s6=i

bs(t)x∗s (t − τis(t))

)


≤

n∑
i=1


−cLi |xi(t)− x

∗

i (t)| +
n∑
j=1
j6=i

MbMjaLi +m n∑
s=1
s6=i

bLs

2
|xj(t − τij(t))− x∗j (t − τij(t))|



≤ − min
1≤i≤n

cLi
n∑
i=1

|xi(t)− x∗i (t)| +


n∑
i=1

max
j6=i

MbMj(
aLi +m

n∑
s=1
s6=i

bLs

)2


n∑
i=1

sup
s∈[t−τ ,t]

|xi(s)− x∗i (s)|.

From (3.1) for any solution x(t) of (1.2) such that

V (s, x(s)) ≤ V (t, x(t)), t − τ ≤ s ≤ t, t 6= tk, k = 1, 2, . . . ,

we have
n∑
i=1

|xi(s)− x∗i (s)| ≤
M
m

n∑
i=1

|xi(t)− x∗i (t)|.

Then

D+V(1.2)(t, x(t)) ≤ −
µ

m

n∑
i=1

|xi(t)− x∗i (t)| ≤ −µV (t, x(t)),

t ≥ 0 and t 6= tk, k = 1, 2, . . . .
From the last estimate, (3.2) and (3.3), we get

V (t, x(t)) ≤ V (0+, x(0+))e−µt , t ∈ [0,∞).
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So,

‖x(t)− x∗(t)‖ =
n∑
i=1

∣∣xi(t)− x∗i (t)∣∣ ≤ MV (t, x(t))
≤ MV (0+, x(0+))e−µt ≤

M
m
‖ϕ − φ‖τe−µt , t ∈ [0,∞),

and this completes the proof of the theorem. �

4. An example

The system
ẋ(t) = x(t)

[
907
224
−

x(t − τ11)
1+ 4y(t − τ12)

− 16x(t)
]
,

ẏ(t) = y(t)
[
15−

y(t − τ22)
1+ 2x(t − τ21)

− 14y(t)
]
,

(4.1)

with parameters r1 = 907
224 , r2 = 15, a1 = a2 = 1, b1 = 2, b2 = 4, c1 = 16 and c2 = 14 has a uniformly asymptotically

stable [5] equilibrium point (x∗, y∗) = (0, 1)which implies the first species will go extinct.
However, for the impulsive Lotka–Volterra system

ẋ(t) = x(t)
[
907
224
−

x(t − τ11)
1+ 4y(t − τ12)

− 16x(t)
]
, t 6= tk,

ẏ(t) = y(t)
[
15−

y(t − τ22)
1+ 2x(t − τ21)

− 14y(t)
]
, t 6= tk,

1x(tk) = −
1
4

(
x(tk)−

1
4

)
, k = 1, 2, . . . ,

1y(tk) = −
11
15

(
y(tk)−

45
44

)
, k = 1, 2, . . . ,

where 0 < t1 < t2 < · · · and limk→∞ tk = ∞, the point (x∗, y∗) = ( 14 ,
45
44 ) is an equilibrium which is uniformly

asymptotically stable. In fact, all conditions of Theorem 3.1 are satisfied for µ = 1.524,m = 1
4 andM =

45
44 and

1
4
≤ x(tk)+ I1k(x(tk)) =

12x(tk)+ 1
16

≤
45
44
,

1
4
≤ y(tk)+ I2k(y(tk)) =

4y(tk)
15
+
3
4
≤
45
44

for 14 ≤ x(tk) ≤
45
44 ,

1
4 ≤ y(tk) ≤

45
44 , k = 1, 2, . . . .

This example shows that the impulsive perturbations can prevent the population from going extinct. In short, by
impulsive controls of the population numbers of the first and the second species at fixed moments, such as stocking and
harvesting, we can control the system’s population dynamics.
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