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Abstract

In this paper, we establish the existence of four positive periodic solutions for the first order differential
system by using the continuation theorem of coincidence degree theory. When our result is applied to
a competition Lotka—Volterra population model, we obtain the existence of four positive periodic solutions
for this model.
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1. Introduction

In this paper, we consider the following first order differential system:

x'(t) =x(O)Fi(t, x(1), (1)) — h1 (1),

1.1
V() = YO Fa(t, x (1), (1)) — ha(0), (4.1

where h;: R — R™ are continuous w-periodic functions, i = 1,2, with @ > 0, F;: R x R x
R — R are continuous and w-periodic with respect to its first variable, F;(z, x, y) is monoto-
nously decreasing in x for fixed ¢, y and in y for fixed x, ¢, Vx, ¢,y e R, i =1,2.
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When Fi(z, x(2), y(2)) = a1(t) = b1 (t)x () —c1 (1) y(1), Fa(t, x(1), y(t)) = az (1) = ba(t)x (1) —
c2(t)y(t), system (1.1) reduces to the following well-known competition Lotka—Volterra popu-
lation model with stocking:

x(@) =x@)(ar(t) = bi(H)x (@) — c1()y (@) — h1 (1),
y(1) = y()(az2(t) = ba(0)x (1) — c2(1)y (1)) — ha (1),

where a; (1), b (t), c;(t) and h;(¢) are all positive continuous w-periodic functions. On the exis-
tence of positive periodic solutions to system (1.2), few results are found in the literature. This
motivates us investigate the existence of a positive periodic solution or multiple positive periodic
solutions for system (1.1) and (1.2). Recently, the powerful and effective method of coincidence
degree has been applied to study the existence of periodic solutions in periodic equations or sys-
tems and a number of good results have been obtained, for example, see Zhang and Wang [1-4]
and Li [5]. However, the existence results of multiple periodic solutions established by using
coincidence degree theory for periodic systems or equations are very scarce. So, in this paper,
our purpose is to study the existence of multiple periodic solutions to system (1.1) by apply-
ing the method of coincidence degree theory. The paper is organized as follows. In Section 2,
by employing the continuation theorem of coincidence degree theory, we establish a sufficient
condition for the existence of four positive periodic solutions of system (1.1). In Section 3, we
illustrate our result with a competition Lotka—Volterra population model.

(1.2)

2. Existence of four positive periodic solutions

For the readers’ convenience, we first summarize a few concepts from the book by Gaines and
Mawhin.

Let X and Z be normed vector spaces. Let L:Dom C X — Z be a linear mapping and
N :X — Z be a continuous mapping. The mapping L will be called a Fredholm mapping of
index zero if dimKer L = codimIm L < oo and Im L is closed in Z. If L is a Fredholm map-
ping of index zero, then there exist continuous projectors P:X — X and Q:Z — Z such that
Im P =KerL and Im L = Ker Q =Im(/ — Q). It follows that L|pom nkerp : (I — P)X — ImL
is invertible and its inverse is denoted by K p. If £2 is a bounded open subset of X, the mapping
N is called L-compact on £2, if QN (£2) is bounded and Kp(I — Q)N : 2 — X is compact.
Because Im Q is isomorphic to Ker L, there exists an isomorphism J :Im Q — Ker L.

In the proof of our existence result, we need the following continuation theorem.

Theorem 2.1 (Continuation Theorem, Gaines and Mawhin [6]). Let L be a Fredholm mapping
of index zero and let N be L-compact on S2. Suppose

(a) for each A € (0, 1), every solution x of Lx = ANx is such that x ¢ 0§2;
(b) ONx #0 foreach x € 32 NKer L;
(c) deg{/JONx,2NKerL,0} #0.

Then the equation Lx = Nx has at least one solution lying in Dom L N £2.

For the sake of convenience, we introduce some notations as follows:

/f(t)dt,
0

el=

a{”: max Fi(t,0,0), aé”: max F»(t,0,0), f:
te[0,w] te[0,w]
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I : M
= min f(¢), = max f(1),
f te[0,w] f( ) f te[0,w] f( )
here f is a continuous w-periodic function.
Theorem 2.2. Assume that the following conditions hold:

(1) there exists a constant A such that when x > A,
Fi(t,e",0) <0, VieR;

(ii) there exists a constant C such that when x > C,
Fy(1,0,¢%) <0, VieR;

(111) the’e exist two pOSlllve constants l_ < l+ Wllh l_ > h (JM, A > 1Ill+, Such lhal or vVt € 1{
1 1
a’ld ]11 l_ < X g ln l+,

exFl(t,ex, ec) > h().

(iv) there exist two positive constants u_ < uy with lnuy < C, u_ > hlz/aéw, such that for
Vte RandInu_ <x <lnuy,

eng(t, el ex) > ho(1).
Then system (1.1) has at least four different positive w-periodic solutions.

Proof. Since we are concerned with positive periodic solutions of system (1.1), we make the
change of variables

x(@0) =exp(u1 (1), y(t) =exp(ua(0)). @.1)

Then system (1.1) is rewritten as

{ uj ()= Fi(t, e, e20) — hy(t)e 1O, o)
uhy(t) = Fa(t, 1 ®, e"21) — hy(r)e™2®.
Let

X=Z={u= @i u)" €C(R,R*): ult +w) =u()}
and define

2

llull = ;tg[l&)é)]|u,~(t) , ueXorZ.

Equipped with the above norm ||.||, X and Z are Banach spaces.
Let

Fi(t, 1@ e20y _ by (1)e~1()
Nu = |:

Fa(t, e"1® 20y _ s (r)e~ 42"

Lu=u =20 pyu=L1 [ u@r)dr, ueX, Qz=1 [z(t)dt, z € Z. Thus it follows that
KerL = R?,ImL = {z € Z: fowz(t) dt =0} is closed in Z, dimKer L =2 = codimIm L, and

P, Q are continuous projectors such that

ImP =KerlL, KerQ=ImL =Im(/ — Q).

], uelX,
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Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse (to L)
K, :ImL — Ker P NDom L is given by

1 w t

K,,(z)z/z(s)ds— éffz(s)dsdt.
0 00
Then
LrGis)d
ONu = [?fow ) S:|
= Jo Ga(s)ds
and
T [fé Gi(s)ds — %fOZfoi Gi(s)dsdt + (% — g)f(): Gl(s)ds} |
Jo G2(s)ds — = [V [y Ga()dsdt + (5 — L) [7 Ga(s)ds
where

Gi(s)=F; (s’ eul(s)’ euz(s)) _ h](S)e_Ml(S),
Go(s) = Fz(s, ) euz(s)) — hy(s)e "2,

Obviously, ON and K ,(I — Q)N are continuous. It is not difficult to show that K ,,( — O)N(2)
is compact for any open bounded set £2 C X by using the Arzela—Ascoli theorem. Moreover,
QN () is clearly bounded. Thus, N is L-compact on £2 with any open bounded set 2 C X.

In order to use Theorem 2.1, we have to find at least four appropriate open bounded subsets
in X. Considering the operator equation Lx = ANx, A € (0, 1), we have

:u’l (l) — )L(F] (t, eul(l)’ euz(l)) _ hl(t)e_“](’)),

23)
(1) = A(Fa(t, €1V, D) — hy(1)e™20).

Suppose that u € X is a solution of system (2.3) for some A € (0, 1). Then there exist &;, n; €
[0, w] such that

u;(§)= max u;(t), wu;(n;)= min u;(t), i=12.
tel0,w] te[0,0]

It is clear that u} (&) =0, u;(n;) =0, i =1, 2. From this and (2.3), we obtain

Fi(81,e" 0, e 60) =y (g)e™ ), 2.4
! Fy (g2, ¢"1 ), e"2)) = ha ()™ @.5)
and
{ Fi(n, e e 2010) = py ()e 101, (2.6)
Fa(n2, €102, €"201) = hy ()22 2.7
(2.4) gives

Fi(&1,¢4V,0) > 0,
which, together with condition (i) in Theorem 2.2, implies that

ui(§1) < A. (2.8)
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(2.6) gives
Fi(n1,0,0) > hy(np)e 10,
that is,
! I
ui(n1) >lnm >lnﬁ,

(2.5) implies that
F(&.,0, euz(sz>) 0.

from which, together with condition (ii), we have
uz(§2) < C.

(2.7) gives
F>(12,0,0) > ha(np)e 27,

that is,
I

]

us(m) > In m >1n j
From (2.4), we have

eV Fy (€1, 1V, 2 E0) = hy (),
which, together with (2.10), implies that

EVF (5,16 eC) < hy (&)
From this and condition (iii), we have

u1(€1) <Ilnl_ or wuy(§1) > Inl;.
Similarly, from (2.6), we have

ur(m)>Inly or wui(n) <Inl_.
From (2.5), we obtain

26 Py (g, €1, £2®)) = Iy (&),
which, together with (2.8), implies that

e Fy (&g, ", 2 ®)) < (&)
From this and condition (iv), it follows that

ur(&) >Inuy or wuy(&) <lnu_.
Similarly, from (2.7), we obtain

ury(m2) >Inuy or wuy(m) <lnu_.

From (2.8), (2.9), (2.12) and (2.13), we obtain for V¢ € [0, w],

!

s
M

aj

In <ui(®)<Ilnl_ or Inly <uj(t)<A.

127

(2.9)

(2.10)

@2.11)

2.12)

(2.13)

(2.14)

2.15)

(2.16)
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From (2.10), (2.11), (2.14) and (2.15), we obtain for Vz € [0, w],
1

h
In—2 <us(t) <lnu_ or Inuy <us(r) <C. (2.17)

a,

Obviously, Inly, Inu, ln , A and C are independent of A. Now let

|, - Ty al )
21 =3u=(u,ur)" € X: ui(t) € ln—M,lnl_ , ur(t) € ln—M,lnu_ ,

a; a,

hl

2 =3{u= (ul,ug)T eX:ui(t)e (ln—&,lnl), us(t) € (lnu+,C)},
a
1

hl
23={u= (i, u)’ € X: u1(t) € (Inly, A), uz(t)e<ln lnu)}
az

24 ={u=(ur,u2)" € X: uy(t) € (Inly, A), us(r) € (Inuy, C)}.

Then 2; (i =1,2,3,4) are bounded open subsets of X, £, N2; =0,i#j,i,j=1,2,3,4.
Thus £2; (i =1, 2, 3, 4) satisfies the requirement (a) in Theorem 2.1.

Now, we prove that (b) of Theorem 2.1 holds, i.e., we prove that when u € 0§2; N Ker L =
32, "R, ONu # (0,0)T (i =1,2,3,4). If it is not true, then for some u € 9£2; N R?, we have

» »
/Fl(t,e”‘,uuz)dt=/h1(t)dte_”1,
0 0
w a)
/Fz(t,e‘”,u’“)dt:/hz(t)dte*”z.
0 0

Thus there exist two points #; (i = 1,2) such that
F](l‘],eu',euz)=h1(l1)e_ul, (2.18)
Fz(tz, el euz) =hy(tr)e 2. (2.19)
Following the arguments of (2.8)—(2.15), we obtain

l
1

ln—M<u1<A, uy>Inly or wup<lInl_,
a

1

hl
ln—AZ/[<u2<C, up>Inuy or wuy<Inu_.
a

2

[
Then ln M <uy <Inl_, Inly <u; <A, 1n M <up <Ilnu_, Inuy <uy; < C. Hence u €

21NR*oruecs2yNR*>oruec23NR>oru e £24 N R?. This proves that (b) in Theorem 2.1
holds.
Finally, we show that (c) in Theorem 2.1 holds. We classify our proof into two steps.



Z. Zhang, H. Tang / J. Math. Anal. Appl. 332 (2007) 123-136 129

Step 1. We show that fori =1, 2, 3, 4,

deg{J QONu, 2 NKer L, (0,0)"}
= deg{(Fy (11, €", €"2) — hy(t1)e ™, Fy(1, "1, ") — hz(tz)e_uz)T,
£2; NKerL, (0, o)T}
= degf (a1 — bre" —c1e" — hie ™, ay — bae"! — c2¢" — hpe ™)',
2; NKerL, (0,0)"},

where a;, b;, ¢;, h; are constants defined below. To this end, we define ¢;:KerL x [0, 1] > X
by

¢1(M1,u2,m)=u1<

ay —bie't —cie*2 — hje ™™t
ar — bye''l — cpret? — hze_’”)

Fi(rr, €', e"?) — hy (e !
F(tp, e, e"?) — hz(tz)e_”2>

+(1—M1)<

where 1 € [0, 1] is a parameter, a;, b;, c;, h; (i = 1,2) are some chosen positive constants such
that

nth
A>lnﬂ, C>1na—2, —L —1,
by 2 a{” ai
a; —cre€ + \/(al —c1€€)2 —4b1hy
l+ < B
2b;
/ a1—c1ec—\/(a1 — 162 —4b1hy
_> ,
2b;
L h
el
Cl2 aj
ay — bye +/(ar — bre)? — dbycr
uy < )
2co
- (a2 — bre?)? — /(az — bre?)? — 4bycy
_ 20 .

When (ul,uz)T €02; NKerL =0982; N R%, i =1,2,3,4, u is a constant vector in R? with
u € 352;. We will show that when u € 382; N R?, ¢1(uy, us, 1) # (0,0)7. If the conclusion is
not true, i.e., some constant vector u in R? with u € 9£2; satisfies o1 (uy,up, ) = (0, 0)7, then
we have

1(ay — b1e"t —c1e"? — hje ™™
m

+ (= pn)(Fi(n, e, e?) —hi(te ™) =0, (2.20)
pi(az — be"t — c2e"> — hye ™)
+ (1= u)(Fa(t2, €1, €"2) — ha(t2)e™?) =0. (2.21)

Claim 1. u; < A.
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Otherwise, u1 > A, from (i) of Theorem 2.2, we have

(I —p)(Fi(t, e, e") —hi(t)e ™) + pi(ar — bre"t —cre"> —hje ™)
< =p)(Fi(n,e",0) —hi(t)e™) + pi(ar — b —hie™)
<(I=p)(=hie ™) + pi(ar — bre')
<0.

Hence Claim 1 holds.

. it
Claim 2. u; > In a—,‘;
1
!

. h
Otherwise, u; <In a—,\y then
1

(1= ) (Fi(n, e, ) —hi(t)e ™) + i (ay — bre"t —cre> —hje™)
< (1= p)(Fi(11,0,0) = he™) + py (ar — hye 1)
< —p)(a —me™) +pi(ay —hie ™)
<0.
Hence Claim 2 holds.

Claim 3. u; < C.

Otherwise, up > C, from (ii) in Theorem 2.2, we have

(1= pu)(F2(r2, €1, €"?) — ha(t2)e™2) + pi (a2 — bae"' — 2" — hoe™"?)
< (1= p1)(F2(12,0,€") — ha(r2)e™2) + i (a2 — c2¢™?)
<0.

Hence Claim 3 holds.

. it
Claim 4. u; > In a—f,,
2

. !
Otherwise, uy < In a_f‘24 Then
2

(1= u)(Fa(t2, €', €") — ho(12)e™?) + i (a2 — bae"' — 26" — hpe ™)
< (1= ) (F1(t2,0,0) — hhe™2) + i (az — hae ™)
<(- Ml)(aéw - hlze_'”) + wi(az — hae™?)
< 0.
Hence Claim 4 holds.

Claim 5. u| > Inly oru; <Inl_.
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Otherwise, In/_ < uj < Inly, from (iii) in Theorem 2.2, we obtain

(L= ) (Fi(n, e, ) —hi(t)e ™) + wi(ay — bre"' —cre*> —hje ™)
>(1— ,ul)(Fl(tl,e”‘,ec) —hlle_”]) +M1(al —bie"t —cre — hle_”')
>(1— /Ll)(Fl(tl, e”‘,ec) — hl(tl)eﬂ”) — e (b1e2”‘ +hi +cre€et —ale”‘)
> 0.
Hence Claim 5 holds.

Claim 6. uy > Inuy oruy <Inu_.

Otherwise, Inu_ < uy <Inuy. Then from (iv) in Theorem 2.2, we have

1- Ml)(Fz(tz, e, e“z) - hz(tz)e_uz) + (az — byl — cpe'? — hze_uz)
>(1— ,u,l)(Fz(tz, el e”z) — hz(tz)e_’”) + (a2 — by — cyet2 — hze_’”)
> —pe 2 (czez"2 —aye" +hy + bzeAeuz)
> 0.

Hence Claim 6 holds.

From above claims, we have
I

ln—Al/[<u1<A, up>Inly or wup<lnl_,

a;
hl
ln—Az/I<u2<C, up>Inuy or wuy<lnu_.

a
Therefore
ue.QlﬂRz or ue.QzﬂRz or ue.QgﬂRz or ue.Q4ﬂR2.

This contradicts u € 9§2; N R2, i = 1,2, 3, 4. By topological degree theory and taking J = I
since Ker L =Im Q, we have fori =1, 2, 3, 4,

deg{JONu, 2; NKerL, (0,0)"}
= deg {1 (u1,u2,0), 2; NKer L, (0,07}
= deg {1 (u1,u2, 1), 2; NKer L, (0,007}
=deg{ (a1 —b1e"" —c1€"? —hie™", ay — bre"! — c2e"* — hpe™"?),

2; NKerL, (0,0)"}. (2.22)

Step 2. We show that fori =1, 2,3, 4,
deg{(m —bie"' —c1e"? —hie ™, ay — bye"! — cpe? — hze_“z)T, £2; NKerL, (0, O)T}
— deg{(a1 — bre" —hie™,az — c2¢" —hae )", 2; NKer L, (0,0)}.
To this end, we define a mapping ¢, : Ker L x [0, 1] = X by
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ay — bie"t — pocre?r — hje !
ay — woabret!t — cre?2 — hje 2 ’

¢2(u1,uz,m)=(

where uj € [0, 1] is a parameter. When u € 062; NKer L =0£2; N RZ, u is a constant vector in
R? withu € 082;,i=1,2,3,4. We prove that when u € 9§2; N Ker L, ¢ (uy, uz, i2) # (0, O)T.
If it is not true, then some constant vector 1 with u € 952; satisfies

a; —bre"! —ciupe"r —hje " =0, (2.23)
ap — upbrett — cpet?r — hpe ™2 =0. (2.24)
(2.23) implies

bie"! <ay, hie ™ <ay,
that is,
h Rt
u1<1na—1<A, u1>1n—1>ln—A1/[. (2.25)
by ay aj
(2.24) implies that
ce"? < ap, hae ™2 < ap,
that is,
ar hz hlz
ur <In— < C, up >In— >1In—=. (2.26)
C2 a2 a2
(2.23) gives
0=b1€2u1 — (al — %>€ul +hy,
2
that is,
ay — % +\/(611 - %)2 —4b1hy
In In/ 2.27
up > b, >Inly (2.27)
or
a1 — 42— far — 942)2 — dbih,
up <In <Inl_. (2.28)

(2.24) gives

bya;
0=c2e™2 + hy — are™ + uobre™' ™2 < cre®*2 4 hy — <a2 — = )e*2,

by
that is,
ay = B4 4 Jar — B8)2 — deahs
ur >1In > >Inuy (2.29)
)
or
a — bf% - \/(az - b,z%)z —4cohy
ur <lIn <Inu_. (2.30)

2co
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From (2.25)—(2.30), we obtain

h
1n—1<u1<lnl_ or lnl+<u1<lna—l,
aj bl

ha az
In—<uy <lnu_ or Inuy <uy<In—.
az 2

Hence u € 21N R%oru € 2, N R? or u € 23N R? or u € 24 N R2. This contradicts the fact that
ueos2; N R%i=1,2,3,4. According to topological degree theory, we have fori = 1,2, 3, 4,

deg{(ar — bre"! —c1e" —h1e™, ay — bre"! — c2e"> —hae™2)", 2 NKer L, (0,0)"}
= deg{¢o(u1,u2, 1), 2; NKer L, (0,0)"}
= deg{¢2(u1, u2,0), 2 NKerL, (0,0}
= deg{(ar —b1e" —hie™,ay — c2¢"> —hae )", 2 NKer L, (0,07}, (2.31)
From (2.22) and (2.31), we have
deg{JONu, 2; NKerL, (0,0)"}
=deg{(a1 — b1 —h1e™"", ay — cre" — hze_“z)T, £2; NKerL, (0, O)T}.
Note that the system of algebraic equations:
a; —bie* —hje " =0,
ap —cre’ —hye ™ =0

has four distinct solutions

ay +./a? —4bihy  ay+ /a3 —4dcrhy
() =(In : In 2
L 2b, ’ 2¢» :
a1+,/a2—4b1h1 ay — a2—4c2h2
(3. ¥3)=(In ! In 2
2072 2b, ’ 2¢» ’
(X* *)_ lnal—,/a%—4b1h1 lna2+,/a§—4czh2
3:93) = 20, ’ 26 ’
aj ay —4bih ar — Ja? — dearhy
(x5 i) =(In ! In 2
4274 2b, ’ 2¢;

It is easy to verify that

ai +/a? —4byh, ar

<ln— <A,

In/y <1In

2b; by
hll al—,/alz—4b1h1
ln—M <In <Inl_,
aj 2b;
ay + a2—4c2h2
Inuy <lIn 2 <ln%<C,

2¢o )



134 Z. Zhang, H. Tang / J. Math. Anal. Appl. 332 (2007) 123-136

hlz ar — /a% —4crhy

In—= <In
a)t 2¢)

<Ilnu_.

Therefore

(67 )7) € $24, (x3.y3) € €23, (x5, %) € $22, (xi.vi) € 821
A direct computation gives fori =1, 2, 3, 4,

deg{JQONu, 2; NKerL, (0,0)"}
—byx*+ 1 0

=sign I

¥

1
=sien| < [biea(x) (07 = b (v7)? = hica(s?) + ko] |

—C2y* +

where (x*, y*) = (€, e¥). Since
b](x*)zzalx* —hi, Cz(y*)zzazy*_h%
then
deg{JONu, 2; NKerL, (0,0)"}
=sign[(a1x* — h1)(a2y™ — ha) — ha(a1x* — h1) — hi(a2y™ — ha) + hihs]
=sign[(a1x* — 2h)(az2y™ — 2h2)].

where (x*, y*) = (e , e¥7).
Thus

deg{JQNu, 24NKerL, (0,0)"}

. {[Cll(a1+\/a12—4b1h1) Zh][az(a2+\/a§—402h2) 2h“
=sign — 2 2

2bq 2¢

= 1’
deg{JQNu, 23 NKerL, (0,0)"}

. ”al(a1+,/a12—4b1h1) Zh}[az(az—\/ag—%zhz) Zh:“
=sign —zh —<n2

2b, 2c2

=1,
deg{JQNu, 2, NKerL, (0,0)"}

. {[al(al—,/alz—%lhl) 2h:||:a2(a2+,/a§—4czh2) Zh:“
=sign — 2 2

2b1 2C2
=1,
deg{JQNu, 2y NKerL, (0,0)"}

. {[611(01—\/a12—4b1h1) 2h]|:az(a2—\/a§—462h2) Zh:“
=sign —2h 2

2b; 2¢)

=1
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So far, we have proved that £2; (i =1, 2, 3,4) satisfies all assumptions in Theorem 2.1. Hence,
system (2.2) has at least four w-periodic solutions. Thus by (2.1) system (1.1) has at least four
different positive w-periodic solutions. This completes the proof of Theorem 2.2. 0O

3. An example

Consider the following competition Lotka—Volterra population model with stocking:

x'(0) = x(@)(ar (1) — bi(Dx () — c1 (D) (1)) — hyi (1),
Y (1) =y (@) (ax(t) — ba(t)x(t) — c2()y(1)) — ha (1),

where x(¢) and y(¢) denote the densities of two competition species, a;(t), b;(t), ci(t), h;i(t)
(i =1, 2) are all positive continuous w-periodic functions.
In Theorem 2.2, F1 (t,e*,e’)=a1(t) —b1(®)e* —c1(t)e’, Fa(t,e*,e¥) =ar(t) — bz(t)ex -

) M def . al def
cr(t)e? . Ifx >1n2- = A, then Fi(t,e*,0)<0,Vt e R;ifx > In2- = C, then Fx(1, 0, ¢¥) <
1

2
Let

(3.1)

ai—c1 e :I:\/(a —cMeC)2 4thM
26}

I+ =

’

dy— bYA= [ (ah — bl eh) — 4c
UL+ = .
* 26%’1

all>cle +2,/thM and aé>b§/leA+2,/cMhM,

then when In/_ < x <Inl;,

If

e Fi(t,e*,eC) = hi (1),
and when Inu_ <x <Ilnu,,

esz(t, el ex) > ha(1).

Therefore the conditions in Theorem 2.2 are satisfied. Thus we get the following theorem.

Theorem 3.1. If

all>c1 +2,/thM and aé>b§/le‘4+2,/c§’lh§/[,

then system (3.1) has at least four different positive w-periodic solutions.
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