

Discrete Mathematics 257 (2002) 183-189

MATHEMATICS

www.elsevier.com/locate/disc

DISCRETE

Note Laplacian spectra and invariants of graphs

Yasuo Teranishi

Graduate School of Mathematics, Nagoya University, Chikus-Ku, 464-8602, Nagoya, Japan

Received 14 November 2000; received in revised form 24 January 2002; accepted 4 February 2002

Abstract

For a connected graph G of order $n \ge 2$ with positive Laplacian eigenvalues $\lambda_2, \ldots, \lambda_n$, let

 $b(G) = \frac{n-1}{1/\lambda_2 + \dots + 1/\lambda_n}.$

In this note we derive bounds on some graph invariants (edge-density in cuts, isoperimetric number, mean distance, edge-forwarding index, edge connectivity, etc) in terms of b(G). © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Graph spectrum; Graph invariants; Graph Laplacian

1. Introduction

For any graph G with no loops, and no multiple edges, let V = V(G) and E = E(G)be the vertex set and the edge set of G, respectively. Let A(G) be the adjacency matrix of G, and $D(G) = \text{diag}(\text{deg}(v))_{v \in V(G)}$ the degree matrix of G. Then the matrix L(G) = D(G) - A(G) is called the *Laplacian matrix* of the graph G. The *Laplacian eigenvalues* of a graph are defined to be the eigenvalues of its Laplacian matrix. In recent years, the relationships between a graph and its Laplacian eigenvalues have been investigated fruitfully. The Laplacian matrix L(G) is positive semidefinite.

Throughout this note, G denotes a non-trivial graph. For a connected graph G of order n, let

 $0 = \lambda_1 < \lambda_2 \leqslant \cdots \leqslant \lambda_n$

be its Laplacian eigenvalues of G (repeated according to their multiplicities).

E-mail address: teranish@math.nagoya-u.ac.jp (Y. Teranishi).

⁰⁰¹²⁻³⁶⁵X/02/\$ - see front matter O 2002 Elsevier Science B.V. All rights reserved. PII: \$0012-365X(02)00398-9

The second smallest eigenvalue $a(G) = \lambda_2$ is called the *algebraic connectivity* of G. It is well-known that a(G) is related to several important graph invariants. For a connected graph of order n, we define

$$b(G) = \frac{n-1}{1/\lambda_2 + \dots + 1/\lambda_n}$$

In other words, b(G) is the harmonic mean of the n-1 positive Laplacian eigenvalues. In the present note, we shall show that b(G) is also related to some important graph

invariants (edge density in cuts, isoperimetric number, edge-forwarding index, etc).

2. The fundamental inequality

We shall use the symbol $(T_1, ..., T_k)$ to denote the spanning forest of a graph G with connected components $T_1, ..., T_k$, and the set of spanning forests of G with k connected components will be denoted by $For_G(k)$. For a partition $(X_1, ..., X_k)$ of V(G), we denote by $\delta(X_1, ..., X_k)$ the set of edges whose end vertices are in distinct partition classes. In this section we begin with the following:

Lemma 2.1. Let G be a connected graph of order n. then

$$\sum |\delta(V(T_1),\ldots,V(T_{k+1}))| = (n-k)|\operatorname{For}_G(k)|,$$

where the sum is taken over all spanning forests $(T_1, ..., T_{k+1})$ with k + 1 connected components.

Proof. Take a forest $(T_1, \ldots, T_{k+1}) \in \operatorname{For}_G(k+1)$, and add an edge in $\delta(V(T_1), \ldots, V(T_{k+1}))$ to the forest (T_1, \ldots, T_{k+1}) . Then we obtain a forest in $\operatorname{For}_G(k)$. Conversely from a forest $S = (S_1, \ldots, S_k)$ in $\operatorname{For}_G(k)$ remove one edge in S. Then we obtain a forest in $\operatorname{For}_G(k+1)$. Since S contains n-k edges, $\sum |\delta(V(T_1), \ldots, V(T_{k+1}))|$ is equal to $(n-k)|\operatorname{For}_G(k)|$. \Box

Lemma 2.2 (Biggs [3, Theorem 7.5]). Let G be a connected graph of order n with positive Laplacian eigenvalues $\lambda_2, ..., \lambda_n$. Then

$$\sum |V(T_1)| \cdots |V(T_k)| = e_{n-k}(\lambda_2, \dots, \lambda_n), \quad k = 1, 2, \dots, n-1,$$

where the sum is taken over all spanning forests with k connected components, and $e_{n-k}(\lambda_2,...,\lambda_n)$ denotes the elementary symmetric polynomial of degree n - k in $\lambda_2,...,\lambda_n$.

Theorem 2.3. Let G be a connected graph of order n. Then we have

$$\min \frac{|\delta(X_1, \dots, X_{k+1})|}{|X_1| \cdots |X_{k+1}|} \leq \frac{(n-k)|\operatorname{For}(k)|}{e_{n-1-k}(\lambda_2, \dots, \lambda_n)} \leq \max \frac{|\delta(X_1, \dots, X_{k+1})|}{|X_1| \cdots |X_{k+1}|},$$

where the minimum and the maximum are taken over all vertex partitions $(X_1, ..., X_{k+1})$ with k + 1 classes.

Proof. Let

$$c_k = \min \frac{|\delta(X_1, \dots, X_{k+1})|}{|X_1| \cdots |X_{k+1}|}.$$

Then we have

$$c_k \sum |V(T_1)| \cdots |V(T_{k+1})| \leq \sum |\delta(T_1, \ldots, T_{k+1})|,$$

where the sum is taken over all spanning forests with k + 1 connected components. From Lemmas 2.1 and 2.2, we then obtain the result. By similar arguments as above, we obtain the second inequality. \Box

For a subset $X \subset V(G)$, let X^c denote the complement of X in V(G). For a proper subset X of V(G), the quantity

$$\frac{\delta(X, X^{c})|}{|X||X^{c}|}$$

is called the *edge-density* of the edge cut $\delta(X, X^c)$.

It is known [2,6] that the edge-density of any edge-cut is between λ_2/n and λ_n/n . The following result gives an upper bound on the minimal edge-density in terms of b(G):

Proposition 2.4. Let G be a connected graph of order n. Then

$$\min\left\{\frac{|\delta(X,X^{c})|}{|X||X^{c}|}\right\} \leqslant \frac{b(G)}{n},$$

where the minimum is taken over all proper subsets of V(G).

Proof. By the matrix-tree theorem [3, Corollary 6.5],

$$|\operatorname{For}_G(1)| = \frac{\lambda_2 \cdots \lambda_n}{n}$$

and hence the result follows from Theorem 2.3. \Box

Although simple to prove, Proposition 2.4 is fundamental in this note for obtaining bounds on graph invariants.

Proposition 2.5. Let G be a connected graph of order n with edge connectivity $\eta(G)$. Then

$$\eta(G) \leqslant \frac{nb(G)}{4}.$$

Proof. From the proof of Theorem 2.3, we see that there exists a spanning forest (T_1, T_2) such that

$$\frac{\left|\delta(V(T_1), V(T_2))\right|}{\left|V(T_1)\right| \left|V(G_2)\right|} \leqslant \frac{b(G)}{n}$$

Since $\eta(G) \leq |\delta(V(T_1), V(T_2))|$ and $|V(T_1)||V(T_2)| \leq n^2/4$, the result follows. \Box

3. Graph invariants and b(G)

The isoperimetric number i(G) of a graph G of order n is defined as

$$i(G) = \min\left\{\frac{|\delta(X, X^{c})|}{|X|}; X \subset V(G), 0 < |X| \leq \frac{n}{2}\right\}.$$

Discrete versions of the Cheeger inequality are known [1,6]. As a straightforward application of Proposition 2.4 we obtain the following upper bound on i(G).

Theorem 3.1. Let G be a connected graph of order n. Then

$$i(G) \leqslant \frac{n-1}{n} b(G).$$

Let u and v be vertices of a connected graph G. The distance $d_G(u, v)$ between u and v is the length of the shortest path between u and v in G.

The mean distance $\rho(G)$ of G is equal to the average of all distances between distinct vertices of G.

$$\rho(G) := \frac{\sum_{(u,v) \in \binom{V(G)}{2}} d(u,v)}{\binom{|V(G)|}{2}}$$

If G is a tree, by a theorem of B.D. McKay, the mean distance $\rho(G)$ is equal to 2/b(G) (see [7, Theorem 4.3] for a proof). In [7], some bounds on $\rho(G)$ are derived.

Lemma 3.2. Let G be a graph of order n. Then

$$\sum \rho(T) = \frac{\sum |\delta(V(T_1), V(T_2))| |V(T_1)| |V(T_2)|}{\binom{n}{2}},$$

where the first sum is taken over all spanning trees T of G, while the second sum is taken over all spanning forests (T_1, T_2) of G with two connected components.

Proof. For two vertices u and v of G, take a spanning tree T, and delete one edge from the u-v path in T. Then we get a spanning forest (T_1, T_2) of G, and u and v are contained in distinct partition classes of the vertex partition $(V(T_1), V(T_2))$. For given

186

vertices u and v, and a spanning tree T, there are $d_T(u, v)$ such edges. Conversely, for a spanning forest (T_1, T_2) of G, and vertices u and v contained in distinct partition classes of $(V(T_1), V(T_2))$, add one edge in $\delta(V(T_1), V(T_2))$. Then we obtain a spanning tree of G. For a given spanning forest (T_1, T_2) we can choose $|V(T_1)||V(T_2)|$ such vertices u and v. By the double counting argument, we then obtain the result. \Box

The following theorem gives an upper bound for the mean distance of a connected graph in terms of b(G).

Theorem 3.3. Let G be a connected graph of order n with m edges. Then

$$\rho(G) \leqslant \frac{2(m-n+2)}{b(G)},$$

with equality if and only if G is a tree.

Proof. For a spanning forest (T_1, T_2) of G, since each T_i , i = 1, 2, contains $|V(T_i)| - 1$ edges, G has at least $|V(T_1)| + |V(T_2)| - 2 + |\delta(V(T_1), V(T_2))|$ edges, and so we have

 $|\delta(V(T_1), V(T_2))| \leq m - n + 2.$

Then by Lemma 2.2,

$$\sum |\delta(V(T_1), V(T_2))| |V(T_1)| |V(T_2)| \leq (m-n+2)e_{n-2}(\lambda_2, \dots, \lambda_n),$$

where the sum is taken over all spanning forests (T_1, T_2) with two connected components.

On other hand, since $\rho(T) \ge \rho(G)$, we have

$$\sum_{T \in \operatorname{For}_G(1)} \rho(T) \ge \rho(G) |\operatorname{For}_G(1)|$$

Therefore, the inequality follows from Lemma 3.2 and the matrix-tree theorem. If G is a tree, then m-n+2=1, and the equality holds by the theorem of McKay, mentioned above. Conversely if equality holds, then from the proof, we see that $\rho(G) = \rho(T)$ for each spanning tree T. This implies that G itself is a tree. \Box

In a connected graph G, we denote by $D_G(u, v)$ the length of the longest path between u and v. Let

$$\Xi(G) := \frac{\sum_{(u,v) \in \binom{V(G)}{2}} D_G(u,v)}{\binom{|V(G)|}{2}}.$$

Proposition 3.4. Let G be a connected graph with edge connectivity $\eta(G)$. Then

$$\Xi(G) \geqslant \frac{2\eta(G)}{b(G)}.$$

Proof. For each spanning forest (T_1, T_2) of G, $\eta(G) \leq |\delta(V(T_1), V(T_2))|$. Then by similar arguments as in the proof of Theorem 3.3, the result follows. \Box

From Proposition 3.4, we obtain information about Laplacian spectra of graphs without long paths.

Corollary 1. Let G be a connected graph without a path of length $k(k \ge 1)$. Then

$$b(G) \geqslant \frac{2\eta(G)}{k}.$$

188

Proof. This is a direct consequence of Proposition 3.4. \Box

The edge-forwarding index of a graph is a useful notion used in the theory of communication networks. A *routing* R is a collection of paths R(u, v), specified for each ordered pair (u, v) of distinct vertices of G. For each edge e, let $\pi(G, R, e)$ be the number of paths in R going through the edge e. Let

$$\pi(G,R) = \max\{\pi(G,R,e)\},\$$

where the maximum is taken over all edges *e* of *G*. Then the *edge-forwarding index* $\pi(G)$ of *G* is defined as the minimum of $\pi(G, R)$ taken over all routings *R* of *G*.

Proposition 3.5. Let G be a connected graph of order n. Then

$$\pi(G) \geqslant \frac{2n}{b(G)}.$$

Proof. For every proper subset S of V(G), it is known [8, Proposition 3.7] that

$$\pi(G) \ge \frac{2|S||S^{\rm c}|}{|\delta(S,S^{\rm c})|}.$$

Then the result follows from Proposition 2.4.

Definition 3.6. A connected graph G is said to be *orbital regular* if, for some subgroup H of the automorphism group Aut(G), H satisfies the following two conditions:

(1) *H* acts regularly on each of its orbits in {(*u*, *v*); *u*, *v* ∈ *V*(*G*), *u* ≠ *v*}.
(2) *E*(*G*) = {{*u*, *v*} ∈ *E*(*G*): (*u*, *v*) ∈ *S*} for an *H*-orbit *S*.

Proposition 3.7. Let G be an orbital regular graph of order n and degree k. Then

$$\rho(G) \ge \frac{nk}{(n-1)b(G)}.$$

Proof. In [9] it is shown that, if G is an orbital regular graph of order n with m edges,

$$\pi(G) = \frac{1}{m} \binom{n}{2} \rho(G).$$

From Proposition 3.5, we then obtain the result. \Box

Proposition 3.8. Let G be a Cayley graph of order n. Then

$$\rho(G) \ge \frac{n}{(n-1)b(G)}$$

Proof. By [4, Corollary 110],

$$\pi(G) \leq (n-1)\rho(G).$$

Then the result follows from Proposition 3.5. \Box

Proposition 3.9. Let G be a connected vertex-transitive graph of order n with diameter D. Then

$$D \geqslant \frac{n}{2(n-1)b(G)}.$$

Proof. It is known [5, p. 83] that $i(G) \ge 1/2D$. Therefore the result follows from Theorem 3.1. \Box

References

- [1] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986) 83-96.
- [2] N. Alon, V.D. Milman, λ_1 , isoperimetric inequalities for graphs and superconcentrators, J. Combin. Theory Ser. B 38 (1985) 73–88.
- [3] N.L. Biggs, Algebraic Graph Theory, 2nd Edition, Cambridge University Press, Cambridge, 1993.
- [4] M.C. Heydemann, Cayley graphs and intersection networks, in: G. Hahn, G. Sabidussi (Eds.), Graph Symmetry Algebraic Methods and Applications, Kluwer Academic Publishers, Dordrecht, 1997.
- [5] L. Lovász, Combinatorial Problems and Exercises, 2nd Edition, North-Holland, Amsterdam, 1993.
- [6] B. Mohar, Isoperimetric numbers of graphs, J. Combin. Theory Ser. B 47 (1989) 274–291.
- [7] B. Mohar, Eigenvalues, diameter, and mean distance in graphs, Graphs Combin. 7 (1991) 53-64.
- [8] B. Mohar, Laplace eigenvalues of graphs, in: G. Hahn, G. Sabidussi (Eds.), Graph Symmetry Algebraic Methods and Applications, Kluwer Academic Publishers, Dordrecht, 1997.
- [9] P. Solé, The forwarding index of orbital regular graphs, Discrete Math. 130 (1994) 171-176.