JOURNAL OF
Algebra

# On the regularity of local cohomology of bigraded algebras 

Ahad Rahimi<br>Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany

Received 5 June 2005
Available online 23 September 2005
Communicated by Steven Dale Cutkosky


#### Abstract

The Hilbert functions and the regularity of the graded components of local cohomology of a bigraded algebra are considered. Explicit bounds for these invariants are obtained for bigraded hypersurface rings. © 2005 Elsevier Inc. All rights reserved.


## Introduction

In this paper we study algebraic properties of the graded components of local cohomology of a bigraded $K$-algebra. Let $P_{0}$ be a Noetherian ring, $P=P_{0}\left[y_{1}, \ldots, y_{n}\right]$ be the polynomial ring over $P_{0}$ with the standard grading and $P_{+}=\left(y_{1}, \ldots, y_{n}\right)$ the irrelevant graded ideal of $P$. Then for any finitely generated graded $P$-module $M$, the local cohomology modules $H_{P_{+}}^{i}(M)$ are naturally graded $P$-modules and each graded component $H_{P_{+}}^{i}(M)_{j}$ is a finitely generated $P_{0}$-module. In case $P_{0}=K\left[x_{1}, \ldots, x_{m}\right]$ is a polynomial ring, the $K$-algebra $P$ is naturally bigraded with $\operatorname{deg} x_{i}=(1,0)$ and $\operatorname{deg} y_{i}=(0,1)$. In this situation, if $M$ is a finitely generated bigraded $P$-module, then each of the modules $H_{P_{+}}^{i}(M)_{j}$ is a finitely generated graded $P_{0}$-module.

[^0]We are interested in the Hilbert functions and the Castelnuovo-Mumford regularity of these modules.

In Section 1 we introduce the basic facts concerning graded and bigraded local cohomology and give a description of the local cohomology of a graded (bigraded) $P$-module from its graded (bigraded) $P$-resolution.

In Section 2 we use a result of Gruson, Lazarsfeld and Peskine on the regularity of reduced curves, in order to show that the regularity of $H_{P_{+}}^{i}(M)_{j}$ as a function in $j$ is bounded provided that $\operatorname{dim}_{P_{0}} M / P_{+} M \leqslant 1$.

The rest of the paper is devoted to study of the local cohomology of a hypersurface ring $R=P / f P$ where $f \in P$ is a bihomogeneous polynomial.

In Section 3 we prove that the Hilbert function of the top local cohomology $H_{P_{+}}^{n}(R)_{j}$ is a nonincreasing function in $j$. If moreover, the ideal $I(f)$ generated by all coefficients of $f$ is $\mathfrak{m}$-primary where $\mathfrak{m}$ is the graded maximal ideal of $P_{0}$, then by a result of Katzman and Sharp the $P_{0}$-module $H_{P_{+}}^{i}(R)_{j}$ is of finite length. In particular, in this case the regularity of $H_{P_{+}}^{i}(R)_{j}$ is also a nonincreasing function in $j$.

In the following section we compute the regularity of $H_{P_{+}}^{i}(R)_{j}$ for a special class of hypersurfaces. For the computation we use in an essential way a result of Stanley and Watanabe. They showed that a monomial complete intersection has the strong Lefschetz property. Stanley used the hard Lefschetz theorem, while Watanabe representation theory of Lie algebras to prove this result. Using these facts the regularity and the Hilbert function of $H_{P_{+}}^{i}\left(P / f_{\lambda}^{r} P\right)_{j}$ can be computed explicitly. Here $r \in \mathbb{N}$ and $f_{\lambda}=\sum_{i=1}^{n} \lambda_{i} x_{i} y_{i}$ with $\lambda_{i} \in K$. As a consequence we are able to show that $H_{P_{+}}^{n-1}\left(P / f^{r} P\right)_{j}$ has a linear resolution and its Betti numbers can be computed. We use these results in the last section to show that for any bigraded hypersurface ring $R=P / f P$ for which $I(f)$ is $\mathfrak{m}$-primary, the regularity of $H_{P_{+}}^{i}(R)_{j}$ is linearly bounded in $j$.

## 1. Basic facts about graded and bigraded local cohomology

Let $P_{0}$ be a Noetherian ring, and let $P=P_{0}\left[y_{1}, \ldots, y_{n}\right]$ be the polynomial ring over $P_{0}$ in the variables $y_{1}, \ldots, y_{n}$. We let $P_{j}=\bigoplus_{|b|=j} P_{0} y^{b}$ where $y^{b}=y_{1}^{b_{1}} \ldots y_{n}^{b_{n}}$ for $b=$ $\left(b_{1}, \ldots, b_{n}\right)$, and where $|b|=\sum_{i} b_{i}$. Then $P$ is a standard graded $P_{0}$-algebra and $P_{j}$ is a free $P_{0}$-module of rank $\binom{n+j-1}{n-1}$.

In most cases we assume that $P_{0}$ is either a local ring with residue class field $K$, or $P_{0}=K\left[x_{1}, \ldots, x_{m}\right]$ is the polynomial ring over the field $K$ in the variables $x_{1}, \ldots, x_{m}$.

We always assume that all $P$-modules considered here are finitely generated and graded. In case that $P_{0}$ is a polynomial ring, then $P$ itself is bigraded, if we assign to each $x_{i}$ the bidegree $(1,0)$ and to each $y_{j}$ the bidegree $(0,1)$. In this case we assume that all $P$ modules are even bigraded. Observe that if $M$ is bigraded, and if we set

$$
M_{j}=\bigoplus_{i} M_{(i, j)}
$$

Then $M=\bigoplus_{j} M_{j}$ is a graded $P$-module and each graded component $M_{j}$ is a finitely generated graded $P_{0}$-module, with grading $\left(M_{j}\right)_{i}=M_{(i, j)}$ for all $i$ and $j$.

Now let $S=K\left[y_{1}, \ldots, y_{n}\right]$. Then $P=P_{0} \otimes_{K} K\left[y_{1}, \ldots, y_{n}\right]=P_{0} \otimes_{K} S$. Let $P_{+}:=$ $\bigoplus_{j>0} P_{j}$ be the irrelevant graded ideal of the $P_{0}$-algebra $P$.

Next we want to compute the graded $P$-modules $H_{P_{+}}^{i}(P)$. Observe that there are isomorphisms of graded $R$-modules

$$
\begin{aligned}
H_{P_{+}}^{i}(P) & \cong \varliminf_{k \geqslant 0}^{\lim _{x}} \operatorname{Ext}_{P}^{i}\left(P /\left(P_{+}\right)^{k}, P\right) \\
& \cong \varliminf_{k \geqslant 0}^{\lim } \operatorname{Ext}_{P_{0} \otimes_{K} S}^{i}\left(P_{0} \otimes_{K} S /(y)^{k}, P_{0} \otimes_{K} S\right) \\
& {\cong P_{0} \otimes_{K}{\underset{k \geqslant 0}{\lim } \operatorname{Ext}_{P}^{i}\left(S /(y)^{k}, S\right)} \otimes_{K} H_{(y)}^{i}(S)} . }
\end{aligned}
$$

Since $H_{S_{+}}^{i}(S)=0$ for $i \neq n$, we get

$$
H_{P_{+}}^{i}(P)= \begin{cases}P_{0} \otimes_{k} H_{(y)}^{n}(S) & \text { for } i=n, \\ 0 & \text { for } i \neq n .\end{cases}
$$

Let $M$ be a graded $S$-module. We write $M^{\vee}=\operatorname{Hom}_{K}(M, K)$ and consider $M^{\vee}$ a graded $S$-module as follows: for $\varphi \in M^{\vee}$ and $f \in S$ we let $f \varphi$ be the element in $M^{\vee}$ with

$$
f \varphi(m)=\varphi(f m) \quad \text { for all } m \in M
$$

and define the grading by setting $\left(M^{\vee}\right)_{j}:=\operatorname{Hom}_{K}\left(M_{-j}, K\right)$ for all $j \in \mathbb{Z}$.
Let $\omega_{S}$ be the canonical module of $S$. Note that $\omega_{S}=S(-n)$, since $S$ is a polynomial ring in $n$ indeterminates. By the graded version of the local duality theorem, see [1, Example 13.4.6] we have $H_{S_{+}}^{n}(S)^{\vee}=S(-n)$ and $H_{S_{+}}^{i}(S)=0$ for $i \neq n$. Applying again the functor $\left({ }^{\prime}\right)^{\vee}$ we obtain

$$
H_{S_{+}}^{n}(S)=\operatorname{Hom}_{K}(S(-n), K)=\operatorname{Hom}_{K}(S, K)(n)
$$

We can thus conclude that

$$
H_{S_{+}}^{n}(S)_{j}=\operatorname{Hom}_{k}(S, K)_{n+j}=\operatorname{Hom}_{K}\left(S_{-n-j}, K\right) \quad \text { for all } j \in \mathbb{Z}
$$

Let $S_{l}=\bigoplus_{|a|=l} K y^{a}$. Then

$$
\operatorname{Hom}_{K}\left(S_{-n-j}, K\right)=\bigoplus_{|a|=-n-j} K z^{a},
$$

where $z \in \operatorname{Hom}_{K}\left(S_{-n-j}, K\right)$ is the $K$-linear map with

$$
z^{a}\left(y^{b}\right)= \begin{cases}z^{a-b}, & \text { if } b \leqslant a, \\ 0, & \text { if } b \nless a .\end{cases}
$$

Here we write $b \leqslant a$ if $b_{i} \leqslant a_{i}$ for $i=1, \ldots, n$. Therefore $H_{S_{+}}^{n}(S)_{j}=\bigoplus_{|a|=-n-j} K z^{a}$, and this implies that

$$
\begin{equation*}
H_{P_{+}}^{n}(P)_{j}=P_{0} \otimes_{K} H_{(y)}^{n}(S)_{j}=\bigoplus_{|a|=-n-j} P_{0} z^{a} \tag{1}
\end{equation*}
$$

Hence we see that $H_{P_{+}}^{n}(P)_{j}$ is free $P_{0}$-module of rank $\binom{-j-1}{n-1}$. Moreover, if $P_{0}$ is graded

$$
H_{P_{+}}^{n}(P)_{(i, j)}=\bigoplus_{|b|=-n-j}\left(P_{0}\right)_{i} z^{b}=\bigoplus_{\substack{|a|=i \\|b|=-n-j}} K x^{a} z^{b}
$$

The next theorem describes how the local cohomology of a graded $P$-module can be computed from its graded free $P$-resolution.

Theorem 1.1. Let $M$ be a finitely generated graded $P$-module. Let $\mathbb{F}$ be a graded free $P$-resolution of $M$. Then we have graded isomorphisms

$$
H_{P_{+}}^{n-i}(M) \cong H_{i}\left(H_{P_{+}}^{n}(\mathbb{F})\right)
$$

Proof. Let

$$
\mathbb{F}: \cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow 0
$$

Applying the functor $H_{P_{+}}^{n}$ to $\mathbb{F}$, we obtain the complex

$$
H_{P_{+}}^{n}(\mathbb{F}): \cdots \rightarrow H_{P_{+}}^{n}\left(F_{2}\right) \rightarrow H_{P_{+}}^{n}\left(F_{1}\right) \rightarrow H_{P_{+}}^{n}\left(F_{0}\right) \rightarrow 0
$$

We see that

$$
H_{P_{+}}^{n}(M)=\operatorname{Coker}\left(H_{P_{+}}^{n}\left(F_{1}\right) \rightarrow H_{P_{+}}^{n}\left(F_{0}\right)\right)=H_{0}\left(H_{P_{+}}^{n}(\mathbb{F})\right),
$$

since $H_{P_{+}}^{i}(N)=0$ for each $i>n$ and all finitely generated $P$-modules $N$.
We define the functors:

$$
\mathcal{F}(M):=H_{P_{+}}^{n}(M) \quad \text { and } \quad \mathcal{F}_{i}(M):=H_{P_{+}}^{n-i}(M)
$$

The functors $\mathcal{F}_{i}$ are additive, covariant and strongly connected, i.e., for each short exact sequence $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ one has the long exact sequence

$$
0 \cdots \rightarrow \mathcal{F}_{i}(U) \rightarrow \mathcal{F}_{i}(V) \rightarrow \mathcal{F}_{i}(W) \rightarrow \mathcal{F}_{i-1}(U) \rightarrow \cdots \rightarrow \mathcal{F}_{0}(V) \rightarrow \mathcal{F}_{0}(W) \rightarrow 0
$$

Moreover, $\mathcal{F}_{0}=\mathcal{F}$ and $\mathcal{F}_{i}(F)=H_{P_{+}}^{n-i}(F)=0$ for all $i>0$ and all free $P$-modules $F$. Therefore, the theorem follows from the dual version of [1, Theorem 1.3.5].

Note that if $M$ is a finitely generated bigraded $P$-module. Then $H_{P_{+}}^{n}(M)$ with natural grading is also a finitely generated bigraded $P$-module, and hence in Theorem 1.1 we have bigraded isomorphisms

$$
H_{P_{+}}^{n-i}(M) \cong H_{i}\left(H_{P_{+}}^{n}(\mathbb{F})\right)
$$

## 2. Regularity of the graded components of local cohomology for modules of small dimension

Let $P_{0}=K\left[x_{1}, \ldots, x_{m}\right]$, and $M$ be a finitely generated graded $P_{0}$-module. By Hilbert's syzygy theorem, $M$ has a graded free resolution over $P_{0}$ of the form

$$
0 \rightarrow F_{k} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

where $F_{i}=\bigoplus_{j=1}^{t_{i}} P_{0}\left(-a_{i j}\right)$ for some integers $a_{i j}$. Then the Castelnuovo-Mumford regularity $\operatorname{reg}(M)$ of $M$ is the nonnegative integer

$$
\operatorname{reg} M \leqslant \max _{i, j}\left\{a_{i j}-i\right\}
$$

with equality holding if the resolution is minimal. If $M$ is an Artinian graded $P_{0}$-module, then

$$
\operatorname{reg}(M)=\max \left\{j: M_{j} \neq 0\right\} .
$$

We also use the following characterization of regularity

$$
\operatorname{reg}(M)=\min \left\{\mu: M_{\geqslant \mu} \text { has a linear resolution }\right\} .
$$

Let $M$ be a finitely generated bigraded $P$-module, thus $H_{P_{+}}^{i}(M)_{j}$ is a finitely generated graded $P_{0}$-module. Let $f_{i, M}$ be the numerical function given by

$$
f_{i, M}(j)=\operatorname{reg} H_{P_{+}}^{i}(M)_{j}
$$

for all $j$. In this section we show that $f_{i, M}$ is bounded provided that $M / P_{+} M$ has Krull dimension $\leqslant 1$. There are some explicit examples which show that the condition $\operatorname{dim}_{P_{0}} M / P_{+} M \leqslant 1$ is indispensable. We postpone the example to Section 4. First one has the following

Lemma 2.1. Let $M$ be a finitely generated graded $P$-module. Then

$$
\operatorname{dim}_{P_{0}} M_{i} \leqslant \operatorname{dim}_{P_{0}} M / P_{+} M \quad \text { for all } i .
$$

Proof. Let $r=\min \left\{j: M_{j} \neq 0\right\}$. We prove the lemma by induction on $i \geqslant r$. Let $i=r$. Note that

$$
M / P_{+} M=M_{r} \oplus M_{r+1} / P_{1} M_{r} \oplus \cdots
$$

It follows that $M_{r}$ is a direct summand of the $P_{0}$-module $M / P_{+} M$, so that $\operatorname{dim}_{P_{0}} M_{r} \leqslant$ $\operatorname{dim}_{P_{0}} M / P_{+} M$. We now assume that $i>r$ and $\operatorname{dim}_{P_{0}} M_{j} \leqslant \operatorname{dim}_{P_{0}} M / P_{+} M$, for $j=$ $r, \ldots, i-1$. We will show that $\operatorname{dim}_{P_{0}} M_{i} \leqslant \operatorname{dim}_{P_{0}} M / P_{+} M$. We consider the exact sequence of $P_{0}$-modules

$$
0 \rightarrow P_{1} M_{i-1}+\cdots+P_{i-r} M_{r} \rightarrow M_{i} \xrightarrow{\varphi}\left(M / P_{+} M\right)_{i} \rightarrow 0
$$

By the induction hypothesis, one easily deduces that

$$
\operatorname{dim}_{P_{0}} \sum_{j=1}^{i-r} P_{j} M_{i-j} \leqslant \operatorname{dim}_{P_{0}} M / P_{+} M,
$$

and since $\left(M / P_{+} M\right)_{i}$ is a direct summand of $M / P_{+} M$ it also has dimension $\leqslant$ $\operatorname{dim}_{P_{0}} M / P_{+} M$. Therefore, by the above exact sequence, $\operatorname{dim} M_{i} \leqslant \operatorname{dim}_{P_{0}} M / P_{+} M$, too.

The following lemma is needed for the proof of the next proposition.
Lemma 2.2. Let $M$ be a finitely generated graded $P$-module. Then there exists an integer $i_{0}$ such that

$$
\operatorname{Ann}_{P_{0}} M_{i}=\operatorname{Ann}_{P_{0}} M_{i+1} \quad \text { for all } i \geqslant i_{0}
$$

Proof. Since $P_{1} M_{i} \subseteq M_{i+1}$ for all $i$ and $M$ is a finitely generated $P$-module, there exists an integer $t$ such that $P_{1} M_{i}=M_{i+1}$ for all $i \geqslant t$. This implies that $\operatorname{Ann}_{P_{0}} M_{t} \subseteq$ $\operatorname{Ann}_{P_{0}} M_{t+1} \subseteq \cdots$. Since $P_{0}$ is Noetherian, there exists an integer $k$ such that $\operatorname{Ann}_{P_{0}} M_{t+k}=$ $\operatorname{Ann}_{P_{0}} M_{i}$ for all $i \geqslant t+k=i_{0}$.

Proposition 2.3. Let $M$ be a finitely generated graded $P$-module. Then

$$
\operatorname{dim}_{P_{0}} H_{P_{+}}^{i}(M)_{j} \leqslant \operatorname{dim}_{P_{0}} M_{j} \quad \text { for all } i \text { and } j \gg 0
$$

Proof. Let $P_{+}=\left(y_{1}, \ldots, y_{n}\right)$. Then by [1, Theorem 5.1.19] we have

$$
H_{P_{+}}^{i}(M) \cong H^{i}\left(C(M)^{\bullet}\right) \quad \text { for all } i \geqslant 0
$$

where $C(M) \cdot$ denote the (extended) Čech complex of $M$ with respect to $y_{1}, \ldots, y_{n}$ defined as follows:

$$
C(M)^{\bullet}: 0 \rightarrow C(M)^{0} \rightarrow C(M)^{1} \rightarrow \cdots \rightarrow C(M)^{n} \rightarrow 0
$$

with

$$
C(M)^{t}=\bigoplus_{1 \leqslant i_{1}<\cdots<i_{t} \leqslant n} M_{y_{i_{1}} \ldots y_{i_{t}}},
$$

and where the differentiation $C(M)^{t} \rightarrow C(M)^{t+1}$ is given on the component

$$
M_{y_{i_{1}} \ldots y_{i_{t}}} \rightarrow M_{y_{j_{1}} \ldots y_{j_{t+1}}}
$$

to be the homomorphism

$$
(-1)^{s-1} \text { nat }: M_{y_{i_{1}} \ldots y_{i_{t}}} \rightarrow\left(M_{y_{i_{1}} \ldots y_{i t}}\right)_{y_{j_{s}}},
$$

if $\left\{i_{1}, \ldots, i_{t}\right\}=\left\{j_{1}, \ldots, \hat{j}_{s}, \ldots, j_{t+1}\right\}$ and 0 otherwise. We set $\mathcal{I}=\left\{i_{1}, \ldots, i_{t}\right\}$ and $y_{\mathcal{I}}=$ $y_{i_{1}} \ldots y_{i_{t}}$. For $m / y_{\mathcal{I}}^{k} \in M_{y_{\mathcal{I}}}, m$ homogeneous, we set $\operatorname{deg} m / y_{\mathcal{I}}^{k}=\operatorname{deg} m-\operatorname{deg} y_{\mathcal{I}}^{k}$. Then we can define a grading on $M_{y_{\mathcal{I}}}$ by setting

$$
\left(M_{y_{\mathcal{I}}}\right)_{j}=\left\{m / y_{\mathcal{I}}^{k} \in M_{y_{\mathcal{I}}}: \operatorname{deg} m / y_{\mathcal{I}}^{k}=j\right\} \quad \text { for all } j
$$

In view of Lemma 2.2 there exists an ideal $I \subseteq P_{0}$ and an integer $j_{0}$ such that $\operatorname{Ann}_{P_{0}} M_{j}=I$ for all $j \geqslant j_{0}$. We now claim that $I \subseteq \operatorname{Ann}_{P_{0}}\left(M_{y_{\mathcal{I}}}\right)_{j}$ for all $j \geqslant j_{0}$. Let $a \in I$ and $m / y_{\mathcal{I}}^{k} \in\left(M_{y_{\mathcal{I}}}\right)_{j}$ for some integer $k$. We may choose an integer $l$ such that

$$
\operatorname{deg} m+\operatorname{deg} y_{\mathcal{I}}^{l}=\operatorname{deg} m y_{\mathcal{I}}^{l}=t \geqslant j_{0} .
$$

Thus $a m / y_{\mathcal{I}}^{k}=a m y_{\mathcal{I}}^{l} / y_{\mathcal{I}}^{k+l}=0$, because $m y_{\mathcal{I}}^{l} \in M_{t}$. Thus we have

$$
\operatorname{dim}_{P_{0}}\left(M_{y \mathcal{I}}\right)_{j}=\operatorname{dim}_{P_{0}} P_{0} / \operatorname{Ann}\left(M_{y \mathcal{I}}\right)_{j} \leqslant \operatorname{dim}_{P_{0}} P_{0} / I=\operatorname{dim}_{P_{0}} M_{j} .
$$

Since $H_{P_{+}}^{i}(M)_{j}$ is a subquotient of the $j$ th graded component of $C(M)^{i}$, the desired result follows.

Now we can state the main result of this section as follows.
Theorem 2.4. Let $M$ be a finitely generated bigraded $P$-module such that

$$
\operatorname{dim}_{P_{0}} M / P_{+} M \leqslant 1
$$

Then for all $i$ the functions $f_{i, M}(j)=\operatorname{reg} H_{P_{+}}^{i}(M)_{j}$ are bounded.
In a first step we prove the following
Proposition 2.5. Let $M$ be a finitely generated bigraded $P$-module with

$$
\operatorname{dim}_{P_{0}} M / P_{+} M \leqslant 1
$$

Then the function $f_{n, M}(j)=\operatorname{reg} H_{P_{+}}^{n}(M)_{j}$ is bounded above.

Proof. By the bigraded version of Hilbert's syzygy theorem, $M$ has a bigraded free resolution of the form

$$
\mathbb{F}: 0 \rightarrow F_{k} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

where $F_{i}=\bigoplus_{k=1}^{t_{i}} P\left(-a_{i k},-b_{i k}\right)$. Applying the functor $H_{P_{+}}^{n}(-)_{j}$ to this resolution yields a graded complex of free $P_{0}$-modules

$$
H_{P_{+}}^{n}(\mathbb{F})_{j}: 0 \rightarrow H_{P_{+}}^{n}\left(F_{k}\right)_{j} \rightarrow \cdots \rightarrow H_{P_{+}}^{n}\left(F_{1}\right)_{j} \rightarrow H_{P_{+}}^{n}\left(F_{0}\right)_{j} \rightarrow H_{P_{+}}^{n}(M)_{j} \rightarrow 0
$$

Theorem 1.1, together with Proposition 2.3, Lemma 2.1 and our assumption imply that for $j \gg 0$ we have

$$
\operatorname{dim}_{P_{0}} H_{i}\left(H_{P_{+}}^{n}(\mathbb{F})_{j}\right)=\operatorname{dim}_{P_{0}} H_{P_{+}}^{n-i}(M)_{j} \leqslant \operatorname{dim}_{P_{0}} M / P_{+} M \leqslant 1 \leqslant i \quad \text { for all } i \geqslant 1
$$

Moreover we know that

$$
H_{P_{+}}^{n}(M)=H_{0}\left(H_{P_{+}}^{n}(\mathbb{F})\right)
$$

Then by a theorem of Lazarsfeld [6, Lemma 1.6], see also [4, Theorem 12.1], one has

$$
\operatorname{reg} H_{P_{+}}^{n}(M)_{j}=\operatorname{reg} H_{0}\left(H_{P_{+}}^{n}(\mathbb{F})\right)_{j} \leqslant \max \left\{b_{i}\left(H_{P_{+}}^{n}(\mathbb{F})_{j}\right)-i \text { for all } i \geqslant 0\right\}
$$

where $b_{i}\left(H_{P_{+}}^{n}(\mathbb{F})_{j}\right)$ is the maximal degree of the generators of $H_{P_{+}}^{n}\left(F_{i}\right)_{j}$. Note that

$$
H_{P_{+}}^{n}\left(F_{i}\right)_{j}=\bigoplus_{k=1}^{t_{i}} \bigoplus_{|a|=-n-j+b_{i k}} P_{0}\left(-a_{i k}\right) z^{a}
$$

Thus we conclude that

$$
\operatorname{reg} H_{P_{+}}^{n}(M)_{j} \leqslant \max _{i, k}\left\{a_{i k}-i\right\}=c \quad \text { for } j \gg 0
$$

as desired.
Next we want to give a lower bound for the functions $f_{i, M}$. We first prove
Proposition 2.6. Let

$$
\mathbb{G}: 0 \rightarrow G_{p} \xrightarrow{d_{p}} G_{p-1} \rightarrow \cdots \rightarrow G_{1} \xrightarrow{d_{1}} G_{0} \rightarrow 0
$$

be a complex of free $P_{0}$-modules, where $G_{i}=\bigoplus_{j} P_{0}\left(-a_{i j}\right)$ for all $i \geqslant 0$. Let $m_{i}=$ $\min _{j}\left\{a_{i j}\right\}$. Then

$$
\operatorname{reg} H_{i}(\mathbb{G}) \geqslant m_{i}
$$

Proof. Since $H_{i}(\mathbb{G})=\operatorname{Ker} d_{i} / \operatorname{Im} d_{i+1}$ and $\operatorname{Ker} d_{i} \subseteq G_{i}$ for all $i \geqslant 0$, it follows that

$$
\begin{aligned}
\operatorname{reg} H_{i}(\mathbb{G}) & \geqslant \text { largest degree of generators of } H_{i}(\mathbb{G}) \\
& \geqslant \text { lowest degree of generators of } H_{i}(\mathbb{G}) \\
& \geqslant \text { lowest degree of generators of } \operatorname{Ker} d_{i} \\
& \geqslant \text { lowest degree of generators of } G_{i} \\
& =m_{i},
\end{aligned}
$$

as desired.

Corollary 2.7. Let $M$ be a finitely generated bigraded $P$-module. Then for each $i$, the function $f_{i, M}$ is bounded below.

Proof. Let $\mathbb{G}$ be the complex $H_{P_{+}}^{n}(\mathbb{F})_{j}$ in the proof of Proposition 2.5, then the assertion follows from Proposition 2.6.

Proof of Theorem 2.4. Because of Corollary 2.7 it suffices to show that for each $i, f_{i, M}$ is bounded above.

There exists an exact sequence $0 \rightarrow U \rightarrow F \xrightarrow{\varphi} M \rightarrow 0$ of finitely generated bigraded $P$-modules where $F$ is free. This exact sequence yields the exact sequence of $P_{0}$-modules

$$
0 \rightarrow H_{P_{+}}^{n-1}(M)_{j} \rightarrow H_{P_{+}}^{n}(U)_{j} \rightarrow H_{P_{+}}^{n}(F)_{j} \xrightarrow{\varphi} H_{P_{+}}^{n}(M)_{j} \rightarrow 0 .
$$

Let $K_{j}:=\operatorname{Ker} \varphi$. We consider the exact sequences

$$
\begin{aligned}
0 & \rightarrow K_{j} \rightarrow H_{P_{+}}^{n}(F)_{j} \rightarrow H_{P_{+}}^{n}(M)_{j} \rightarrow 0, \\
0 & \rightarrow H_{P_{+}}^{n-1}(M)_{j} \rightarrow H_{P_{+}}^{n}(U)_{j} \rightarrow K_{j} \rightarrow 0 .
\end{aligned}
$$

Thus we have

$$
\begin{align*}
& \operatorname{reg} K_{j} \leqslant \max \left\{\operatorname{reg} H_{P_{+}}^{n}(F)_{j}, \operatorname{reg} H_{P_{+}}^{n}(M)_{j}+1\right\},  \tag{2}\\
& \operatorname{reg} H_{P_{+}}^{n-1}(M)_{j} \leqslant \max \left\{\operatorname{reg} H_{P_{+}}^{n}(U)_{j}, \operatorname{reg} K_{j}+1\right\} . \tag{3}
\end{align*}
$$

Let $F=\bigoplus_{i=1}^{k} P\left(-a_{i},-b_{i}\right)$, then

$$
H_{P_{+}}^{n}(F)_{j}=\bigoplus_{i=1}^{k} \bigoplus_{|a|=-n-j+b_{i}} P_{0}\left(-a_{i}\right) z^{a}
$$

Therefore, reg $H_{P_{+}}^{n}(F)_{j}=\max _{i}\left\{a_{i}\right\}$. By Proposition 2.7, the functions $f_{n, M}$ and $f_{n, U}$ are bounded above, so that, by the inequalities (2) and (3), $f_{n-1, M}$ is bounded above. To complete our proof, for $i>1$ we see that

$$
H_{P_{+}}^{n-i}(M)_{j} \cong H_{P_{+}}^{n-i+1}(U)_{j}
$$

Thus $f_{n-i, M}=f_{n-i+1, U}$ for $i>1$. By induction on $i>1$ all $f_{i, M}$ are bounded above, as required.

## 3. The Hilbert function of the components of the top local cohomology of a hypersurface ring

Let $R$ be a hypersurface ring. In this section we want to show that the Hilbert function of the $P_{0}$-module $H_{P_{+}}^{n}(R)_{j}$ is a nonincreasing function in $j$. Let $f \in P$ be a bihomogeneous form of degree $(a, b)$. Write

$$
f=\sum_{\substack{\alpha|=a\\| \beta \mid=b}} c_{\alpha \beta} x^{\alpha} y^{\beta} \quad \text { where } c_{\alpha \beta} \in K
$$

We may also write $f=\sum_{|\beta|=b} f_{\beta} y^{\beta}$ where $f_{\beta} \in P_{0}$ with $\operatorname{deg} f_{\beta}=a$. The monomials $y^{\beta}$ for which $|\beta|=b$ are ordered lexicographically induced by $y_{1}>y_{2}>\cdots>y_{n}$. We consider the hypersurface ring $R=P / f P$. From the exact sequence

$$
0 \rightarrow P(-a,-b) \xrightarrow{f} P \rightarrow P / f P \rightarrow 0
$$

we get an exact sequence of $P_{0}$-modules

$$
\bigoplus_{|c|=-n-j+b} P_{0}(-a) z^{c} \xrightarrow{f} \bigoplus_{|c|=-n-j} P_{0} z^{c} \rightarrow H_{P_{+}}^{n}(R)_{j} \rightarrow 0
$$

We also order the bases elements $z^{c}$ lexicographically induced by $z_{1}>z_{2}>\cdots>z_{n}$. Applying $f$ to the bases elements we obtain $f z^{c}=\sum_{|\beta|=b} f_{\beta} z^{\beta-c}$, where $z^{\beta-c}=0$ if $c \nless \beta$ componentwise. With respect to these bases the map of free $P_{0}$-modules is given by a $\binom{-j-1}{n-1} \times\binom{-j+b-1}{n-1}$ matrix which we denote by $U_{j}$. This matrix also describes the image of this map as submodule of the free module $F_{j}$ where $F_{j}=\bigoplus_{|c|=-n-j} P_{0} z^{c}$, so that $H_{P_{+}}^{n}(R)_{j}$ is just Coker $f=F_{j} / U_{j}$. Note that $H_{P_{+}}^{n}(R)_{j}=0$ for all $j>-n$.

Let $B_{d}$ denote the set of all monomials of degree $d$ in the indeterminates $z_{1}, \ldots, z_{n}$. Let $h=\sum_{v \in B_{-n-j}} h_{v} v \in U_{j}$ where $h_{v} \in P_{0}$ for all $v$. Then $h_{u} u$ is called the initial term of $h$ if $h_{u} \neq 0$ and $h_{v}=0$ for all $v>u$, and we set $\operatorname{in}(h)=h_{u} u$. The polynomial $h_{u} \in P_{0}$ is called the initial coefficient and the monomial $u$ is called the initial monomial of $h$.

Now for a monomial $u \in B_{-n-j}$ we denote $U_{j, u}$ the set of elements in $U_{j}$ whose initial monomial is $u$, and we denote by $I_{j, u}$ the ideal generated by the initial coefficients of the elements in $U_{j, u}$.

Note that

$$
U_{j} \backslash\{0\}=\bigcup_{u \in B_{-n-j}} U_{j, u}
$$

We fix the lexicographical order introduced above, and let in $\left(U_{j}\right)$ be the submodule generated by $\left\{\operatorname{in}(h): h \in U_{j}\right\}$. Then

$$
\begin{equation*}
\operatorname{in}\left(U_{j}\right)=\bigoplus_{u \in B_{-n-j}} I_{j, u} u \tag{4}
\end{equation*}
$$

Proposition 3.1. With the above notation we have

$$
I_{j, u}=I_{j-1, z_{1} u} \quad \text { for all } j \leqslant-n \text { and } u \in B_{-n-j} .
$$

Proof. Let $h_{0} \in I_{j, u}$. Then there exists $h \in U_{j}$ such that $h=h_{0} u+$ lower terms. We set $k=$ $-n-j+b$, for short. Since $h$ is in the image of $f$, we may also write $h=\sum_{|c|=k} f_{c} f z^{c}$ where $f_{c} \in P_{0}$ and $f z^{c}=\sum_{\beta \leqslant c} f_{\beta} z^{c-\beta}$. We define $g=\sum_{|c|=k} f_{c} f z^{c+e_{1}}$ where $f z^{c+e_{1}}=$ $\sum_{\beta \leqslant c+e_{1}} f_{\beta} z^{c+e_{1}-\beta}$ and $e_{1}=(1,0, \ldots, 0)$. We see that $g \in U_{j-1}$. We may write

$$
g=\sum_{|c|=k} f_{c} \sum_{\beta \leqslant c} f_{\beta} z^{c+e_{1}-\beta}+\sum_{|c|=k} f_{c} \sum_{\substack{\beta \nless c \\ \beta \leqslant c+e_{1}}} f_{\beta} z^{c+e_{1}-\beta} .
$$

Thus we conclude that $g=z_{1} h+h_{1}$ where

$$
h_{1}=\sum_{|c|=k} f_{c} \sum_{\substack{\beta \nless c \\ \beta \leqslant c+e_{1}}} f_{\beta} z^{c+e_{1}-\beta} .
$$

We now claim that $h_{1}$ does not contain $z_{1}$ as a factor. For each $\alpha \in \mathbb{N}^{n}$ we denote by $\alpha(i)$ the $i$ th component of $\alpha$. Assume that $\left(c+e_{1}-\beta\right)(1)>0$ for some $\beta$ appearing in the sum of $h_{1}$. Then $c(1) \geqslant \beta(1)$. Moreover, if $i>1$, then $\left(c+e_{1}-\beta\right)(i) \geqslant 0$ implies that $c(i) \geqslant \beta(i)$. Hence $c(i) \geqslant \beta(i)$ for all $i$, a contradiction. It follows that $\operatorname{in}(g)=\operatorname{in}(h) z_{1}$. Therefore $h_{u} \in I_{j-1, z_{1} u}$.

Conversely, suppose $h_{0} \in I_{j-1, z_{1} u}$. Then there exists $g \in U_{j-1}$ such that $g=h_{0} z_{1} u+$ lower terms. We may write $g=\sum_{|c|=k} f_{c}^{\prime} f z^{c+e_{1}}$ where $f_{c}^{\prime} \in P_{0}$ and $f z^{c+e_{1}}=$ $\sum_{\beta \leqslant c+e_{1}} f_{\beta} z^{c+e_{1}-\beta}$. Thus

$$
g=\sum_{|c|=k} f_{c}^{\prime} \sum_{\beta \leqslant c} f_{\beta} z^{c+e_{1}-\beta}+\sum_{|c|=k} f_{c}^{\prime} \sum_{\substack{\beta \nless c \\ \beta \leqslant c+e_{1}}} f_{\beta} z^{c+e_{1}-\beta} .
$$

As above we see that $g=z_{1} f^{\prime}+$ lower terms, where $f^{\prime}=\sum_{|c|=k} f_{c}^{\prime} f z^{c}$. We see that $f^{\prime} \in U_{j}$, and that $\operatorname{in}\left(f^{\prime}\right) z_{1}=\operatorname{in}(g)=h_{0} z_{1} u$. Therefore, $\operatorname{in}\left(f^{\prime}\right)=h_{0} u$, and hence $h_{0} \in I_{j, u}$.

Let $M$ and $N$ be graded $P_{0}$-modules. We denote by $\operatorname{Hilb}(M)=\sum_{i \in \mathbb{Z}} \operatorname{dim}_{K} M_{i} t^{i}$ the Hilbert-series of $M$. We write $\operatorname{Hilb}(M) \leqslant \operatorname{Hilb}(N)$ when $\operatorname{dim}_{K} M_{i} \leqslant \operatorname{dim}_{K} N_{i}$ for all $i$.

Let $F$ be a free $P_{0}$-module with basis $\beta=\left\{u_{1}, \ldots, u_{r}\right\}$. Let $U$ be a graded submodule of $F$. For $f \in U$, we write $f=\sum_{i=1}^{r} f_{i} u_{i}$ where $f_{i} \in P_{0}$. We set $\operatorname{in}(f)=f_{j} u_{j}$ where $f_{j} \neq 0$ and $f_{i}=0$ for all $i<j$. We also set $\operatorname{in}(U)$ be the submodule of $F$ generated by all in $(f)$ such that $f \in U$. Let $I$ be a homogeneous ideal of $P_{0}$. We say that set of homogeneous elements of $P_{0}$ forms a $K$-basis for $P_{0} / I$ if its image forms a $K$-basis for $P_{0} / I$. Now we can state the following result which is related to a theorem of Macaulay [2, Theorem 4.2.3], see also [2, Corollary 4.2.4]. For the convenience of the reader we include its proof.

Lemma 3.2. With notation as above we have

$$
\operatorname{Hilb}(F / U)=\operatorname{Hilb}(F / \operatorname{in}(U))
$$

Proof. As in (4) we have in $(U)=\bigoplus_{i=1}^{r} I_{u_{i}} u_{i}$ where $I_{u_{i}}$ is the ideal generated by all $f_{i} \in$ $P_{0}$ such that there exists $f \in F$ with $\operatorname{in}(f)=f_{i} u_{i}$. Thus we have $F / \operatorname{in}(U)=\bigoplus_{i=1}^{r} P_{0} / I_{u_{i}}$. For each $j$ let $\beta_{j}$ be a set of homogeneous elements $h_{i j} \in P_{0}$ which forms a $K$-basis of $P_{0} / I_{u_{j}}$. Then $\beta=\left\{\beta_{1} u_{1}, \ldots, \beta_{r} u_{r}\right\}$ is a homogeneous $K$-basis of $F / \operatorname{in}(U)$. To complete our proof we will show that $\beta$ is also a $K$-basis of $F / U$. We first show that the elements of $\beta$ in $F / U$ are linearly independent. Suppose that in $F / U$, we have $\sum_{i, j} a_{i j} h_{i j} u_{j}=0$ with $a_{i j} \in K$. Thus $\sum_{j=1}^{r}\left(\sum_{i} a_{i j} h_{i j}\right) u_{j} \in U$. We set $h_{j}=\sum_{i} a_{i j} h_{i j}$, so that $h_{1} u_{1}+\cdots+$ $h_{r} u_{r} \in U$. If all $h_{j}=0$, then $a_{i j}=0$ for all $i$ and $j$, as required. Assume that $h_{j} \neq 0$ for some $j$, and let $k$ be the smallest integer such that $h_{k} \neq 0$. It follows that $h_{k} u_{k}+$ $h_{k+1} u_{k+1}+\cdots \in U$, so that $h_{k} \in I_{k}$, and hence $\sum_{i} a_{i k} h_{i k}=0$ modulo $I_{k}$. Since $h_{i k}$ are part of a $K$-basis of $P_{0} / I_{k}$, it follows that $a_{i k}=0$ for all $i$, and hence $h_{k}=0$, a contradiction.

Now we want to show that each element in $F / U$ can be written as a $K$-linear combination of elements of $\beta$. Let $f+U \in F / U$ where $f \in F$. Thus there exists $f_{i} \in P_{0}$ such that $f=\sum_{i=1}^{r} f_{i} u_{i}$. Since $f_{1}+I_{u_{1}} \in P_{0} / I_{u_{1}}$, there exists $\lambda_{i 1} \in K$ such that $f_{1}+I_{u_{1}}=$ $\sum_{i} \lambda_{i 1}\left(h_{i 1}+I_{u_{1}}\right)$, so that $f_{1}=\sum_{i} \lambda_{i 1} h_{i 1}+h_{u_{1}}$ for some $h_{u_{1}} \in I_{u_{1}}$. Hence

$$
f=\sum_{i} \lambda_{i 1} h_{i 1} u_{1}+h_{u_{1}} u_{1}+\sum_{i=2}^{r} f_{i} u_{i} .
$$

We set

$$
f^{\prime}=f-\sum_{i} \lambda_{i 1} h_{i 1} u_{1}=h_{u_{1}} u_{1}+\sum_{i=2}^{r} f_{i} u_{i}
$$

Since $h_{u_{1}} \in I_{u_{1}}$, there exist $g_{2}, \ldots, g_{r} \in P_{0}$ such that $h_{u_{1}} u_{1}+\sum_{i=2}^{r} g_{i} u_{i} \in U$. Therefore, $h_{u_{1}} u_{1}=-\sum_{i=2}^{r} g_{i} u_{i}$ modulo $U$. Hence it follow that

$$
f^{\prime}=-\sum_{i=2}^{r} g_{i} u_{i}+\sum_{i=2}^{r} f_{i} u_{i}=\sum_{i=2}^{r} f_{i}^{\prime} u_{i} \quad \text { modulo } U .
$$

Here $f_{i}^{\prime}=-g_{i}+f_{i}$ for $i=2, \ldots, r$. By induction on the number of summands, we may assume that $\sum_{i=2}^{r} f_{i}^{\prime} u_{i}$ is a linear combination of elements of $\beta$ modulo $U$. Since $f$ differs from $f^{\prime}$ only by a linear combination of elements of $\beta$, the assertion follows.

Now we are able to prove that the Hilbert-series of the $P_{0}$-module $H_{P_{+}}^{n}(R)_{j}$ is a nonincreasing function in $j$.

Theorem 3.3. Let $R=P / f P$ be a hypersurface ring. Then

$$
\operatorname{Hilb}\left(H_{P_{+}}^{n}(R)_{j-1}\right) \geqslant \operatorname{Hilb}\left(H_{P_{+}}^{n}(R)_{j}\right) \quad \text { for all } j \leqslant-n .
$$

Proof. Let $F_{j}=\bigoplus_{u \in B_{-n-j}} P_{0} u$ where $u=z_{1}^{a_{1}} \ldots z_{n}^{a_{n}}$ with $\sum_{i=1}^{n} a_{i}=-n-j$. In view of (4) we have $F_{j} / \operatorname{in}\left(U_{j}\right)=\bigoplus_{u \in B_{-n-j}} P_{0} / I_{j, u}$. By Lemma 3.2 we know that $F_{j} / U_{j}$ and $F_{j} / \operatorname{in}\left(U_{j}\right)$ have the same Hilbert function. Thus Proposition 3.1 implies that for all $j \leqslant-n$ we have

$$
\begin{aligned}
\operatorname{Hilb}\left(H_{P_{+}}^{n}(R)_{j}\right) & =\operatorname{Hilb}\left(F_{j} / U_{j}\right)=\sum_{i} \operatorname{dim}_{K}\left(\bigoplus_{u \in B_{-n-j}} P_{0} / I_{j, u}\right)_{i} t^{i} \\
& =\sum_{i} \sum_{u \in B_{-n-j}} \operatorname{dim}_{K}\left(P_{0} / I_{j, u}\right)_{i} t^{i} \\
& =\sum_{i} \sum_{u \in B_{-n-j}} \operatorname{dim}_{K}\left(P_{0} / I_{j-1, z_{1} u}\right)_{i} t^{i} \\
& =\sum_{i} \sum_{v \in B_{-n-j+1}}^{a_{1}>0} \operatorname{dim}_{K}\left(P_{0} / I_{j-1, v}\right)_{i} t^{i} \\
& \leqslant \sum_{i} \sum_{v \in B_{-n-j+1}} \operatorname{dim}_{K}\left(P_{0} / I_{j-1, v}\right)_{i} t^{i} \\
& =\sum_{i} \operatorname{dim}_{K}\left(\bigoplus_{v \in B_{-n-j+1}} P_{0} / I_{j-1, v}\right)_{i}^{i}=\operatorname{Hilb}\left(H_{P_{+}}^{n}(R)_{j-1}\right),
\end{aligned}
$$

as desired.
Corollary 3.4. Let $R$ be the hypersurface ring $P / f P$ such that the $P_{0}$-module $H_{P_{+}}^{n}(R)_{j}$ has finite length for all $j$. Then

$$
\operatorname{reg} H_{P_{+}}^{n}(R)_{j-1} \geqslant \operatorname{reg} H_{P_{+}}^{n}(R)_{j} \quad \text { for all } j \leqslant-n .
$$

Proof. The assertion follows from the fact that

$$
\operatorname{reg} H_{P_{+}}^{n}(R)_{j}=\operatorname{deg} \operatorname{Hilb}\left(H_{P_{+}}^{n}(R)_{j}\right)
$$

Now one could ask when $P_{0}$-module $H_{P+}^{n}(R)_{j}$ is of finite length. To answer this question we need some preparation. Let $A$ be a Noetherian ring and $M$ be a finitely generated $A$-module with presentation

$$
A^{m} \xrightarrow{\varphi} A^{n} \rightarrow M \rightarrow 0 .
$$

Let $U$ be the corresponding matrix of the map $\varphi$ and $I_{n-i}(U)$ for $i=0, \ldots, n-1$ be the ideal generated by the $(n-i)$-minors of matrix $U$. Then $\operatorname{Fitt}_{i}(M):=I_{n-i}(U)$ is called the $i$ th Fitting ideal of $M$. We use the convention that $\operatorname{Fitt}_{i}(M)=0$ if $n-i>\min \{n, m\}$, and $\operatorname{Fitt}_{i}(M)=A$ if $i \geqslant n$. In particular, we obtain $\operatorname{Fitt}_{r}(M)=0$ if $r<0$, $\operatorname{Fitt}_{0}(M)$ is generated by the $n$-minors of $U$, and $\operatorname{Fitt}_{n-1}(M)$ is generated by all entries of $U$. Note that $\operatorname{Fitt}_{i}(M)$ is an invariant on $M$, i.e., independent of the presentation. By [5, Proposition 20.7] we have $\operatorname{Fitt}_{0}(M) \subseteq \operatorname{Ann} M$ and if $M$ can be generated by $r$ elements, then $(\operatorname{Ann} M)^{r} \subseteq \operatorname{Fitt}_{0}(M)$. Thus we can conclude that $\sqrt{\mathrm{Fitt}_{0}(M)}=\sqrt{\text { Ann } M}$. Therefore

$$
\begin{equation*}
\operatorname{dim} M=\operatorname{dim} A / \operatorname{Ann} M=\operatorname{dim} A / I_{n}(U) \tag{5}
\end{equation*}
$$

Now we can state the following
Proposition 3.5. Let $R$ be the hypersurface ring $P / f P$, and $I(f)$ the ideal generated by all the coefficients of $f$. Then $\operatorname{dim}_{P_{0}} H_{P+}^{n}(R)_{j} \leqslant \operatorname{dim} P_{0} / I(f)$. In particular, if $I(f)$ is $\mathfrak{m}$-primary where $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$, then $P_{0}$-module $H_{P+}^{n}(R)_{j}$ is of finite length for all $j$.

Proof. Note that $H_{P+}^{n}(R)_{j}=0$ for $j>-n$. Therefore we may suppose that $j \leqslant-n$. As we have already seen, $H_{P+}^{n}(R)_{j}$ has $P_{0}$-presentation

$$
P_{0}^{n_{1}}(-a) \xrightarrow{\varphi} P_{0}^{n_{0}} \rightarrow H_{P+}^{n}(R)_{j} \rightarrow 0,
$$

where $n_{0}=\binom{-j-1}{n-1}$ and $n_{1}=\binom{-j+b-1}{n-1}$. In view of (5) we have $\operatorname{dim}_{P_{0}} H_{P+}^{n}(R)_{j}=$ $\operatorname{dim} P_{0} / I_{n_{0}}\left(U_{j}\right)$ where $U_{j}$ is the corresponding matrix of the map $\varphi$. By [9, Lemma 1.4] we have $\sqrt{I(f)} \subseteq \sqrt{I_{n_{0}}\left(U_{j}\right)}$. It follows that $\operatorname{dim}_{P_{0}} H_{P+}^{n}(R)_{j} \leqslant \operatorname{dim} P_{0} / I(f)$. Since $I(f)$ is $\mathfrak{m}$-primary it follows that $\operatorname{dim} P_{0} / I(f)=0$. Therefore $\operatorname{dim}_{P_{0}} H_{P+}^{n}(R)_{j}=0$, and hence $H_{P+}^{n}(R)_{j}$ has finite length, as required.

## 4. The regularity of the graded components of local cohomology for a special class of hypersurfaces

Let $A=\bigoplus_{i=0}^{n} A_{i}$ be a standard graded Artinian $K$-algebra, where $K$ is a field of characteristic 0 . We say that $A$ has the weak Lefschetz property if there is a linear form $l$ of
degree 1 such that the multiplication map $A_{i} \xrightarrow{l} A_{i+1}$ has maximal rank for all $i$. This means the corresponding matrix has maximal rank, i.e., $l$ is either injective or surjective. Such an element $l$ is called a weak Lefschetz element on $A$. We also say that $A$ has the strong Lefschetz property if there is a linear form $l$ of degree 1 such that the multiplication map $A_{i} \xrightarrow{l^{k}} A_{i+k}$ has maximal rank for all $i$ and $k$. Such an element $l$ is called a strong Lefschetz element on $A$. Note that the set of all weak Lefschetz elements on $A$ is a Zariski-open subset of the affine space $A_{1}$, and the same holds for the set of all strong Lefschetz elements on $A$. For an algebra $A$ as above, we say that $A$ has the strong Stanley property (SSP) if there exists $l \in A_{1}$ such that $l^{n-2 i}: A_{i} \rightarrow A_{n-i}$ is bijective for $i=0,1, \ldots,[n / 2]$. Note that the Hilbert function of standard graded $K$-algebra satisfying the weak Lefschetz property is unimodal. Stanley [10] and Watanabe [11] proved the following result: Let $a_{1}, \ldots, a_{n}$ be the integers such that $a_{i} \geqslant 1$ and assume as always in this section that char $K=0$. Then $A=K\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{a_{1}}, \ldots, x_{n}^{a_{n}}\right)$ has the strong Lefschetz property.

Theorem 4.1. Let $r \in \mathbb{N}$ and $f_{\lambda}=\sum_{i=1}^{n} \lambda_{i} x_{i} y_{i}$ with $\lambda_{i} \in K$ and $n \geqslant 2$, and assume that char $K=0$. Then there exists a Zariski open subset $V \subset K^{n}$ such that for all $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in V$ one has

$$
\operatorname{reg} H_{P+}^{n}\left(P / f_{\lambda}^{r} P\right)_{j}=-n-j+r-1
$$

Proof. We first prove the theorem in the case that $f=f_{(1, \ldots, 1)}=\sum_{i=1}^{n} x_{i} y_{i}$, and set $R=$ $P / f^{r} P$. From the exact sequence

$$
0 \rightarrow P(-r,-r) \xrightarrow{f^{r}} P \rightarrow R \rightarrow 0
$$

we get an exact sequence of $P_{0}$-modules,

$$
\begin{equation*}
\bigoplus_{|b|=-n-j+r} P_{0}(-r) z^{b} \xrightarrow{f^{r}} \bigoplus_{|b|=-n-j} P_{0} z^{b} \rightarrow H_{P_{+}}^{n}(R)_{j} \rightarrow 0 \tag{6}
\end{equation*}
$$

Note that $H_{P+}^{n}(R)_{j}$ is generated by elements of degree 0 and the ideal generated by the coefficients of $f$ is $\mathfrak{m}$-primary. By Proposition 3.5 , we need only to show that
(a) $\left[H_{P+}^{n}(R)_{j}\right]_{-n-j+r-1} \neq 0, \quad$ and
(b) $\left[H_{P+}^{n}(R)_{j}\right]_{-n-j+r}=0$.

Let $k=-n-j$ for short. For the proof of (a), we take the $(k+r-1)$ th component of the exact sequence (6), and obtain the exact sequence of $K$-vector spaces

$$
\bigoplus_{\substack{|a|=k-1 \\|b|=k+r}} K x^{a} z^{b} \xrightarrow{f^{r}} \bigoplus_{\substack{|a|=k+r-1 \\|b|=k}} K x^{a} z^{b} \rightarrow\left[H_{P_{+}}^{n}(R)_{j}\right]_{k+r-1} \rightarrow 0
$$

We set

$$
V_{\alpha, \beta}:=\bigoplus_{\substack{|a|=\alpha \\|b|=\beta}} K x^{a} z^{b}
$$

Hence one has $\operatorname{dim}_{K} V_{k-1, k+r}=\binom{n+k-2}{k-1}\binom{n+k+r-1}{k+r}$ which is less than $\operatorname{dim}_{K} V_{k+r-1, k}=$ $\binom{n+k+r-2}{k+r-1}\binom{n+k-1}{k}$ for $n \geqslant 2$. Thus $f^{r}$ is not surjective, so (a) follows. For the proof of (b), we take the $(k+r)$ th component of the exact sequence (6), and obtain the exact sequence of $K$-vector spaces

$$
\bigoplus_{\substack{|a|=k \\|b|=k+r}} K x^{a} z^{b} \xrightarrow{f^{r}} \bigoplus_{\substack{|a|=k+r \\|b|=k}} K x^{a} z^{b} \rightarrow\left[H_{P_{+}}^{n}(R)_{j}\right]_{k+r} \rightarrow 0
$$

Note that $\operatorname{dim}_{K} V_{k, k+r}=\operatorname{dim}_{K} V_{k+r, k}$. We will show that $f^{r}$ is an isomorphism, then we are done. We fix $c \in \mathbb{N}_{0}^{n}$ such that $c=\left(c_{1}, \ldots, c_{n}\right)$ where $c_{i} \geqslant 0$. We set

$$
V_{\alpha, \beta}^{c}:=\bigoplus_{\substack{|a|=\alpha \\|b|=\beta \\ a+b=c}} K x^{a} z^{b} \quad \text { and } \quad A_{i}^{c}:=\bigoplus_{\substack{|a|=i \\ a \leqslant c}} K x^{a}
$$

We define $\varphi: V_{k, k+r}^{c} \rightarrow A_{k}^{c}$ by setting $\varphi\left(x^{a} z^{b}\right)=x^{a}$. Note that $\varphi$ is an isomorphism of $K$-vector spaces. Let $A^{c}=\bigoplus_{i=0}^{|c|} A_{i}^{c}$. We can define an algebra structure on $A^{c}$. For $x^{s}, x^{t} \in A^{c}$ we define

$$
x^{s} x^{t}= \begin{cases}x^{s+t}, & \text { if } s+t \leqslant c, \\ 0, & \text { if } s+t \nless c .\end{cases}
$$

A $K$-basis of $A^{c}$ is given by all monomials $x^{a}$ with $a \leqslant c$. It follows that

$$
A^{c}=K\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{c_{1}+1}, \ldots, x_{n}^{c_{n}+1}\right)
$$

Now we see that the map

$$
V_{k, k+r}=\bigoplus_{|c|=2 k+r} V_{k, k+r}^{c} \xrightarrow{f^{r}} \bigoplus_{|c|=2 k+r} V_{k+r, k}^{c}=V_{k+r, k}
$$

is an isomorphism if and only if restriction map $f^{\prime}:=\left.f^{r}\right|_{k, k+r} ^{c}: V_{k, k+r}^{c} \rightarrow V_{k+r, k}^{c}$ is an isomorphism for all $c$ with $|c|=2 k+r$.

For each such $c$ we have a commutative diagram

with $l=x_{1}+x_{2}+\cdots+x_{n} \in A_{1}^{c}$ and where $A_{k}^{c} \xrightarrow{l^{r}} A_{k+r}^{c}$ is multiplication by $l^{r}$ in the $K$-algebra $A^{c}$. Since the socle degree of $A^{c}$ equals $s=2 k+r$, we have $k+r=s-k$. Therefore the multiplication map $l^{r}: A_{k}^{c} \rightarrow A_{s-k}^{c}$ with $r=s-2 k$ is an isomorphism by the strong Stanley property of the algebra $A^{c}$, see [11, Corollary 3.5].

Now if we replace $f$ by $f_{\lambda}$, then the corresponding linear form in the above commutative diagram is the form $l_{\lambda}=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{n} x_{n}$. It is known that the property of $l_{\lambda}$ to be a weak Lefschetz element is an open condition, that is, there exists a Zariski open set $V \subset K^{n}$ such that $l_{\lambda}$ is a weak Lefschetz element. This open set is not empty since $\lambda=(1, \ldots, 1) \in V$. Since any weak Lefschetz element satisfies (SSP), we can replace in the above proof $f$ by $f_{\lambda}$ for each $\lambda \in V$, and obtain the same conclusion.

Remark 4.2. It is now the time that to show Theorem 2.4 may fail without the assumption that $\operatorname{dim}_{P_{0}} M / P_{+} M \leqslant 1$. In case of Theorem 4.1 we have $M=R=P / f_{\lambda}^{r} P$, and so $M / P_{+} M=P_{0}$. Therefore in that case $\operatorname{dim}_{P_{0}} M / P_{+} M=\operatorname{dim}_{P_{0}} P_{0}=n \geqslant 2$, and in fact $f_{n, R}$ is not bounded.

Now in Theorem 4.1, we want to compute the Hilbert function of the $P_{0}$-module $H_{P_{+}}^{n}(R)_{j}$.

Corollary 4.3. With the assumption of Theorem 4.1, we have
$\operatorname{dim}_{K}\left(H_{P_{+}}^{n}(R)_{j}\right)_{i}= \begin{cases}\binom{n+i-1}{i}\binom{-j-1}{-n-j}, & \text { if } i \leqslant r, \\ \binom{n+i-1}{i}\binom{-j-1}{-n-j}-\binom{n+i-r-1}{i-r}\binom{-j+r-1}{-n-j+r}, & \text { if } r \leqslant i \leqslant-n-j+r-1 .\end{cases}$
Proof. We set $-n-j=k$, for short. We take $i$ th component of exact sequence (6), and obtain the exact sequence of $K$-vector space

$$
\bigoplus_{\substack{|a|=i-r \\|b|=k+r}} K x^{a} z^{b} \xrightarrow{f^{r}} \bigoplus_{\substack{|a|=i \\|b|=k}} K x^{a} z^{b} \rightarrow\left[H_{P_{+}}^{n}(R)_{j}\right]_{i} \rightarrow 0
$$

If $i \leqslant r$, from the above exact sequence we see that

$$
\operatorname{dim}_{K}\left(H_{P_{+}}^{n}(R)_{j}\right)_{i}=\operatorname{dim}_{K} V_{i, k}=\binom{n+i-1}{i}\binom{-j-1}{-n-j} .
$$

Now let $r \leqslant i \leqslant-n-j+r-1$. First one has $\operatorname{dim}_{K} V_{i-r, k+r}<\operatorname{dim}_{K} V_{i, k}$. We claim that $f^{r}$ is injective, then we are done. We see that the map

$$
V_{i-r, k+r}=\bigoplus_{|c|=i+k} V_{i-r, k+r}^{c} \xrightarrow{f^{r}} \bigoplus_{|c|=i+k} V_{i, k}^{c}=V_{i, k}
$$

where $f^{r}\left(V_{i-r, k+r}^{c}\right) \subset V_{i, k}^{c}$ is injective if and only if restriction map $f^{\prime}:=\left.f^{r}\right|_{V_{i-r, k+r}^{c}}$ : $V_{i-r, k+r}^{c} \rightarrow V_{i, k}^{c}$ is injective for all $c$ with $|c|=i+k$.

For each such $c$ we have a commutative diagram

with $l=x_{1}+x_{2}+\cdots+x_{n} \in A_{1}^{c}$. Since $i<-n-j+r$, then $i<|c|-(i-r)$ and by the weak Lefschetz property the algebra $A^{c}$ is unimodal. Therefore $\operatorname{dim}_{K} A_{i-r}^{c} \leqslant \operatorname{dim}_{K} A_{i}^{c}$. The strong Lefschetz property implies that the map $l^{r}$ is injective, and hence $f^{\prime}$ is injective, as required.

Corollary 4.4. Assume that char $K=0$. Then with the notation of Theorem 4.1, we have

$$
\operatorname{reg} H_{P+}^{n-1}\left(P / f_{\lambda}^{r} P\right)_{j}=-n-j+r+1
$$

Proof. We consider the exact sequence of $P_{0}$-modules

$$
\begin{equation*}
0 \rightarrow H_{P+}^{n-1}(R)_{j} \rightarrow \bigoplus_{|b|=-n-j+r} P_{0}(-r) z^{b} \xrightarrow{f^{r}} \bigoplus_{|b|=-n-j} P_{0} z^{b} \rightarrow H_{P+}^{n}(R)_{j} \rightarrow 0 \tag{7}
\end{equation*}
$$

where $R=P / f_{\lambda}^{r} P$. It follows that $H_{P+}^{n-1}(R)_{j}$ is the second syzygy module of $H_{P+}^{n}(R)_{j}$. Let

$$
\cdots \rightarrow \bigoplus_{j=1}^{t_{2}} P_{0}\left(-a_{1 j}\right) \rightarrow \bigoplus_{j=1}^{t_{1}} P_{0}\left(-a_{0 j}\right) \rightarrow H_{P+}^{n-1}(R)_{j} \rightarrow 0
$$

be the minimal graded free resolution of $H_{P+}^{n-1}(R)_{j}$. We combine two above resolutions, and obtain a graded free resolution for $H_{P+}^{n}(R)_{j}$ of the form

$$
\cdots \rightarrow \bigoplus_{j=1}^{t_{1}} P_{0}\left(-a_{0 j}\right) \xrightarrow{d_{0}} \bigoplus_{|b|=-n-j+r} P_{0}(-r) z^{b} \xrightarrow{f^{r}} \bigoplus_{|b|=-n-j} P_{0} z^{b} \rightarrow H_{P+}^{n}(R)_{j} \rightarrow 0
$$

We choose a basis element $h \in \bigoplus_{j=1}^{t_{1}} P_{0}\left(-a_{0 j}\right)$ of degree $a_{0 j}$. Thus

$$
d_{0}(h)=\sum_{|b|=-n-j+r} h_{b} z^{b},
$$

where $h_{b} \in P_{0}$ with deg $h_{b}=a_{0 j}-r$. Because the free resolution is minimal, at least one $h_{b} \neq 0$, so that $r<a_{0 j}$ and hence $r-1 \leqslant a_{0 j}-2$. Thus we have

$$
\operatorname{reg} H_{P+}^{n}(R)_{j}=\max _{i, j}\left\{0, r-1, a_{i j}-i-2\right\}=\max _{i, j}\left\{a_{i j}-i-2\right\} .
$$

Theorem 4.1 implies that

$$
\operatorname{reg} H_{P+}^{n-1}(R)_{j}=\max _{i, j}\left\{a_{i j}-i\right\}=-n-j+r+1
$$

Corollary 4.5. Assume that char $K=0$. Then with the notation of Theorem 4.1 the $P_{0}$-module $H_{P+}^{n-1}\left(P / f_{\lambda}^{r} P\right)_{j}$ has a linear resolution.

Proof. Taking the $k$ th component of the exact sequence (7), we obtain the exact sequence of $K$-vector spaces

$$
0 \rightarrow\left[H_{P_{+}}^{n-1}(R)_{j}\right]_{k} \rightarrow \bigoplus_{\substack{|a|=k-r \\|b|=-n-j+r}} K x^{a} z^{b} \xrightarrow{f^{r}} \bigoplus_{\substack{|a|=k \\|b|=-n-j}} K x^{a} z^{b} \rightarrow\left[H_{P_{+}}^{n}(R)_{j}\right]_{k} \rightarrow 0 .
$$

For $k$ we distinguish several cases. Let $k=-n-j+r+1$. One has

$$
\operatorname{dim}_{K} V_{k-r,-n-j+r}>\operatorname{dim}_{K} V_{k,-n-j} .
$$

This implies that

$$
\left[H_{P_{+}}^{n-1}(R)_{j}\right]_{k} \neq 0 \quad \text { for all } k \geqslant-n-j+r+1,
$$

since $H_{P_{+}}^{n-1}(R)_{j}$ is torsion-free.
Let $k=-n-j+r$. Then $\operatorname{dim}_{K} V_{k-r,-n-j+r}=\operatorname{dim}_{K} V_{k,-n-j}$, so that $\left[H_{P_{+}}^{n-1}(R)_{j}\right]_{k}=0$. Finally let $k<-n-j+r$. We claim that

$$
\operatorname{dim}_{K} V_{k-r,-n-j+r}=\binom{n+k-r-1}{k-r}\binom{-j+r-1}{-n-j+r}
$$

is less than

$$
\operatorname{dim}_{K} V_{k,-n-j}=\binom{n+k-1}{k}\binom{-j-1}{-n-j} .
$$

Indeed,

$$
\begin{aligned}
& \binom{n+k-r-1}{k-r}\binom{-j+r-1}{-n-j+r}<\binom{n+k-1}{k}\binom{-j-1}{-n-j} \quad \text { if and only if } \\
& \prod_{i=1}^{r} \frac{-j+r-i}{-n-j+r-i+1}<\prod_{i=1}^{r} \frac{n+k-i}{k-i+1}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \frac{-j+r-i}{-n-j+r-i+1}<\frac{n+k-i}{k-i+1} \quad \text { for all } i=1, \ldots, r \quad \text { if and only if } \\
& k(n-1)<(-n-j+r)(n-1)
\end{aligned}
$$

the claim is clear. Thus the regularity of $H_{P+}^{n-1}(R)_{j}$ is equal to the least integer $k$ such that $\left[H_{P_{+}}^{n-1}(R)_{j}\right]_{k} \neq 0$. This means that $P_{0}$-module $H_{P+}^{n-1}(R)_{j}$ has a linear resolution, and its resolution is the form

$$
\cdots \rightarrow P_{0}^{\beta_{3}}(n+j-r-2) \rightarrow P_{0}^{\beta_{2}}(n+j-r-1) \rightarrow H_{P_{+}}^{n-1}(R)_{j} \rightarrow 0
$$

Combining the above resolution with the exact sequence

$$
0 \rightarrow H_{P+}^{n-1}(R)_{j} \rightarrow P_{0}^{\beta_{1}}(-r) \rightarrow P_{0}^{\beta_{0}} \rightarrow H_{P+}^{n}(R)_{j} \rightarrow 0
$$

we obtain a graded free resolution for $H_{P+}^{n}(R)_{j}$ of the form
$\cdots \rightarrow P_{0}^{\beta_{3}}(n+j-r-2) \rightarrow P_{0}^{\beta_{2}}(n+j-r-1) \rightarrow P_{0}^{\beta_{1}}(-r) \rightarrow P_{0}^{\beta_{0}} \rightarrow H_{P+}^{n}(R)_{j} \rightarrow 0$.
In this resolution we know already the Betti numbers

$$
\beta_{0}=\binom{-j-1}{-n-j} \quad \text { and } \quad \beta_{1}=\binom{-j+r-1}{-n-j+r}
$$

Next we are going to compute the remaining Betti numbers and also the multiplicity of $H_{P_{+}}^{n}(R)_{j}$. For this we need to prove the following extension of the formula of Herzog and Kühl [2].

Proposition 4.6. Let $M$ be a finitely generated graded Cohen-Macaulay $P_{0}$-module of codimension s with minimal graded free resolution

$$
0 \rightarrow P_{0}^{\beta_{s}}\left(-d_{s}\right) \rightarrow \cdots \rightarrow P_{0}^{\beta_{1}}\left(-d_{1}\right) \rightarrow P_{0}^{\beta_{0}} \rightarrow M \rightarrow 0
$$

Then

$$
\beta_{i}=(-1)^{i+1} \beta_{0} \prod_{j \neq i} \frac{d_{j}}{\left(d_{j}-d_{i}\right)}
$$

Proof. We consider the square matrix $A$ of size $s$ and the following $s \times 1$ matrices of $X$ and $Y$ :

$$
A=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
d_{1} & d_{2} & \cdots & d_{s} \\
\vdots & \vdots & \vdots & \vdots \\
d_{1}^{s-1} & d_{2}^{s-1} & \cdots & d_{s}^{s-1}
\end{array}\right), \quad X=\left(\begin{array}{c}
-\beta_{1} \\
\beta_{2} \\
\vdots \\
(-1)^{s} \beta_{s}
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{c}
-\beta_{0} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

With similar arguments as in the proof of Lemma 1.1 in [8] one has

$$
\sum_{i=1}^{s}(-1)^{i} \beta_{i} d_{i}^{k}= \begin{cases}0 & \text { for } 1 \leqslant k<s \\ (-1)^{s} s!e(M) & \text { for } k=s\end{cases}
$$

Note that $\sum_{i=1}^{s}(-1)^{i} \beta_{i}=\beta_{0}$. Thus we can conclude that $A X=Y$. Now we can apply Cramer's rule for the computation of $\beta_{i}$. We replace the $i$ th column of $A$ by $Y$, then we expand the determinant $|A|$ of $A$ along to the $Y$, we get $\beta_{i}=-\beta_{0}\left|A^{\prime}\right| /|A|$ where $A^{\prime}$ is the matrix

$$
\left(\begin{array}{cccccc}
d_{1} & \cdots & d_{i-1} & d_{i+1} & \cdots & d_{s} \\
d_{1}^{2} & \cdots & d_{i-1}^{2} & d_{i+1}^{2} & \cdots & d_{s}^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
d_{1}^{s-1} & \cdots & d_{i-1}^{s-1} & d_{i+1}^{s-1} & \cdots & d_{s}^{s-1}
\end{array}\right),
$$

of size $s-1$. $A$ is a Vandermonde matrix whose determinant is $\prod_{1 \leqslant j<i \leqslant s}\left(d_{i}-d_{j}\right)$. We also note that

$$
\left|A^{\prime}\right|=\prod_{j \neq i} d_{j} \prod_{\substack{1 \leqslant t<k \leqslant s \\ t \neq i}}\left(d_{k}-d_{t}\right),
$$

so the desired formula follows.
We also have the following generalization of a formula of Huneke and Miller [7].
Proposition 4.7. With the assumption of Proposition 4.6, we have

$$
e(M)=\frac{\beta_{0}}{s!} \prod_{i=1}^{s} d_{i}
$$

Proof. We consider the square matrix

$$
M=\left(\begin{array}{ccccc}
\beta_{1} d_{1} & \beta_{2} d_{2} & \cdots & \beta_{s-1} d_{s-1} & \beta_{s} d_{s}  \tag{8}\\
\beta_{1} d_{1}^{2} & \beta_{2} d_{2}^{2} & \cdots & \beta_{s-1} d_{s-1}^{2} & \beta_{s} d_{s}^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\beta_{1} d_{1}^{s} & \beta_{2} d_{2}^{s} & \cdots & \beta_{s-1} d_{s-1}^{s} & \beta_{s} d_{s}^{s}
\end{array}\right)
$$

of size $s$.

We will compute the determinant $|M|$ of $M$ in two different ways. First we replace the last column of $M$ by the alternating sum of all columns of $M$. The resulting matrix will be denoted by $M^{\prime}$. It is clear that $|M|=(-1)^{s}\left|M^{\prime}\right|$. Moreover, due to [8, Lemma 1.1], the last column of $M^{\prime}$ is the transpose of the vector $\left(0, \ldots, 0,(-1)^{s} s e(M)\right)$. Thus if we expand $M^{\prime}$ with respect to the last column we get

$$
|M|=(-1)^{s}\left|M^{\prime}\right|=s!e(M)|N|,
$$

where $N$ is the matrix

$$
N=\left(\begin{array}{cccc}
\beta_{1} d_{1} & \beta_{2} d_{2} & \cdots & \beta_{s-1} d_{s-1} \\
\beta_{1} d_{1}^{2} & \beta_{2} d_{2}^{2} & \cdots & \beta_{s-1} d_{s-1}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
\beta_{1} d_{1}^{s-1} & \beta_{2} d_{2}^{s-1} & \cdots & \beta_{s-1} d_{s-1}^{s-1}
\end{array}\right)
$$

of size $s-1$. Thus

$$
\begin{equation*}
|M|=s!e(M) \prod_{i=1}^{s-1} \beta_{i} \prod_{i=1}^{s-1} d_{i}\left|V\left(d_{1}, \ldots, d_{s-1}\right)\right| \tag{9}
\end{equation*}
$$

where $V\left(d_{1}, \ldots, d_{s-1}\right)$ is the Vandermonde matrix of size $s-1$ whose determinant is $\prod_{1 \leqslant j<i \leqslant s-1}\left(d_{i}-d_{j}\right)$. On the other hand, directly from (8) we get

$$
\begin{equation*}
|M|=\prod_{i=1}^{s} \beta_{i} \prod_{i=1}^{s} d_{i}\left|V\left(d_{1}, \ldots, d_{s}\right)\right| \tag{10}
\end{equation*}
$$

where $V\left(d_{1}, \ldots, d_{s}\right)$ is the Vandermonde matrix of size $s$ whose determinant is $\prod_{1 \leqslant j<i \leqslant s}\left(d_{i}-d_{j}\right)$. In view of (9) and (10) we get the desired formula.

Now we are able to compute all Betti numbers and the multiplicity of $H_{P+}^{n}(R)_{j}$. We recall that its resolution is the form

$$
\begin{gathered}
0 \rightarrow P_{0}^{\beta_{n}}(j-r+1) \rightarrow P_{0}^{\beta_{n-1}}(j-r+2) \rightarrow \cdots \rightarrow P_{0}^{\beta_{3}}(n+j-r-2) \\
\rightarrow P_{0}^{\beta_{2}}(n+j-r-1) \rightarrow P_{0}^{\beta_{1}}(-r) \rightarrow P_{0}^{\beta_{0}} \rightarrow H_{P_{+}}^{n}(R)_{j} \rightarrow 0, \\
\quad \text { where } \quad \beta_{0}=\binom{-j-1}{-n-j} \text { and } \beta_{1}=\binom{-j+r-1}{-n-j+r} .
\end{gathered}
$$

Corollary 4.8. With the above notation we have

$$
\beta_{i}=\frac{(-1)^{i} r(n-1)!\beta_{0} \beta_{1}}{(i-2)!(n-i)!(-n-j+r+i-1)(n+j-i+1)} \quad \text { for all } i \geqslant 2
$$

and

$$
e\left(H_{P_{+}}^{n}(R)_{j}\right)=\frac{r(-j+r-1)!\beta_{0}}{n!(-n-j+r)!} .
$$

Proof. The assertion follows from Propositions 4.7 and 4.6.

## 5. Linear bounds for the regularity of the graded components of local cohomology for hypersurface rings

In this section for a bihomogeneous polynomial $f \in P$ we want to give a linear bound for the function $f_{i, R}(j)=\operatorname{reg} H_{P_{+}}^{i}(R)_{j}$ where $R=P / f P$. First we prove the following

Proposition 5.1. Let $R$ be the hypersurface ring $P / f P$ where $f=\sum_{i=1}^{n} f_{i} y_{i}$ with $f_{i} \in P_{0}$. Suppose that $\operatorname{deg} f_{i}=d$ and that $I(f)$ is $\mathfrak{m}$-primary. Then there exists an integer $q$ such that for $j \ll 0$ we have
(a) $\operatorname{reg} H_{P_{+}}^{n}(R)_{j} \leqslant(-n-j+1) d+q$, and
(b) $\operatorname{reg} H_{P_{+}}^{n-1}(R)_{j} \leqslant(-n-j+1) d+q+2$.

Proof. (a) From the exact sequence $0 \rightarrow P(-d,-1) \xrightarrow{f} P \rightarrow R \rightarrow 0$, we get exact sequence $P_{0}$-modules

$$
\begin{equation*}
\bigoplus_{|b|=-n-j+1} P_{0}(-d) z^{b} \xrightarrow{f} \bigoplus_{|b|=-n-j} P_{0} z^{b} \rightarrow H_{P_{+}}^{n}(R)_{j} \rightarrow 0 \tag{11}
\end{equation*}
$$

We first assume that $f_{i}=x_{i}$. Theorem 4.1 implies that reg $H_{P_{+}}^{n}(R)_{j}=-n-j$. We set $k=-n-j$. Thus we can get the surjective map of $K$-vector spaces

$$
\bigoplus_{\substack{|a|=k \\|b|=k+1}} K x^{a} z^{b} \rightarrow \bigoplus_{\substack{|a|=k+1 \\|b|=k}} K x^{a} z^{b}
$$

Replacing $x_{i}$ by $f_{i}$, we therefore get a surjective map

$$
\begin{aligned}
\bigoplus_{|b|=k+1}\left(I(f)^{k}\right)_{d k} z^{b}= & \bigoplus_{\substack{|a|=k \\
|b|=k+1}} K f_{1}^{a_{1}} \ldots f_{n}^{a_{n}} z^{b} \\
& \stackrel{f}{\rightarrow} \bigoplus_{\substack{|a|=k+1 \\
|b|=k}} K f_{1}^{a_{1}} \ldots f_{n}^{a_{n}} z^{b}=\bigoplus_{|b|=k}\left(I(f)^{k+1}\right)_{d(k+1)} z^{b} .
\end{aligned}
$$

Since $I(f)$ is $\mathfrak{m}$-primary by $[3$, Theorem 2.4$]$ there exists an integer $q$ such that

$$
\operatorname{reg}\left(P_{0} / I(f)^{k+1}\right)=(k+1) d+q \quad \text { for } k \gg 0 .
$$

We set $l=(k+1) d+q$. Then for $l \gg 0$ we have

$$
\left(P_{0}\right)_{l+1}=\left(I(f)^{k+1}\right)_{l+1} .
$$

We take the $(l+1)$ th component of the exact sequence (11) and consider the following diagram

in which left-hand vertical homomorphism is inclusion. Thus we conclude that

$$
\left[H_{P_{+}}^{n}(R)_{j}\right]_{l+1}=0
$$

so that reg $H_{P_{+}}^{n}(R)_{j} \leqslant l=(k+1) d+q$, as required.
For the proof (b), we notice that the exact sequence of $P_{0}$-modules of (11) breaks into two short exact sequence of $P_{0}$-modules

$$
\begin{gathered}
0 \rightarrow K_{j} \rightarrow \bigoplus_{|b|=k} P_{0} z^{b} \rightarrow H_{P_{+}}^{n}(R)_{j} \rightarrow 0, \\
0 \rightarrow H_{P_{+}}^{n-1}(R)_{j} \rightarrow \bigoplus_{|b|=k+1} P_{0}(-d) z^{b} \rightarrow K_{j} \rightarrow 0,
\end{gathered}
$$

where $K_{j}=\operatorname{Im} f$. We see from the first of these sequences that reg $K_{j} \leqslant \operatorname{reg} H_{P_{+}}^{n}(R)_{j}+1$. The second short exact sequence, together with part (a) of this theorem and the fact that $d \leqslant \operatorname{reg} K_{j}$ implies that

$$
\operatorname{reg} H_{P_{+}}^{n-1}(R)_{j} \leqslant \max \left\{d, \operatorname{reg} K_{j}+1\right\}=\operatorname{reg} K_{j}+1 \leqslant(-n-j+1) d+q+2
$$

as desired.

Proposition 5.2. Let $\mathbb{N}_{d}^{n}=\left\{\beta \in \mathbb{N}^{n}:|\beta|=d\right\}, P_{0}=K\left[\left\{x_{\beta}\right\}_{\beta \in \mathbb{N}_{d}^{n}}\right]$ and $P=P_{0}\left[y_{1}, \ldots, y_{n}\right]$. Let $R=P / f P$ where $f=\sum_{|\beta|=d} x_{\beta} y^{\beta}$. Then

$$
\operatorname{reg} H_{P_{+}}^{n}(R)_{j} \leqslant(-n-j+1) d-1
$$

Proof. We set $P_{+}=\left(y_{1}, \ldots, y_{n}\right)$ and $P_{0}=K\left[x_{1}, \ldots, x_{m}\right]$ where $m=\binom{n+d-1}{d}$, as usual. From the exact sequence

$$
0 \rightarrow P(-1,-d) \xrightarrow{f} P \rightarrow R \rightarrow 0
$$

we get the exact sequence of $P_{0}$-modules

$$
\bigoplus_{|b|=-n-j+d} P_{0}(-1)\left(y^{b}\right)^{*} \xrightarrow{f} \bigoplus_{|b|=-n-j} P_{0}\left(y^{b}\right)^{*} \rightarrow H_{P_{+}}^{n}(R)_{j} \rightarrow 0
$$

whose $i$ th graded component is

$$
\begin{equation*}
\bigoplus_{\substack{|a|=i-1 \\|b|=-n-j+d}} K x^{a}\left(y^{b}\right)^{*} \xrightarrow{f} \bigoplus_{\substack{|a|=i \\|b|=-n-j}} K x^{a}\left(y^{b}\right)^{*} \rightarrow H_{P_{+}}^{n}(R)_{(i, j)} \rightarrow 0 \tag{12}
\end{equation*}
$$

Here $\left(y^{b}\right)^{*}=z^{b}$ in the notation of Section 1. Now we exchange the role of $x$ and $y$ : We may write $f=\sum_{|\beta|=d} y^{\beta} x_{\beta}$ and set $Q_{+}=\left(x_{1}, \ldots, x_{m}\right)$ and $Q_{0}=K\left[y_{1}, \ldots, y_{n}\right]$. From the exact sequence

$$
0 \rightarrow P(-d,-1) \xrightarrow{f} P \rightarrow R \rightarrow 0
$$

we get the exact sequence of $P_{0}$-modules

$$
\bigoplus_{|b|=-m-t+1} Q_{0}(-d)\left(x^{b}\right)^{*} \xrightarrow{f} \bigoplus_{|b|=-m-t} Q_{0}\left(x^{b}\right)^{*} \rightarrow H_{Q_{+}}^{m}(R)_{t} \rightarrow 0
$$

whose $s$ th graded component is

$$
\bigoplus_{\substack{|a|=s-d \\|b|=-m-t+1}} K y^{a}\left(x^{b}\right)^{*} \xrightarrow{f} \bigoplus_{\substack{|a|=s \\|b|=-m-t}} K y^{a}\left(x^{b}\right)^{*} \rightarrow H_{Q_{+}}^{m}(R)_{(s, t)} \rightarrow 0
$$

Applying the functor $\operatorname{Hom}_{K}(-, K)$ to the above exact sequence and due to the exact sequence (12) we have

$$
\begin{aligned}
0 \rightarrow H_{Q_{+}}^{m}(R)_{(s, t)}^{*} & \rightarrow \bigoplus_{\substack{|a|=s \\
|b|=-m-t}} K\left(y^{a}\right)^{*} x^{b} \xrightarrow{f} \bigoplus_{\substack{|a|=s-d \\
|b|=-m-t+1}} K\left(y^{a}\right)^{*} x^{b} \\
& \rightarrow H_{P_{+}}^{n}(R)_{(-m-t+1,-n-s+d)} \rightarrow 0 .
\end{aligned}
$$

Therefore

$$
H_{Q_{+}}^{m}(R)_{(s, t)}^{*} \cong H_{P_{+}}^{n-1}(R)_{(-m-t+1,-n-s+d)}
$$

Thus we have

$$
\begin{aligned}
0 \rightarrow & \left(H_{P_{+}}^{n-1}(R)_{-n-s+d}\right)_{-m-t+1} \rightarrow \bigoplus_{\substack{|a|=s \\
|b|=-m-t}} K\left(y^{a}\right)^{*} x^{b} \\
& \xrightarrow{f} \bigoplus_{\substack{|a|=s-d \\
|b|=-m-t+1}} K\left(y^{a}\right)^{*} x^{b} \rightarrow\left(H_{P_{+}}^{n}(R)_{-n-s+d}\right)_{-m-t+1} \rightarrow 0
\end{aligned}
$$

We set $j=-n-s+d$. Proposition 5.1 implies that

$$
\operatorname{reg} H_{P_{+}}^{n}(R)_{j} \leqslant(-n-j+1) d+q \quad \text { for some } q .
$$

Since $I(f)=\left(y_{1}, \ldots, y_{n}\right)^{d}$, thus $\operatorname{reg}\left(P_{0} / I(f)^{k+1}\right)=(k+1) d-1$. Hence in Proposition 5.1 we have $q=-1$.

Now the main result of this section is the following
Theorem 5.3. Let $P=K\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$, and $f \in P$ be a bihomogeneous polynomial such that $I(f)$ is $\mathfrak{m}$-primary. Let $R=P / f P$. Then the regularity of $H_{P_{+}}^{n}(R)_{j}$ is linearly bounded.

Proof. We may write $f=\sum_{|\beta|=d} f_{\beta} y^{\beta}$ and let $\operatorname{deg} f_{\beta}=c$. From the exact sequence

$$
0 \rightarrow P(-c,-d) \stackrel{f}{\rightarrow} P \rightarrow R \rightarrow 0
$$

we get the exact sequence of $P_{0}$-modules

$$
\bigoplus_{|b|=-n-j+d} P_{0}(-c) z^{b} \xrightarrow{f} \bigoplus_{|b|=-n-j} P_{0} z^{b} \rightarrow H_{P_{+}}^{n}(R)_{j} \rightarrow 0
$$

We first assume that $f_{\beta}=x_{\beta}$. Proposition 5.2 implies that reg $H_{P_{+}}^{n}(R)_{j} \leqslant(-n-j+1) \times$ $d-1$. We set $k=(-n-j+1) d$. Thus we get the surjective map of $K$-vector spaces

$$
\bigoplus_{\substack{| ||=k-1\\| b \mid=-n-j+d}} K x^{a} z^{b} \rightarrow \bigoplus_{\substack{|a|=k \\|b|=-n-j}} K x^{a} z^{b}
$$

We proceed as in the proof of Proposition 5.1, and we get $\left[H_{P_{+}}^{n}(R)_{j}\right]_{k d+q^{\prime}+1}=0$ for some $q^{\prime}$. Therefore

$$
\operatorname{reg} H_{P_{+}}^{n}(R)_{j} \leqslant(-n-j+1) d^{2}+q^{\prime}
$$

Corollary 5.4. With the assumption of Theorem 5.3, we have

$$
\operatorname{reg} H_{P+}^{n-1}(R)_{j} \leqslant(-n-j+1) d^{2}+q^{\prime}+2
$$

Proof. For the proof one use the same argument as in the proof of Proposition 5.1(b).

## Acknowledgment

I thank Professor Jürgen Herzog for many helpful comments and discussions.

## References

[1] M. Brodmann, R.Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Stud. Adv. Math., vol. 60, Cambridge Univ. Press, 1998.
[2] W. Bruns, J. Herzog, Cohen-Macaulay Rings, revised ed., Cambridge Stud. Adv. Math., vol. 39, Cambridge Univ. Press, 1998.
[3] S.D. Cutkosky, J. Herzog, N.V. Trung, Asymptotic behaviour of the Castelnuovo-Mumford regularity, Compos. Math. 118 (3) (1999) 243-261.
[4] M. Chardin, Some results and questions on Castelnuovo-Mumford regularity, preprint.
[5] D. Eisenbud, Commutative Algebra with a View to Algebraic Geometry, Springer, 1995.
[6] L. Gruson, R. Lazarsfeld, C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983) 491-506.
[7] C. Huneke, M. Miller, A note on the multiplicity of Cohen-Macaulay algebras with pure resolution, Canad. J. Math. 37 (1985) 1149-1162.
[8] J. Herzog, H. Srinivasan, Bounds for multiplicities, Trans. Amer. Math. Soc. 350 (7) (1998) 2879-2902.
[9] M. Katzman, R.Y. Sharp, Some properties of top local cohomology modules, J. Algebra 259 (2003) 599612.
[10] R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980) 168-184.
[11] J. Watanabe, The Dilworth number of Artinian rings and finite posets with rank function, in: Commutative Algebra and Combinatorics, in: Adv. Stud. Pure Math., vol. 11, Kinokuniya/North-Holland, Amsterdam, 1987, pp. 303-312.


[^0]:    E-mail address: ahad.rahimi@uni-essen.de.
    0021-8693/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
    doi:10.1016/j.jalgebra.2005.08.019

