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Abstract

The Hilbert functions and the regularity of the graded components of local cohomology of a bi-
graded algebra are considered. Explicit bounds for these invariants are obtained for bigraded hyper-
surface rings.
© 2005 Elsevier Inc. All rights reserved.

Introduction

In this paper we study algebraic properties of the graded components of local coho-
mology of a bigraded K -algebra. Let Py be a Noetherian ring, P = Py[y1, ..., y] be the
polynomial ring over Py with the standard grading and Py = (yy, ..., y,) the irrelevant
graded ideal of P. Then for any finitely generated graded P-module M, the local coho-
mology modules H A (M) are naturally graded P-modules and each graded component
H }JJr (M); is a finitely generated Pp-module. In case Py = K[x1, ..., x;] is a polynomial
ring, the K-algebra P is naturally bigraded with degx; = (1,0) and degy; = (0, 1). In
this situation, if M is a finitely generated bigraded P-module, then each of the modules
H ;3+ (M); is a finitely generated graded Py-module.
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We are interested in the Hilbert functions and the Castelnuovo—Mumford regularity of
these modules.

In Section 1 we introduce the basic facts concerning graded and bigraded local coho-
mology and give a description of the local cohomology of a graded (bigraded) P-module
from its graded (bigraded) P-resolution.

In Section 2 we use a result of Gruson, Lazarsfeld and Peskine on the regularity of
reduced curves, in order to show that the regularity of H ;’+ (M); as a function in j is
bounded provided that dimp, M /P M < 1.

The rest of the paper is devoted to study of the local cohomology of a hypersurface ring
R = P/f P where f € P is a bihomogeneous polynomial.

In Section 3 we prove that the Hilbert function of the top local cohomology H 1’?,+ (R); is
a nonincreasing function in j. If moreover, the ideal I (/) generated by all coefficients of f
is m-primary where m is the graded maximal ideal of Py, then by a result of Katzman and
Sharp the Pyp-module H}, i (R) j is of finite length. In particular, in this case the regularity
of Hp, P, (R);isalsoa nomncreasmg function in j. ‘

In the following section we compute the regularity of H},+ (R); for a special class of
hypersurfaces. For the computation we use in an essential way a result of Stanley and
Watanabe. They showed that a monomial complete intersection has the strong Lefschetz
property. Stanley used the hard Lefschetz theorem, while Watanabe representation theory
of Lie algebras to prove this result. Using these facts the regularity and the Hilbert function
of H’ (P/fk P); can be computed explicitly. Here r e Nand f;, = >/, Aixiy; with
A € K As a consequence we are able to show that Hp,~ P, (P /f" P) has alinear resolution
and its Betti numbers can be computed. We use these results in the last section to show that
for any bigraded hypersurface ring R = P/f P for which I (f) is m-primary, the regularity
of H;,+ (R); is linearly bounded in j.

1. Basic facts about graded and bigraded local cohomology

Let Py be a Noetherian ring, and let P = Py[yy, ..., y»] be the polynomial ring over
Py in the variables yq, ..., y,. We let P; = ®Ib|:j Pyy” where y? = yi" ...y,ll’” for b =
(1, ..., by), and where |b| =), b;. Then P is a standard graded Py-algebra and Pjisa
free Py-module of rank (" :i Il)

In most cases we assume that Py is either a local ring with residue class field K, or
Po= K]|x1,...,xy] is the polynomial ring over the field K in the variables xp, ..., x;,.

We always assume that all P-modules considered here are finitely generated and graded.
In case that Py is a polynomial ring, then P itself is bigraded, if we assign to each x;
the bidegree (1, 0) and to each y; the bidegree (0, 1). In this case we assume that all P-
modules are even bigraded. Observe that if M is bigraded, and if we set

M; =P M,
i

Then M = P jM; is a graded P-module and each graded component M; is a finitely
generated graded Pyp-module, with grading (M;); = M(; j) foralli and j.
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Now let S = K[y1,...,¥n]. Then P = Py ®k K[y1,...,yn]l = Py ®k S. Let Py :=
PD j=0Pj be the irrelevant graded ideal of the Py-algebra P.

Next we want to compute the graded P-modules H ;°+ (P). Observe that there are iso-
morphisms of graded R-modules

H}, (P)Z lim Exty, (P/(Py), P)

k=0
=i 1_H>1EXtPO®KS(PO ®k S/, Po®k S)
k=0
= Py ® lim Ext), (S/(»)*. S)
k=0

= Py ®k H(ly)(S).
Since H§+ (S) =0fori #n, we get

i _ Po®kH)(S) fori =n,
HP+(P)_{0 fori #n.

Let M be a graded S-module. We write MY = Homg (M, K) and consider M a graded
S-module as follows: for ¢ € MY and f € S we let f¢ be the element in M" with

fo(m)=¢(fm) forallme M,
and define the grading by setting (M) ; := Homg (M_;, K) for all j € Z.

Let wg be the canonical module of S. Note that wg = S(—n), since § is a polynomial
ring in n indeterminates. By the graded version of the local duality theorem, see [1, Ex-
ample 13.4.6] we have H" ($)Y = S(—n) and H§+ (S) =0 for i # n. Applying again the
functor (_)Y we obtain

Hg, (S) =Homg (S(=n), K) =Homg (S, K)(n).
We can thus conclude that

H§’+(S)j = Homy (S, K),4+; =Homg (S_,_;, K) forall j € Z.

Let §; = P, —; Ky*. Then

Homk (S_u—j. K)= (P Kz,

lal=—n—j

where z € Homg (S—;,— j, K) is the K-linear map with

arby |40, ifb<a
Z(y)_{o, ifb £ a.
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Here we write b < a if b; < ag; fori =1, ..., n. Therefore H§’+(S)j = @lal:,n,j Kz%,
and this implies that

Hp (P);j=Po®k H}\(S)j= @B Poz*. (1)

lal=—n—j

Hence we see that H 1’§+ (P); is free Py-module of rank (;’_ ]1) Moreover, if Py is graded

Hp, (P).j) = @ (Po)iz’ = @ Kx“zb.
(bl=—n—j e
—

The next theorem describes how the local cohomology of a graded P-module can be
computed from its graded free P-resolution.

Theorem 1.1. Let M be a finitely generated graded P-module. Let F be a graded free
P-resolution of M. Then we have graded isomorphisms

H;;j (M) = H;(Hp_(F)).
Proof. Let
F:---—> Fh,—> F — Fy— 0.
Applying the functor H I”,+ to IF', we obtain the complex
H;i+(]F) D> H}§+(F2) — H;’,+(F1) — H;’,+(Fo) — 0.
We see that
Hp, (M) = Coker(Hﬁ+(F1) — H;’,+(F0)) = HO(H;:+ ),

since H ;’+(N ) =0 for each i > n and all finitely generated P-modules N.
We define the functors:

F(M):=Hp (M) and Fi(M):= H,’lj (M).

The functors F; are additive, covariant and strongly connected, i.e., for each short exact
sequence 0 — U — V — W — 0 one has the long exact sequence

0+ = F(U) > Fi(V) = Fs(W) = Fra(U) = - — Fo(V) = Fo(W) = 0.

Moreover, o = F and F;(F) = Hf,;"(F) =0 for all i > 0 and all free P-modules F.
Therefore, the theorem follows from the dual version of [1, Theorem 1.3.5]. O



A. Rahimi / Journal of Algebra 302 (2006) 313-339 317

Note that if M is a finitely generated bigraded P-module. Then H ;i+ (M) with natural
grading is also a finitely generated bigraded P-module, and hence in Theorem 1.1 we have
bigraded isomorphisms

Hp ' (M) = H (H;’,+ ).
2. Regularity of the graded components of local cohomology for modules

of small dimension

Let Pp = K[x1,...,xp], and M be a finitely generated graded Pp-module. By Hilbert’s
syzygy theorem, M has a graded free resolution over Py of the form

O—-Fr—>--—F—>F—>M-—0,

where F; = EBt;:l Py(—a;j) for some integers a;;. Then the Castelnuovo-Mumford regu-
larity reg(M) of M is the nonnegative integer

reg M < max{a;; —i}
ij

with equality holding if the resolution is minimal. If M is an Artinian graded Pp-module,
then

reg(M) =max{j: M; #0}.
We also use the following characterization of regularity
reg(M) = min{u: M, has a linear resolution}.

Let M be a finitely generated bigraded P-module, thus H A (M) is a finitely generated
graded Pp-module. Let f; 3 be the numerical function given by

fim(j) =reg Hp (M);

for all j. In this section we show that f; py is bounded provided that M/P,M has
Krull dimension < 1. There are some explicit examples which show that the condition
dimp, M /P M < 1 is indispensable. We postpone the example to Section 4. First one has
the following

Lemma 2.1. Let M be a finitely generated graded P-module. Then
dimp, M; <dimp, M/P M  foralli.

Proof. Let r = min{j: M; # 0}. We prove the lemma by inductionon i > r. Leti =r.
Note that
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M/PM=M,&M,,1/PIM,PD---.
It follows that M, is a direct summand of the Pyp-module M /P M, so that dimp, M, <
dimp, M /P M. We now assume that i > r and dimp, M; < dimp, M/P, M, for j =

r,...,i —1. We will show that dimp, M; < dimp, M /P M. We consider the exact se-
quence of Py-modules

0— PAM;_i+-+ P_ M, — M; % (M/P. M); — 0.

By the induction hypothesis, one easily deduces that
i—r
dimpO Z PjMifj < dilrlpO M/P+M,
j=1
and since (M/PyM); is a direct summand of M/PyM it also has dimension <
dimp, M/ Py M. Therefore, by the above exact sequence, dimM; < dimp, M/Py M,
too. O

The following lemma is needed for the proof of the next proposition.

Lemma 2.2. Let M be a finitely generated graded P-module. Then there exists an integer
io such that

Annp, M; = Annp, M; 1 foralli > io.

Proof. Since P1M; C M,y for all i and M is a finitely generated P-module, there ex-
ists an integer ¢ such that PiM; = M;; for all i > ¢. This implies that Annp, M; C
Annp, M;41 € ---. Since Py is Noetherian, there exists an integer k such that Annp, M,y =
Annp, M; foralli >t +k=ip. O
Proposition 2.3. Let M be a finitely generated graded P-module. Then

dimp, Hp, (M); <dimp, M; foralli and j > 0.
Proof. Let P+ = (y1,..., yu). Then by [1, Theorem 5.1.19] we have

Hj,, (M)= H'(C(M)) foralli >0,

where C(M)* denote the (extended) Cech complex of M with respectto yi, ..., y, defined
as follows:

CM):0—>CM°’—>CM)! - ... > CM)" =0
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with

cam'= P My .y,

1<iy <-<i; <n
and where the differentiation C(M)" — C(M)'*! is given on the component
My, .y, = Myjl~'-yj,+1
to be the homomorphism
(_l)s_lnat:Myilmyi, = (My, .yi)yj»
if {iy,...,i;} = {jl,...,fs,...,j,H} and O otherwise. We set 7 = {iy,...,i;} and y7 =

Yiy -+ . Vi, For m/y% € My,, m homogeneous, we set deg m/y% =degm — deg y%. Then
we can define a grading on M, by setting

(My,); = {m/y5 € My,: degm/ys = j} forall j.
In view of Lemma 2.2 there exists an ideal / € Py and an integer jp such that

Annp, M; =1 for all j > jo. We now claim that I € Annp,(M,,); for all j > jo. Let
aclandm/ y% € (My;); for some integer k. We may choose an integer / such that

degm + degle = degmylZ =12 jo.
Thus am/y% = amle/y?“l =0, because my[I € M;. Thus we have
dimPo(MyI)j = dimpo Po/Ann(MyI)j < dimpo P()/I = dimpo Mj.

Since H ;’+ (M) is a subquotient of the jth graded component of C (M )i, the desired result
follows. O

Now we can state the main result of this section as follows.
Theorem 2.4. Let M be a finitely generated bigraded P-module such that
dimpy M/PL M < 1.
Then for all i the functions f; p(j) =reg H;,Jr (M) are bounded.
In a first step we prove the following
Proposition 2.5. Let M be a finitely generated bigraded P-module with
dimp, M/ P, M < 1.

Then the function f, m(j) =reg H ;l,+ (M) is bounded above.
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Proof. By the bigraded version of Hilbert’s syzygy theorem, M has a bigraded free reso-
lution of the form

F:0—»>F—--—F— Fp—>M-—0,

where F; = @Z: | P(—=air, —bii). Applying the functor H f,+ (—); to this resolution yields
a graded complex of free Py-modules

H;§+(IE‘)j:O—> H;‘)+(Fk)j — > H;‘)+(F1)j — H;’)+(F0)j — HI'§+(M)j — 0.

Theorem 1.1, together with Proposition 2.3, Lemma 2.1 and our assumption imply that for
j >0 we have

dimp, H; (sz,+ (F);) = dimp, H;’,;"(M)j <dimp, M/P M < 1<i foralli>1.

Moreover we know that
Hp (M) = HO(H,';+ [ )).
Then by a theorem of Lazarsfeld [6, Lemma 1.6], see also [4, Theorem 12.1], one has
reg H,’?,Jr (M); =reg HO(H;;Jr (F))j < max{b,- (H,';Jr (IB‘)]-) —iforalli > 0},
where b; (H I’§+ (IF) ;) is the maximal degree of the generators of H ;’,+ (F}) . Note that
ti
Hy (F)j=@ P  Po-an).
k=1 lal=—n—j+bi
Thus we conclude that
regH1’5+(M)j < nl_l’%x{a,-k —i}=c forj>0,

as desired. O

Next we want to give a lower bound for the functions f; »s. We first prove
Proposition 2.6. Let

G0 Gy Gpy > G M Gy 0,

be a complex of free Py-modules, where G; = @j Po(—a;j) for all i > 0. Let m; =
minj{a;;}. Then

reg H; (G) > m;.
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Proof. Since H;(G) =Kerd;/Imd; | and Kerd; C G; for all i > 0, it follows that

reg H; (G) > largest degree of generators of H;(G)
> lowest degree of generators of H;(G)
> lowest degree of generators of Kerd;

> lowest degree of generators of G;

mi,
as desired. O

Corollary 2.7. Let M be a finitely generated bigraded P-module. Then for each i, the
Sfunction f; yr is bounded below.

Proof. Let G be the complex H }’§+ (IF); in the proof of Proposition 2.5, then the assertion
follows from Proposition 2.6. O

Proof of Theorem 2.4. Because of Corollary 2.7 it suffices to show that for each i, fi p
is bounded above.

There exists an exact sequence 0 - U — F L M—0of finitely generated bigraded
P-modules where F is free. This exact sequence yields the exact sequence of Pp-modules

_ ¢
0— Hp~'(M); - Hp (U); — Hp (F); > Hp (M); — 0.
Let K; := Kerg. We consider the exact sequences

0— K;— Hj (F);— Hj (M); -0,

0— Hﬁ;l(M)j — Hp (U); > Kj — 0.
Thus we have

regK; < max{reg H;&(F)j, reg Hf)Jr (M) + 1}, 2)

regH,'ﬁIl(M)j < max{reg HE(U)./,reg K;+ 1}. 3)

Let F = @*_, P(—a;, —b;), then

k
Hy (P =@ @D Poa:”.

i=1 |a|=—n—j+b;
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Therefore, reg H §+ (F); =max;{a;}. By Proposition 2.7, the functions f,, y and f, y are
bounded above, so that, by the inequalities (2) and (3), f,—1,m is bounded above. To com-
plete our proof, for i > 1 we see that

HE (M) = HE (W),

Thus f,—i m = fa—i+1,v fori > 1. By induction on i > 1 all f; 5/ are bounded above, as
required. O

3. The Hilbert function of the components of the top local cohomology
of a hypersurface ring

Let R be a hypersurface ring. In this section we want to show that the Hilbert function of
the Py-module H ;‘,+ (R); is a nonincreasing function in j. Let f € P be a bihomogeneous
form of degree (a, b). Write

f= Z caﬂx“y’s where cop € K.
|a|=a

1Bl=b

We may also write f = Z|ﬂ|=b f,gy/3 where fg € Py with deg fg = a. The monomials
y# for which |B| = b are ordered lexicographically induced by y; > y, > --- > y,. We
consider the hypersurface ring R = P/f P. From the exact sequence

0 P(—a,~b) 5 P P/fP -0,

we get an exact sequence of Py-modules

P rax EA B P~ H} (R); —0.
lc|l=—n—j+b le|l=—n—j

We also order the bases elements z¢ lexicographically induced by z; > 22 > -+ > z,.
Applying f to the bases elements we obtain fz¢ = Zw:b f,gzﬂ_c, where z#7¢ =0 if
¢ £ B componentwise. With respect to these bases the map of free Py-modules is given
by a (75") x (72*%7") matrix which we denote by U;. This matrix also describes the

image of {his mapnas1 submodule of the free module F; where Fj = P, —_,_; Poz", so
that H;l’+ (R); is just Coker f = F;/U;. Note that H}1,+ (R)j =0forall j > —n.

Let B, denote the set of all monomials of degree d in the indeterminates zy, ..., z,. Let
h= ZUGBﬂH hyv € Uj where hy € Py for all v. Then A, u is called the initial term of h if
hy #0and hy =0 for all v > u, and we set in(k) = h,u. The polynomial 4, € Py is called
the initial coefficient and the monomial u is called the initial monomial of h.

Now for a monomial # € B, ; we denote U} , the set of elements in U; whose initial
monomial is u, and we denote by /; , the ideal generated by the initial coefficients of the
elementsin Uj ;.
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Note that

Ui\ = (J Uju

MGB,n,j

We fix the lexicographical order introduced above, and let in(U ;) be the submodule gener-
ated by {in(h): h € U;}. Then

inUj)= @ I )

u€B_,_;
Proposition 3.1. With the above notation we have
liw=1j_1zu forallj<—nanduecB_,_;.

Proof. Lethg € I} . Then there exists & € U; such that & = hou +lower terms. We set k =
—n — j + b, for short. Since £ is in the image of f, we may also write & = Z|c|=k fofz€
where fo € Pyand fz€=3 5, fpz°~P. We define g = > lel=k fo fz6T¢ where fz¢T¢1 =
Zﬂ<c+e. f,c;z”“‘el_/3 and e; = (1,0, ...,0). We see that g € U;_1. We may write

g= Y fod fpztP LY f D fprtah
lel=k  B<c lc|=k Bse
B<cte;

Thus we conclude that g = z1h 4+ h{ where

=Yg 3 gt
|c|=k Bc
B<Lcte

We now claim that /1 does not contain z; as a factor. For each @ € N” we denote by « (i)
the ith component of «. Assume that (¢ + e; — )(1) > 0 for some B appearing in the
sum of A1. Then c¢(1) > B(1). Moreover, if i > 1, then (c + e; — B)(i) = 0 implies that
c(i) = B(i). Hence c(i) > B(i) for all i, a contradiction. It follows that in(g) = in(h)z;.
Therefore hy € 11 7,u.

Conversely, suppose ho € Ij_1,;,,. Then there exists g € U;_1 such that g = hozju +
lower terms. We may write g = 4 flfztte where f/ € Py and fz¢T4 =

Zﬁ<c+e. fpzete —#. Thus

g= D FIY St PR Y Y fpte P
lel=k  p<c lel=k  pgc
B<Lcte



324 A. Rahimi / Journal of Algebra 302 (2006) 313-339

As above we see that g = z;f’ + lower terms, where f’ = ZM:k flfzt. We see
that f' € Uj, and that in(f")z; = in(g) = hoziu. Therefore, in(f’) = hou, and hence
hoelj,. O

Let M and N be graded Pp-modules. We denote by Hilb(M) =, <z dimg M;t' the
Hilbert-series of M. We write Hilb(M) < Hilb(N) when dimg M; < dimg N; for all i.

Let F be a free Pp-module with basis 8 = {u1, ..., u,}. Let U be a graded submodule
of F. For f € U, we write f =Y ', fju; where f; € Py. We set in(f) = fju; where
fi #0and f; =0 forall i < j. We also set in(U) be the submodule of F generated by
all in(f) such that f € U. Let I be a homogeneous ideal of Py. We say that set of homo-
geneous elements of Py forms a K -basis for Py/I if its image forms a K -basis for Py/I.
Now we can state the following result which is related to a theorem of Macaulay [2, The-
orem 4.2.3], see also [2, Corollary 4.2.4]. For the convenience of the reader we include its
proof.

Lemma 3.2. With notation as above we have
Hilb(F/U) = Hilb(F/in(U)).

Proof. Asin (4) we have in(U) = @;_, I,,u; where I, is the ideal generated by all f; €
Py such that there exists f € F within(f) = f;u;. Thus we have F/in(U) = @?:1 Py/ly;.
For each j let B; be a set of homogeneous elements /;; € Py which forms a K -basis of
Po/Iuj. Then 8 ={Byui, ..., Brur} is a homogeneous K -basis of F/in(U). To complete
our proof we will show that 8 is also a K-basis of F//U. We first show that the elements
of B in F/U are linearly independent. Suppose that in F'/U, we have Zi’ jai jhiju; =0
with a;; € K. Thus Z;:l(zi ajjhij)uj e U. Wesethj =), a;jh;j,sothat hju; +--- +
hrup € U. If all h; =0, then g;; =0 for all i and j, as required. Assume that #; # 0
for some j, and let k be the smallest integer such that A4y # 0. It follows that hyuy +
hk1Ugy1+--- € U,sothat hy € I, and hence Zi airhir = 0 modulo Ii. Since h;; are part
of a K-basis of Py/I, it follows that a;; = O for all i, and hence /#; = 0, a contradiction.

Now we want to show that each element in F'/U can be written as a K -linear combi-
nation of elements of 8. Let f + U € F/U where f € F. Thus there exists f; € Py such
that f =>";_, fiu;. Since fi + I, € Po/Iy,, there exists A;; € K such that fj + I, =
> i Ait(hit + 1)), so that fi =) ; Ai1hi1 + hy, for some hy, € I,,,. Hence

r
f= Z)\ilhilul + hy,un +Zfi”i-
i i=2
We set

,
f/=f—z)»i1hi1141 = hy,ug +Zfiui.
i

i=2

Since hy,, € I,,, there exist g2, ..., g- € Py such that h, uy + ZLZ giu; € U. Therefore,
hyyui = —Y_i_, giu; modulo U. Hence it follow that
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r r r
== gui+»_ fiu;=_ flu; moduloU.
i=2 i=2 i=2

Here fl.’ = —g; + f; fori =2, ..., r. By induction on the number of summands, we may
assume that ) ;_, f/u; is a linear combination of elements of 8 modulo U'. Since f differs
from f’ only by a linear combination of elements of 8, the assertion follows. O

Now we are able to prove that the Hilbert-series of the Py-module H f,+ (R); is a nonin-
creasing function in j.

Theorem 3.3. Let R = P/f P be a hypersurface ring. Then
Hilb(H1’§+(R)j_1) > Hilb(H;’,+(R)j) forall j < —n.

Proof. Let Fj =@, cp_,_, Pou where u =z7'...2y" with 371 a; = —n — j. In view
of (4) we have F;/in(U;) = G}ueginﬁ_ Py/I;,. By Lemma 3.2 we know that F;/U; and
F;/in(U;) have the same Hilbert function. Thus Proposition 3.1 implies that for all j < —n
we have

Hilb(H}p, (R),) = Hilb(F;/U;) = ZdimK<

&b Po/lj,u) i
i

u€B_;,_;
=Y Y dimg(Po/Iju)it!
i ueB_,_j
:Z Z dimK(Po/Ij—l,zlu)iti
i u€eB_,_j
=3 Y dimg(Po/ 10t
i veEB_,_jy1
a;>0
<Y dimg (Po/ i)t
i UEB—n—j+1
= Saimc( @ /1y i) ¢ =Hb( R )
i VEB_;_j+1 i

as desired. O

Corollary 3.4. Let R be the hypersurface ring P/f P such that the Py-module H 1}‘1’+ (R);
has finite length for all j. Then

reg HI’§+ (R)j—1 >reg H1",+(R)j forall j < —n.
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Proof. The assertion follows from the fact that
reg Hp (R); =degHilb(Hp (R);). O

Now one could ask when Py-module Hp_ (R); is of finite length. To answer this ques-
tion we need some preparation. Let A be a Noetherian ring and M be a finitely generated
A-module with presentation

A" 4 A" 5 M 0.

Let U be the corresponding matrix of the map ¢ and I,,_;(U) fori =0,...,n — 1 be the
ideal generated by the (n — i)-minors of matrix U. Then Fitt; (M) := I,,_; (U) is called the
ith Fitting ideal of M. We use the convention that Fitt; (M) =0 if n — i > min{n, m}, and
Fitt;(M) = A if i > n. In particular, we obtain Fitt, (M) = 0 if r < O, Fitto(M) is generated
by the n-minors of U, and Fitt,_1 (M) is generated by all entries of U. Note that Fitt; (M)
is an invariant on M, i.e., independent of the presentation. By [5, Proposition 20.7] we have
Fittg(M) € Ann M and if M can be generated by r elements, then (Ann M)" C Fittg(M).
Thus we can conclude that +/Fitty(M) = ~/Ann M. Therefore

dimM =dimA/Ann M =dim A/I,(U). (®)]
Now we can state the following

Proposition 3.5. Let R be the hypersurface ring P/f P, and I (f) the ideal generated by
all the coefficients of f. Then dimp, Hp  (R); < dim Po/I(f). In particular, if 1(f) is
m-primary where m = (x1, ..., x,), then Po-module Hp  (R); is of finite length for all j.

Proof. Note that Hp  (R); =0 for j > —n. Therefore we may suppose that j < —n. As
we have already seen, H}  (R); has Po-presentation

Py (—a) 5 P} - H (R); — 0,
where ng = (;J:ll) and n; = (ﬂ;_bfl). In view of (5) we have dimp, H}, (R); =
dim Py/1,,(U;) where U; is the corresponding matrix of the map ¢. By [9, Lemma 1.4]
we have /T(f) C \/Ino(Uj). It follows that dim p, H;i+(R)j < dim Py/I(f). Since I(f)
is m-primary it follows that dim Py/I () = 0. Therefore dimp, H ;’, +(R) j =0, and hence
Hp_ (R); has finite length, as required. O

4. The regularity of the graded components of local cohomology for a special class
of hypersurfaces

Let A =@} A; be a standard graded Artinian K -algebra, where K is a field of char-
acteristic 0. We say that A has the weak Lefschetz property if there is a linear form [/ of
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degree 1 such that the multiplication map A; 4 A;41 has maximal rank for all i. This

means the corresponding matrix has maximal rank, i.e., [ is either injective or surjec-

tive. Such an element / is called a weak Lefschetz element on A. We also say that A

has the strong Lefschetz property if there is a linear form / of degree 1 such that the
k

multiplication map A; 5 A4, has maximal rank for all i and k. Such an element / is
called a strong Lefschetz element on A. Note that the set of all weak Lefschetz elements
on A is a Zariski-open subset of the affine space A, and the same holds for the set of all
strong Lefschetz elements on A. For an algebra A as above, we say that A has the strong
Stanley property (SSP) if there exists [ € A1 such that ["~% : A; — A, _; is bijective for
i=0,1,...,[n/2]. Note that the Hilbert function of standard graded K -algebra satisfying
the weak Lefschetz property is unimodal. Stanley [10] and Watanabe [11] proved the fol-

lowing result: Let ay, ..., a, be the integers such that @; > 1 and assume as always in this
section that char K = 0. Then A = K [x1, ..., x,1/(x{", ..., x;") has the strong Lefschetz
property.

Theorem 4.1. Let r € N and f, = Z?:l Aix;yi with A; € K and n > 2, and assume
that char K = 0. Then there exists a Zariski open subset V. C K" such that for all
A=(1,...,Ay) €V one has

regHﬁ(P/f{P)j =-n—j+r—1.

,,,,,

Proof. We first prove the theorem in the case that f = f;
P/f" P. From the exact sequence

)= r_Xiyi, and set R =

0— P(—r,—r)L> P—>R—0,
we get an exact sequence of Py-modules,
P rentL P P Hp (R0 ©6)
|b|=—n—j+r |b|l=—n—j

Note that Hp_ (R); is generated by elements of degree 0 and the ideal generated by the
coefficients of f is m-primary. By Proposition 3.5, we need only to show that

(@) [H$+(R)j]—n—j+r—1 #0, and

(b) [H$+(R)j]—n—j+r =0.

Let k = —n — j for short. For the proof of (a), we take the (k 4+ r — 1)th component of the
exact sequence (6), and obtain the exact sequence of K -vector spaces

@ Kx%zb L) @ Kx%z" — [H}rl)+(R)j]k+r—l — 0.
la|=k—1 la|=k+r—1
lb|=k+r Ibl=k
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We set

Vo g 1= EB Kxizb.

la|=«a

|bl=p

Hence one has dimg Vi g4r = ("Zf?z) ("'H]::_l

("ﬁ_jifz) ("'H,:_l) for n > 2. Thus f” is not surjective, so (a) follows. For the proof of (b),
we take the (k 4 r)th component of the exact sequence (6), and obtain the exact sequence

of K-vector spaces

) which is less than dimg Viyr—1 1 =

@ Kx“zhL) @ Kx“zh—>[Hf,+(R)j]k+r—>O.
la|l=k la|=k+r
bl =k \b|=k

Note that dimg Vi g+ = dimg Vi k. We will show that f” is an isomorphism, then we

are done. We fix ¢ € Ng such that ¢ = (cy, ..., ¢;) where ¢; > 0. We set
;5 = @ Kx%” and Af = @ Kx4.
lal=a la|=i
|b|=8 a<sc
a+b=c

We define ¢: V. — A} by setting @(x?z”) = x“. Note that ¢ is an isomorphism
of K-vector spaces. Let A¢ = EBIEOA?. We can define an algebra structure on A°. For
x%, x! € A we define

oyl = xS-H, ifs+1t<ec,
1o, ifs+t§§c.

A K -basis of A€ is given by all monomials x¢ with a < c. It follows that
A°=K|xy, ...,xn]/(xlclH, .. .,x,f"“).

Now we see that the map

) fr
Vick+r = @ V/f,k+r - @ ch+r,k = Vitrk
[c|=2k+r [c|=2k+r

is an isomorphism if and only if restriction map f’ := f"|yc

. C C 1
. . . kk4r Vk,k+r - Vk+r.,k 1s an
isomorphism for all ¢ with |c| =2k +r.



A. Rahimi / Journal of Algebra 302 (2006) 313-339 329

For each such ¢ we have a commutative diagram

f/
c c
Vk,k-i—r > Vk+r,k

/ J

R
C C
Ak — Ak+r

with [ =x; +x2 + -+ + x, € A] and where Aj l—> AEH is multiplication by [” in the
K -algebra A€. Since the socle degree of A€ equals s =2k +r, we have k +r =5 — k.
Therefore the multiplication map I" : A} — A§_, with r =5 — 2k is an isomorphism by
the strong Stanley property of the algebra A€, see [11, Corollary 3.5].

Now if we replace f by fi, then the corresponding linear form in the above commuta-
tive diagram is the form I, = Ayx; + Aoxp + - - + Ay x,. It is known that the property of
[). to be a weak Lefschetz element is an open condition, that is, there exists a Zariski open
set V. C K" such that [, is a weak Lefschetz element. This open set is not empty since
A=(1,...,1) € V. Since any weak Lefschetz element satisfies (SSP), we can replace in
the above proof f by f; for each A € V, and obtain the same conclusion. O

Remark 4.2. It is now the time that to show Theorem 2.4 may fail without the assump-
tion that dimpy M /Py M < 1. In case of Theorem 4.1 we have M = R = P/f] P, and so
M/P M = Py. Therefore in that case dimpy M /P, M = dimp, Py =n > 2, and in fact
fu.r 1s not bounded.

Now in Theorem 4.1, we want to compute the Hilbert function of the Py-module
H§+ (R);.

Corollary 4.3. With the assumption of Theorem 4.1, we have

") ifi <r,

)= (DGR, fr<i<on—j4r—

dimK (HE_ (R)j)i =

Proof. We set —n — j =k, for short. We take ith component of exact sequence (6), and
obtain the exact sequence of K -vector space

P k2L @ kx - [Hp (R)], — 0.
lal=i—r |a|=i

|b|=k+r |b|=k

If i < r, from the above exact sequence we see that

. . n+i—1\/—j—1
dlm[((Hng(R)j)i =dimg Vi = ( ; )(—I{l _ ])
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Now let r <i < —n — j +r — 1. First one has dimg V;_, x4, < dimg V; ;. We claim that
f7 is injective, then we are done. We see that the map

c
Vi —rk+r = @ Vl rkdr T @ k— lks

[c|=i+k |c|=i+k

r c
where f"(VS, ..,
Vi ar = Vi is injective for all ¢ with |c| =i + k.

For each such ¢ we have a commutative diagram

) C V{; is injective if and only if restriction map f’:= f"|ye e

f‘/
c c
Vi—r,k—i—r > Vi,k

¢ ¢

withl =x; +x2+---+x, € A{. Since i < —n — j +r, theni <|c| — (i —r) and by the
weak Lefschetz property the algebra A is unimodal. Therefore dimg A7 . < dimg AY.
The strong Lefschetz property implies that the map [” is injective, and hence f” is injective,
as required. O

Corollary 4.4. Assume that char K = 0. Then with the notation of Theorem 4.1, we have

reg Hp 1(P/f{P)j =—n—j+r+1.

Proof. We consider the exact sequence of Pyp-modules

0> H' R~ @ Rt P R —HEL R0 (D)
|bl=—n—j+r |b|l=—n—j

where R = P/f] P. It follows that H}~, l(R)] is the second syzygy module of Hp_ (R);.
Let

193 n
- = P Po(—a1j) > @) Po(—aoj) > Hp'(R); — 0
j=1 j=1

be the minimal graded free resolution of H ;’,jrl (R);. We combine two above resolutions,
and obtain a graded free resolution for Hp_ (R); of the form

fr
N @ Po(—ag;) -2 P rEnd— P P H(R);—0.
lbl=—n—j+r Ibl=—n—j
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We choose a basis element & € @’j’:] Py(—ap;) of degree ag;. Thus

doy= Y

|bl=—n—j+r

where hj, € Py with deghj, = ap; — r. Because the free resolution is minimal, at least one
hp # 0, so that r < ap; and hence r — 1 < ag; — 2. Thus we have

reg Hp  (R); =max{0,r — 1,a;; —i — 2} = max{a;; —i —2}.
i) ij
Theorem 4.1 implies that

rengrill(R)j=rIl_lZ}X{aij—i}:—n—j+r+1. O

Corollary 4.5. Assume that char K = 0. Then with the notation of Theorem 4.1 the
Po-module H?,jrl (P/f) P)j has a linear resolution.

Proof. Taking the kth component of the exact sequence (7), we obtain the exact sequence
of K -vector spaces

0 [H ' ®)],~ @ kL P ka— [Hp (R)], 0.

la|=k—r |a|=k
|bl=—n—j+r |bl=—n—j
For k we distinguish several cases. Let k = —n — j 4+ r + 1. One has

dimg Vi—p —p—jyr > dimg Vi ;.
This implies that

[H;II(R)./],( #0 forallk>—-n—j+r+1,

. n—1 . .
since H P, (R); is torsion-free.

Letk = —n— j+r.Thendimg Vi—y —y—j4r = dimg Vi _,—, so that [Hf,:l (R)jlk=0.
Finally let k < —n — j + r. We claim that

i n+k—r—1\/—j+r—1
dimg Vk—r,—n—j+r =( k—r )(—Ijl—j-i—}’)

. n+k—1\/—j—1
amen (22

is less than

Indeed,



332 A. Rahimi / Journal of Algebra 302 (2006) 313-339

n+k—r—1\/—j+r—1 n+k—1\/—j—1 ) )
. < . if and only if
k—r —n—j+r k —n—j
r . . r .
—j+r— k —
1—[ J r l. <1—[n~|—. 1'
i:l_n_]+r_l+l i:lk_l+l

Since
—j4+r—i n+k—i . i )
- - < - foralli=1,...,r if and only if
—-n—j+r—i+1 k—i+1
kn—1)<(—n—j+r)(n—1),
the claim is clear. Thus the regularity of H (R) j is equal to the least integer k such that

[Hp n- 1(R) jlx # 0. This means that Pp- module +1 (R); has a linear resolution, and its
resolutlon is the form

s PPt jor =)= PP+ j-r—) > Hy\(R); 0. O
Combining the above resolution with the exact sequence
0— Hi ' (R); — PJ(=r) = P — Hpp_(R); — 0,
we obtain a graded free resolution for H ;’, +(R) ;j of the form
s PPt j-r—2> PP+ j—r—1)— PP (—r)> PP S HY (R); -0
0 J 0 J 0 0 P+ U] :
In this resolution we know already the Betti numbers
—j—1 —j+r—1
ﬂ():( > and ﬂlZ( . )
—n—] —-n—j+r
Next we are going to compute the remaining Betti numbers and also the multiplicity of
H I",+ (R) ;. For this we need to prove the following extension of the formula of Herzog and
Kiihl [2].

Proposition 4.6. Let M be a finitely generated graded Cohen—Macaulay Py-module of
codimension s with minimal graded free resolution

0— PP (=dy)— - — P (=d) - P > M — 0.

Then

i+1
Bi=(=D""p ]"[(d t
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Proof. We consider the square matrix A of size s and the following s x 1 matrices of X

and Y:
1 1 - 1 —Bi —Bo
dl d2 T ds /32
A = . . . . ’ X = . and Y = .
N (=1)*By 0

With similar arguments as in the proof of Lemma 1.1 in [8] one has

N

a0 for1 <k <s,
21:( 1)’ Bid; _{(—I)Ss!e(M) fork =s.
1=

Note that Zle(—l)iﬂi = fo. Thus we can conclude that AX = Y. Now we can apply
Cramer’s rule for the computation of 8;. We replace the ith column of A by Y, then we
expand the determinant |A| of A along to the Y, we get 8; = —fBo|A’|/|A| where A’ is the
matrix

dé dl.z_l di2+l dé
o dE, o, - d
1 : :71 :71 —1
a7 g

of size s — 1. A is a Vandermonde matrix whose determinant is [ [, ;< (di —d;). We

also note that
=114 I @—d,
yES] 1<r<k<s
1£i

so the desired formula follows. 0O
We also have the following generalization of a formula of Huneke and Miller [7].

Proposition 4.7. With the assumption of Proposition 4.6, we have
Bo T~
e(M)=— [ -
i=1

Proof. We consider the square matrix

Bidy  Pady -+ Bs1ds1 Bsds
Bidi pads - Bs1dl | Bed?

- : : : : : ®)
pidy  pody - Bso1d_, Bid

of size s.
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We will compute the determinant |M| of M in two different ways. First we replace the
last column of M by the alternating sum of all columns of M. The resulting matrix will be
denoted by M’. Tt is clear that |[M| = (—1)%|M’|. Moreover, due to [8, Lemma 1.1], the last
column of M’ is the transpose of the vector (0, ..., 0, (—1)*se(M)). Thus if we expand M’
with respect to the last column we get

M| = (=1)°|M'| = sle(M)|N],

where N is the matrix

Bidi Pody - Be_1ds—y
pidi  pody - Berd
d.s—l d.s—l ’ .ds—l
B 1 B2 2 e Bt s—1

of size s — 1. Thus

s—1  s—1

M| =steM) [[8: [ [dilVdr,....di1), ©)
i=1  i=I
where V(dy,...,ds;_1) is the Vandermonde matrix of size s — 1 whose determinant is
[Ti<j<i<s—1(d —d;). On the other hand, directly from (8) we get
N s
M =] ]8:][di|vi.....do)|. (10)
i=1  i=l
where V(di,...,ds) is the Vandermonde matrix of size s whose determinant is

I1 1< ji<i<s (d; —dj). In view of (9) and (10) we get the desired formula. O

Now we are able to compute all Betti numbers and the multiplicity of Hp  (R);. We
recall that its resolution is the form

0> PlG—r+ D)= Pl '(—r+2—> 5> PP+ j—-r-2

= P+ j—r = 1) = P (=) > P > H}, (R); 0,

—j—1 —j —1
where ,3():( J ) and /31=< ]+r' )
—n—] —-n—j+r

Corollary 4.8. With the above notation we have

B (—1)r(n — D1Bofs
T (=)= (—n—jrdi—Dn+j—i+1)

Bi foralli>?2,
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and

r(=j+r—"D'Bo

e(Hp, (R);) = nl(—n—j+r!"

Proof. The assertion follows from Propositions 4.7 and 4.6. O

5. Linear bounds for the regularity of the graded components of local cohomology
for hypersurface rings

In this section for a bihomogeneous polynomial f € P we want to give a linear bound
for the function f; r(j) =reg H ;,+ (R); where R = P/f P. First we prove the following

Proposition 5.1. Let R be the hypersurface ring P/f P where f =Y _, fiyi with f; € Py.
Suppose that deg f; = d and that 1 (f) is m-primary. Then there exists an integer q such
that for j < 0 we have

(a) reg H;’,+(R)j <(—n—j+1Dd+gq, and
(b) reg Hp ™' (R)j < (=n = j + D)d +q +2.

Proof. (a) From the exact sequence 0 — P(—d, —1) —f> P — R — 0, we get exact se-
quence Py-modules

D prcads> @ P Hp (R); 0. (1

|bl=—n—j+1 |bl=—n—j

We first assume that f; = x;. Theorem 4.1 implies that reg Hf,+(R)j =—n — j. We set
k = —n — j. Thus we can get the surjective map of K-vector spaces

@ Kx%7’ — @ Kx%z

lal=k la|=k+1
|b|=k+1 |b|=k

Replacing x; by f;, we therefore get a surjective map

B = @ k. ft

[b]l=k+1 la|=k
bl=k+1
A
- @ KA. e = @(I(f)k+l)d(k+1)zb'
lal=k-+1 b=k

|b|=k
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Since I (f) is m-primary by [3, Theorem 2.4] there exists an integer ¢ such that
reg(Po/I()*) =k +1)d +q fork> 0.
We set ] = (k + 1)d + g. Then for [ > 0 we have

(Poyiy1 = (1),

We take the (I + 1)th component of the exact sequence (11) and consider the following
diagram

@\b|=k+1(P0)l—d+1Zb E—— @|b|=k(P0)l+11h —_— [H£+(R)j]l+1 — 0

! H

Bzt 1T N—as12" —= B TN 12> ——0
in which left-hand vertical homomorphism is inclusion. Thus we conclude that
[, (R)j];1, =0.
so that reg H1’§+(R)j <[l =(k+ 1)d + g, as required.

For the proof (b), we notice that the exact sequence of Pyp-modules of (11) breaks into
two short exact sequence of Py-modules

b
0—>K;j—> P Poz" — H}_(R); -0,
|b|=k

0—> Hp'(R)j > @ Po(—-d)z" > K; -0,
|bl=k+1

where K; =Im f. We see from the first of these sequences thatreg K ; <reg H ;i+ (R); +1.
The second short exact sequence, together with part (a) of this theorem and the fact that
d < reg K ; implies that

regHﬁ:l(R)j <max{d,regK; + 1} =regK; +1 < (—n—j+1)d+q +2,

as desired. O

Proposition 5.2. Let N”, = {8 e N": || =d}, Py = K[{xﬁ}ﬂeNj‘,] and P = Py[y1, ..., Ynl-
Let R=P/f P where f = Z|ﬂ|=dxﬂyﬂ~ Then

regH;’,Jr(R)j <(—n—j+1d—1.
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Proof. We set P+ = (y1,...,yn) and Py = K[x1, ..., X;y] where m = ("+g_1), as usual.

From the exact sequence

0 P(—1,—d) > P> R0,
we get the exact sequence of Py-modules
f
B PO > @B RGP - HE (R); 0,

bl=—n—j+d lb|=—n—j

whose ith graded component is
D k()DL P k() > Hp (R — 0. (12)
la]=i—1 la|=i

|bl=—n—j+d |b|l=—n—j

Here (y”)* = z” in the notation of Section 1. Now we exchange the role of x and y: We
may write f = Z|ﬂ|=d yﬂxlg and set Q4+ = (x1,...,x,) and Qo = K[y1, ..., yu]. From
the exact sequence

0— P(—d.—1) 5> P> R0,
we get the exact sequence of Py-modules
P D) > P Q) — HE (R — 0,
b|l=—m—1+1 |b|=—m—t
whose sth graded component is
f
P C)S P K () > HY (R — 0.
la|=s—d la|=s
lbl=—m—1+1 |b|=—m~—1

Applying the functor Homg (—, K) to the above exact sequence and due to the exact se-
quence (12) we have

0— Hg+ (R)?s,t) — @ K(y“)*xb —f> @ K(y“)*xb
lal=s lal=s—d

|bl=—m—t |bl=—m—t+1

- H;§+ (R)(—m—t+l,—)1—s+d) — 0.
Therefore

HE (R ZHP (R Cmei41—n—sta)-
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Thus we have

0— (Hg_:l(R)fan”Fd)_m_H_] - @ K(ya)*xb

L@ KO (HE R asid) gy — O
P

We set j = —n — s + d. Proposition 5.1 implies that
reg HI’§+(R).,~ <(—n—j+1)d+gq forsomegq.

Since 1(f) = (y1, ..., yp)?, thus reg(Po/I1(f)**t!) = (k + 1)d — 1. Hence in Proposi-
tion 5.1 wehaveg =—1. O

Now the main result of this section is the following
Theorem 5.3. Let P = K[x1,...,Xm, Y1,.-.,Yn], and f € P be a bihomogeneous poly-
nomial such that 1(f) is m-primary. Let R = P/f P. Then the regularity of H;’,+(R)j is
linearly bounded.

Proof. We may write f = Z‘ Bl=d /B yP and let deg fp = c. From the exact sequence

0— P(—c.—d)> P> R0,

we get the exact sequence of Pp-modules

P ratt P P Hp (R, 0.
pl=—n—j+d pl=—nj

We first assume that fg = xg. Proposition 5.2 implies that reg H;l,+ R);j<(=n—j+1)x
d—1.Wesetk=(—n— j+ 1)d. Thus we get the surjective map of K -vector spaces

@ Kx%zb — @ Kx%z’.
la|=k—1 lal=k
[bl=—n—j+d [bl=—n—j

We proceed as in the proof of Proposition 5.1, and we get [HI,”,+ (R)jlkd+q+1 =0 for
some ¢q’. Therefore

regHp (R); <(—n—j+Dd*+4. D



A. Rahimi / Journal of Algebra 302 (2006) 313-339 339

Corollary 5.4. With the assumption of Theorem 5.3, we have

reg Hp,'(R); < (—n — j + Dd* +q' +2.

Proof. For the proof one use the same argument as in the proof of Proposition 5.1(b). O
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