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Abstract
For a connected graph G of order n > 2 with positive Laplacian eigenvalues /a,..., 4, let
—1
b(G) = “

Vi -+ i

In this note we derive bounds on some graph invariants (edge-density in cuts, isoperimetric
number, mean distance, edge-forwarding index, edge connectivity, etc) in terms of b(G).
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

For any graph G with no loops, and no multiple edges, let V' =V (G) and E =E(G)
be the vertex set and the edge set of G, respectively. Let A(G) be the adjacency
matrix of G, and D(G)=diag(deg(v))ver () the degree matrix of G. Then the matrix
L(G)=D(G) — A(G) is called the Laplacian matrix of the graph G. The Laplacian
eigenvalues of a graph are defined to be the eigenvalues of its Laplacian matrix. In
recent years, the relationships between a graph and its Laplacian eigenvalues have been
investigated fruitfully. The Laplacian matrix L(G) is positive semidefinite.

Throughout this note, G denotes a non-trivial graph. For a connected graph G of
order n, let

0=l << - <A,

be its Laplacian eigenvalues of G (repeated according to their multiplicities).
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The second smallest eigenvalue a(G) =4, is called the algebraic connectivity of G.
It is well-known that a(G) is related to several important graph invariants. For a
connected graph of order n, we define

n—1

A 7 7

In other words, b(G) is the harmonic mean of the n— 1 positive Laplacian eigenvalues.
In the present note, we shall show that 5(G) is also related to some important graph
invariants (edge density in cuts, isoperimetric number, edge-forwarding index, etc).

2. The fundamental inequality

We shall use the symbol (Ti,...,7;) to denote the spanning forest of a graph G
with connected components 7i,...,7;, and the set of spanning forests of G with &
connected components will be denoted by Forg(k). For a partition (X,...,X;) of
V(G), we denote by J(Xi,...,X;) the set of edges whose end vertices are in distinct
partition classes. In this section we begin with the following:

Lemma 2.1. Let G be a connected graph of order n. then

D 1T, V(Ti1)| = (n — k)|Forg (k)

where the sum is taken over all spanning forests (1h,...,Tr+1) with k + 1 connected
components.

Proof. Take a forest (7i,...,7;+1) € Forg(k + 1), and add an edge in o(V(T),...,
V(Ti+1)) to the forest (7i,...,7+1). Then we obtain a forest in Forg(k). Conversely
from a forest S=(S),...,S;) in Forg(k) remove one edge in S. Then we obtain a
forest in Forg(k+1). Since S contains n— k edges, > |0(V(T}),...,V(Tr+1))| is equal
to (n — k)|Forg(k)|. O

Lemma 2.2 (Biggs [3, Theorem 7.5]). Let G be a connected graph of order n with
positive Laplacian eigenvalues Ay, ..., A,. Then

SOV V@G| = eriCGaee i)y k=120 n = 1,

where the sum is taken over all spanning forests with k connected components, and
en—i(22,...,4y) denotes the elementary symmetric polynomial of degree n — k in
/lz, ceey )\.n.

Theorem 2.3. Let G be a connected graph of order n. Then we have

in |5(X1,...,Xk+1)‘ < (n—k)|F0r(k)| < |5(X1,...,Xk+1)|
Xi| - [ Xea]  enm1-k(A2s ey An) IXi |- [ X |
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where the minimum and the maximum are taken over all vertex partitions (X, ...,
Xiv1) with k+ 1 classes.

Proof. Let

|o(X1, ..., Xir1)]

¢y = min .
1Xi] - [ X |

Then we have
e Y V)] V(G < D I8(Ts - T

where the sum is taken over all spanning forests with £ + 1 connected components.
From Lemmas 2.1 and 2.2, we then obtain the result. By similar arguments as above,
we obtain the second inequality. [J

For a subset X C V(G), let X°¢ denote the complement of X in V(G). For a proper
subset X of V(G), the quantity

[0 X
X fxel
is called the edge-density of the edge cut (X, X°).
It is known [2,6] that the edge-density of any edge-cut is between /J,/n and A,/n.

The following result gives an upper bound on the minimal edge-density in terms of
b(G):

Proposition 2.4. Let G be a connected graph of order n. Then

mm{WKXU}<MG>
Xl S =

where the minimum is taken over all proper subsets of V(G).

Proof. By the matrix-tree theorem [3, Corollary 6.5],

YR

|Forg(1)| =
and hence the result follows from Theorem 2.3. [

Although simple to prove, Proposition 2.4 is fundamental in this note for obtaining
bounds on graph invariants.

Proposition 2.5. Let G be a connected graph of order n with edge connectivity n(G).
Then

nb(G)
nG)<—, .




186 Y. Teranishil Discrete Mathematics 257 (2002) 183—189

Proof. From the proof of Theorem 2.3, we see that there exists a spanning forest
(71, T») such that

6 (T), V(T2))| _ b(G)
V(T)|[V(G)| ~ n

Since n(G)<|(V(Th), V(T>))| and |V(T))||V(T>)| <n*/4, the result follows. [J

3. Graph invariants and b(G)

The isoperimetric number i(G) of a graph G of order n is defined as

n
(G) = mi X x|<2t
i(G)= min { x| CV(G), 0<|X]| 2}

Discrete versions of the Cheeger inequality are known [1,6]. As a straightforward
application of Proposition 2.4 we obtain the following upper bound on i(G).

Theorem 3.1. Let G be a connected graph of order n. Then

n—

Lho).
n

i(G)<

Let u and v be vertices of a connected graph G. The distance dg(u,v) between u
and v is the length of the shortest path between u and v in G.

The mean distance p(G) of G is equal to the average of all distances between
distinct vertices of G.

> ,,(G)>d(u, D)
2

(u,v)E(

C@U

If G is a tree, by a theorem of B.D. McKay, the mean distance p(G) is equal to
2/b(G) (see [7, Theorem 4.3] for a proof). In [7], some bounds on p(G) are derived.

p(G):=

Lemma 3.2. Let G be a graph of order n. Then

oV (1), V(L)||[V(T)I|V(T2)
ZMD:Z| nH | 3
(2)
where the first sum is taken over all spanning trees T of G, while the second sum is
taken over all spanning forests (T, T>) of G with two connected components.

Proof. For two vertices u and v of G, take a spanning tree 7, and delete one edge
from the u—v path in 7. Then we get a spanning forest (71,7;) of G, and u and v are
contained in distinct partition classes of the vertex partition (V' (71), V' (72)). For given
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vertices u and v, and a spanning tree T, there are d7(u, v) such edges. Conversely, for a
spanning forest (7}, 7>) of G, and vertices u and v contained in distinct partition classes
of (V(T7),V(T»)), add one edge in 6(V(T;),V(13)). Then we obtain a spanning tree
of G. For a given spanning forest (7}, 7») we can choose |V (T1)||V(72)| such vertices
u and v. By the double counting argument, we then obtain the result. [

The following theorem gives an upper bound for the mean distance of a connected
graph in terms of b(G).
Theorem 3.3. Let G be a connected graph of order n with m edges. Then

2(m —n—+2)

p(G)< 5G)

with equality if and only if G is a tree.

Proof. For a spanning forest (73, 72) of G, since each T}, i=1,2, contains |V(T;)| — 1

edges, G has at least |V(T)| + |V(T2)| — 2+ |6(V(T1), V(T»))| edges, and so we have
6V (L), V()| <m —n+2.

Then by Lemma 2.2,

ST @) V@DV IV ()| < (1 — 1+ 2)en—2(ia,- .. 2,

where the sum is taken over all spanning forests (77, 7>) with two connected compo-
nents.
On other hand, since p(7)>=p(G), we have

> p(T)=p(G)|Forg(1)]:
TeForg(1)
Therefore, the inequality follows from Lemma 3.2 and the matrix-tree theorem. If G is
a tree, then m —n+2 =1, and the equality holds by the theorem of McKay, mentioned
above. Conversely if equality holds, then from the proof, we see that p(G)= p(T) for
each spanning tree 7. This implies that G itself is a tree. [J

In a connected graph G, we denote by Dg(u, v) the length of the longest path between
u and v. Let

(uv)e

( (@ )

Proposition 3.4. Let G be a connected graph with edge connectivity n(G). Then

. 20(G)
2= Gy

> )\ P, v)
2(G) = (')




188 Y. Teranishil Discrete Mathematics 257 (2002) 183—189

Proof. For each spanning forest (77, T3) of G, #n(G)<|6(V(Th),V(T3))|. Then by sim-
ilar arguments as in the proof of Theorem 3.3, the result follows. [

From Proposition 3.4, we obtain information about Laplacian spectra of graphs with-
out long paths.

Corollary 1. Let G be a connected graph without a path of length k(k>=1). Then

2n(G)
HG)> =

Proof. This is a direct consequence of Proposition 3.4. [J

The edge-forwarding index of a graph is a useful notion used in the theory of
communication networks. A routing R is a collection of paths R(u,v), specified for
each ordered pair (u,v) of distinct vertices of G. For each edge e, let n(G, R, e) be the
number of paths in R going through the edge e. Let

(G, R) = max{n(G,R,e)},

where the maximum is taken over all edges e of G. Then the edge-forwarding index
n(G) of G is defined as the minimum of (G, R) taken over all routings R of G.

Proposition 3.5. Let G be a connected graph of order n. Then

2n

Proof. For every proper subset S of V(G), it is known [8, Proposition 3.7] that

NI

MOZ 155,59

Then the result follows from Proposition 2.4.

Definition 3.6. A connected graph G is said to be orbital regular if, for some subgroup
H of the automorphism group Aut(G), H satisfies the following two conditions:

(1) H acts regularly on each of its orbits in {(u,v); u,v€ V(G), u # v}.
(2) E(G)={{u,v} € E(G): (u,v) €S} for an H-orbit S.

Proposition 3.7. Let G be an orbital regular graph of order n and degree k. Then

k

n
SRR ()
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Proof. In [9] it is shown that, if G is an orbital regular graph of order n with m edges,

1
n(G)= - (;) p(G).

From Proposition 3.5, we then obtain the result. [

Proposition 3.8. Let G be a Cayley graph of order n. Then

n
M= G ey

Proof. By [4, Corollary 110],
n(G)<(n— D)p(G).

Then the result follows from Proposition 3.5. [J

Proposition 3.9. Let G be a connected vertex-transitive graph of order n with diam-
eter D. Then

n

D=2 =BGy

Proof. It is known [5, p. 83] that i(G)>1/2D. Therefore the result follows from
Theorem 3.1. O
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