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Laplacian spectra and invariants of graphs
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Abstract

For a connected graph G of order n¿ 2 with positive Laplacian eigenvalues �2; : : : ; �n, let

b(G) =
n− 1

1=�2 + · · ·+ 1=�n
:

In this note we derive bounds on some graph invariants (edge-density in cuts, isoperimetric
number, mean distance, edge-forwarding index, edge connectivity, etc) in terms of b(G).
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1. Introduction

For any graph G with no loops, and no multiple edges, let V =V (G) and E=E(G)
be the vertex set and the edge set of G, respectively. Let A(G) be the adjacency
matrix of G, and D(G)= diag(deg(v))v∈V (G) the degree matrix of G. Then the matrix
L(G)=D(G) − A(G) is called the Laplacian matrix of the graph G. The Laplacian
eigenvalues of a graph are de;ned to be the eigenvalues of its Laplacian matrix. In
recent years, the relationships between a graph and its Laplacian eigenvalues have been
investigated fruitfully. The Laplacian matrix L(G) is positive semide;nite.
Throughout this note, G denotes a non-trivial graph. For a connected graph G of

order n, let

0= �1¡�26 · · ·6�n
be its Laplacian eigenvalues of G (repeated according to their multiplicities).
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The second smallest eigenvalue a(G)= �2 is called the algebraic connectivity of G.
It is well-known that a(G) is related to several important graph invariants. For a
connected graph of order n, we de;ne

b(G)=
n− 1

1=�2 + · · ·+ 1=�n

In other words, b(G) is the harmonic mean of the n−1 positive Laplacian eigenvalues.
In the present note, we shall show that b(G) is also related to some important graph

invariants (edge density in cuts, isoperimetric number, edge-forwarding index, etc).

2. The fundamental inequality

We shall use the symbol (T1; : : : ; Tk) to denote the spanning forest of a graph G
with connected components T1; : : : ; Tk , and the set of spanning forests of G with k
connected components will be denoted by ForG(k). For a partition (X1; : : : ; Xk) of
V (G), we denote by �(X1; : : : ; Xk) the set of edges whose end vertices are in distinct
partition classes. In this section we begin with the following:

Lemma 2.1. Let G be a connected graph of order n. then
∑

|�(V (T1); : : : ; V (Tk+1))|=(n− k)|ForG(k)|;

where the sum is taken over all spanning forests (T1; : : : ; Tk+1) with k + 1 connected
components.

Proof. Take a forest (T1; : : : ; Tk+1)∈ForG(k + 1), and add an edge in �(V (T1); : : : ;
V (Tk+1)) to the forest (T1; : : : ; Tk+1). Then we obtain a forest in ForG(k). Conversely
from a forest S =(S1; : : : ; Sk) in ForG(k) remove one edge in S. Then we obtain a
forest in ForG(k+1). Since S contains n− k edges,

∑ |�(V (T1); : : : ; V (Tk+1))| is equal
to (n− k)|ForG(k)|.

Lemma 2.2 (Biggs [3, Theorem 7.5]). Let G be a connected graph of order n with
positive Laplacian eigenvalues �2; : : : ; �n. Then∑

|V (T1)| · · · |V (Tk)|= en−k(�2; : : : ; �n); k =1; 2; : : : ; n− 1;

where the sum is taken over all spanning forests with k connected components, and
en−k(�2; : : : ; �n) denotes the elementary symmetric polynomial of degree n − k in
�2; : : : ; �n.

Theorem 2.3. Let G be a connected graph of order n. Then we have

min
|�(X1; : : : ; Xk+1)|
|X1| · · · |Xk+1| 6

(n− k)|For(k)|
en−1−k(�2; : : : ; �n)

6max
|�(X1; : : : ; Xk+1)|
|X1| · · · |Xk+1| ;
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where the minimum and the maximum are taken over all vertex partitions (X1; : : : ;
Xk+1) with k + 1 classes.

Proof. Let

ck = min
|�(X1; : : : ; Xk+1)|
|X1| · · · |Xk+1| :

Then we have

ck
∑

|V (T1)| · · · |V (Tk+1)|6
∑

|�(T1; : : : ; Tk+1)|;

where the sum is taken over all spanning forests with k + 1 connected components.
From Lemmas 2.1 and 2.2, we then obtain the result. By similar arguments as above,
we obtain the second inequality.

For a subset X ⊂V (G), let X c denote the complement of X in V (G). For a proper
subset X of V (G), the quantity

|�(X; X c)|
|X ||X c|

is called the edge-density of the edge cut �(X; X c).
It is known [2,6] that the edge-density of any edge-cut is between �2=n and �n=n.

The following result gives an upper bound on the minimal edge-density in terms of
b(G):

Proposition 2.4. Let G be a connected graph of order n. Then

min
{ |�(X; X c)|

|X ||X c|
}
6
b(G)
n
;

where the minimum is taken over all proper subsets of V (G).

Proof. By the matrix-tree theorem [3, Corollary 6.5],

|ForG(1)|= �2 · · · �n
n

and hence the result follows from Theorem 2.3.

Although simple to prove, Proposition 2.4 is fundamental in this note for obtaining
bounds on graph invariants.

Proposition 2.5. Let G be a connected graph of order n with edge connectivity �(G).
Then

�(G)6
nb(G)

4
:
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Proof. From the proof of Theorem 2.3, we see that there exists a spanning forest
(T1; T2) such that

|�(V (T1); V (T2))|
|V (T1)||V (G2)| 6

b(G)
n
:

Since �(G)6|�(V (T1); V (T2))| and |V (T1)||V (T2)|6n2=4, the result follows.

3. Graph invariants and b(G)

The isoperimetric number i(G) of a graph G of order n is de;ned as

i(G)= min
{ |�(X; X c)|

|X | ; X ⊂V (G); 0¡|X |6n
2

}
:

Discrete versions of the Cheeger inequality are known [1,6]. As a straightforward
application of Proposition 2.4 we obtain the following upper bound on i(G).

Theorem 3.1. Let G be a connected graph of order n. Then

i(G)6
n− 1
n

b(G):

Let u and v be vertices of a connected graph G. The distance dG(u; v) between u
and v is the length of the shortest path between u and v in G.
The mean distance �(G) of G is equal to the average of all distances between

distinct vertices of G.

�(G) :=

∑
(u;v)∈

(
V (G)
2

)d(u; v)
(

|V (G)|
2

) :

If G is a tree, by a theorem of B.D. McKay, the mean distance �(G) is equal to
2=b(G) (see [7, Theorem 4.3] for a proof). In [7], some bounds on �(G) are derived.

Lemma 3.2. Let G be a graph of order n. Then

∑
�(T )=

∑ |�(V (T1); V (T2))||V (T1)||V (T2)|( n
2

) ;

where the 7rst sum is taken over all spanning trees T of G, while the second sum is
taken over all spanning forests (T1; T2) of G with two connected components.

Proof. For two vertices u and v of G, take a spanning tree T , and delete one edge
from the u–v path in T . Then we get a spanning forest (T1; T2) of G, and u and v are
contained in distinct partition classes of the vertex partition (V (T1); V (T2)). For given
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vertices u and v, and a spanning tree T , there are dT (u; v) such edges. Conversely, for a
spanning forest (T1; T2) of G, and vertices u and v contained in distinct partition classes
of (V (T1); V (T2)), add one edge in �(V (T1); V (T2)). Then we obtain a spanning tree
of G. For a given spanning forest (T1; T2) we can choose |V (T1)||V (T2)| such vertices
u and v. By the double counting argument, we then obtain the result.

The following theorem gives an upper bound for the mean distance of a connected
graph in terms of b(G).

Theorem 3.3. Let G be a connected graph of order n with m edges. Then

�(G)6
2(m− n+ 2)

b(G)
;

with equality if and only if G is a tree.

Proof. For a spanning forest (T1; T2) of G, since each Ti; i=1; 2, contains |V (Ti)| − 1
edges, G has at least |V (T1)|+ |V (T2)| − 2 + |�(V (T1); V (T2))| edges, and so we have

|�(V (T1); V (T2))|6m− n+ 2:

Then by Lemma 2.2,
∑

|�(V (T1); V (T2))||V (T1)||V (T2)|6(m− n+ 2)en−2(�2; : : : ; �n);

where the sum is taken over all spanning forests (T1; T2) with two connected compo-
nents.
On other hand, since �(T )¿�(G), we have

∑
T∈ForG(1)

�(T )¿�(G)|ForG(1)|:

Therefore, the inequality follows from Lemma 3.2 and the matrix-tree theorem. If G is
a tree, then m−n+2=1, and the equality holds by the theorem of McKay, mentioned
above. Conversely if equality holds, then from the proof, we see that �(G)= �(T ) for
each spanning tree T . This implies that G itself is a tree.

In a connected graph G, we denote by DG(u; v) the length of the longest path between
u and v. Let

�(G) :=

∑
(u;v)∈

(
V (G)
2

)DG(u; v)
(

|V (G)|
2

) :

Proposition 3.4. Let G be a connected graph with edge connectivity �(G). Then

�(G)¿
2�(G)
b(G)

:
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Proof. For each spanning forest (T1; T2) of G; �(G)6|�(V (T1); V (T2))|: Then by sim-
ilar arguments as in the proof of Theorem 3.3, the result follows.

From Proposition 3.4, we obtain information about Laplacian spectra of graphs with-
out long paths.

Corollary 1. Let G be a connected graph without a path of length k(k¿1). Then

b(G)¿
2�(G)
k

:

Proof. This is a direct consequence of Proposition 3.4.

The edge-forwarding index of a graph is a useful notion used in the theory of
communication networks. A routing R is a collection of paths R(u; v), speci;ed for
each ordered pair (u; v) of distinct vertices of G. For each edge e, let �(G; R; e) be the
number of paths in R going through the edge e. Let

�(G; R)= max{�(G; R; e)};

where the maximum is taken over all edges e of G. Then the edge-forwarding index
�(G) of G is de;ned as the minimum of �(G; R) taken over all routings R of G.

Proposition 3.5. Let G be a connected graph of order n. Then

�(G)¿
2n
b(G)

:

Proof. For every proper subset S of V (G), it is known [8, Proposition 3.7] that

�(G)¿
2|S||Sc|
|�(S; Sc)| :

Then the result follows from Proposition 2.4.

De#nition 3.6. A connected graph G is said to be orbital regular if, for some subgroup
H of the automorphism group Aut(G); H satis;es the following two conditions:

(1) H acts regularly on each of its orbits in {(u; v); u; v∈V (G); u �= v}.
(2) E(G)= {{u; v}∈E(G): (u; v)∈ S} for an H -orbit S.

Proposition 3.7. Let G be an orbital regular graph of order n and degree k. Then

�(G)¿
nk

(n− 1)b(G)
:
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Proof. In [9] it is shown that, if G is an orbital regular graph of order n with m edges,

�(G)=
1
m

(
n
2

)
�(G):

From Proposition 3.5, we then obtain the result.

Proposition 3.8. Let G be a Cayley graph of order n. Then

�(G)¿
n

(n− 1)b(G)
:

Proof. By [4, Corollary 110],

�(G)6(n− 1)�(G):

Then the result follows from Proposition 3.5.

Proposition 3.9. Let G be a connected vertex-transitive graph of order n with diam-
eter D. Then

D¿
n

2(n− 1)b(G)
:

Proof. It is known [5, p. 83] that i(G)¿1=2D. Therefore the result follows from
Theorem 3.1.
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