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Abstract

The Hilbert functions and the regularity of the graded components of local cohomology of a bi-
graded algebra are considered. Explicit bounds for these invariants are obtained for bigraded hyper-
surface rings.
© 2005 Elsevier Inc. All rights reserved.

Introduction

In this paper we study algebraic properties of the graded components of local coho-
mology of a bigraded K-algebra. Let P0 be a Noetherian ring, P = P0[y1, . . . , yn] be the
polynomial ring over P0 with the standard grading and P+ = (y1, . . . , yn) the irrelevant
graded ideal of P . Then for any finitely generated graded P -module M , the local coho-
mology modules Hi

P+(M) are naturally graded P -modules and each graded component
Hi

P+(M)j is a finitely generated P0-module. In case P0 = K[x1, . . . , xm] is a polynomial
ring, the K-algebra P is naturally bigraded with degxi = (1,0) and degyi = (0,1). In
this situation, if M is a finitely generated bigraded P -module, then each of the modules
Hi

P+(M)j is a finitely generated graded P0-module.
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We are interested in the Hilbert functions and the Castelnuovo–Mumford regularity of
these modules.

In Section 1 we introduce the basic facts concerning graded and bigraded local coho-
mology and give a description of the local cohomology of a graded (bigraded) P -module
from its graded (bigraded) P -resolution.

In Section 2 we use a result of Gruson, Lazarsfeld and Peskine on the regularity of
reduced curves, in order to show that the regularity of Hi

P+(M)j as a function in j is
bounded provided that dimP0 M/P+M � 1.

The rest of the paper is devoted to study of the local cohomology of a hypersurface ring
R = P/f P where f ∈ P is a bihomogeneous polynomial.

In Section 3 we prove that the Hilbert function of the top local cohomology Hn
P+(R)j is

a nonincreasing function in j . If moreover, the ideal I (f ) generated by all coefficients of f

is m-primary where m is the graded maximal ideal of P0, then by a result of Katzman and
Sharp the P0-module Hi

P+(R)j is of finite length. In particular, in this case the regularity
of Hi

P+(R)j is also a nonincreasing function in j .
In the following section we compute the regularity of Hi

P+(R)j for a special class of
hypersurfaces. For the computation we use in an essential way a result of Stanley and
Watanabe. They showed that a monomial complete intersection has the strong Lefschetz
property. Stanley used the hard Lefschetz theorem, while Watanabe representation theory
of Lie algebras to prove this result. Using these facts the regularity and the Hilbert function
of Hi

P+(P/f r
λ P )j can be computed explicitly. Here r ∈ N and fλ = ∑n

i=1 λixiyi with
λi ∈ K . As a consequence we are able to show that Hn−1

P+ (P/f rP )j has a linear resolution
and its Betti numbers can be computed. We use these results in the last section to show that
for any bigraded hypersurface ring R = P/f P for which I (f ) is m-primary, the regularity
of Hi

P+(R)j is linearly bounded in j .

1. Basic facts about graded and bigraded local cohomology

Let P0 be a Noetherian ring, and let P = P0[y1, . . . , yn] be the polynomial ring over
P0 in the variables y1, . . . , yn. We let Pj = ⊕

|b|=j P0y
b where yb = y

b1
1 . . . y

bn
n for b =

(b1, . . . , bn), and where |b| = ∑
i bi . Then P is a standard graded P0-algebra and Pj is a

free P0-module of rank
(
n+j−1
n−1

)
.

In most cases we assume that P0 is either a local ring with residue class field K , or
P0 = K[x1, . . . , xm] is the polynomial ring over the field K in the variables x1, . . . , xm.

We always assume that all P -modules considered here are finitely generated and graded.
In case that P0 is a polynomial ring, then P itself is bigraded, if we assign to each xi

the bidegree (1,0) and to each yj the bidegree (0,1). In this case we assume that all P -
modules are even bigraded. Observe that if M is bigraded, and if we set

Mj =
⊕

i

M(i,j).

Then M = ⊕
j Mj is a graded P -module and each graded component Mj is a finitely

generated graded P0-module, with grading (Mj )i = M(i,j) for all i and j .
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Now let S = K[y1, . . . , yn]. Then P = P0 ⊗K K[y1, . . . , yn] = P0 ⊗K S. Let P+ :=⊕
j>0 Pj be the irrelevant graded ideal of the P0-algebra P .

Next we want to compute the graded P -modules Hi
P+(P ). Observe that there are iso-

morphisms of graded R-modules

Hi
P+(P ) ∼= lim−→

k�0

ExtiP
(
P/(P+)k,P

)

∼= lim−→
k�0

ExtiP0⊗KS

(
P0 ⊗K S/(y)k,P0 ⊗K S

)

∼= P0 ⊗K lim−→
k�0

ExtiP
(
S/(y)k, S

)

∼= P0 ⊗K Hi
(y)(S).

Since Hi
S+(S) = 0 for i �= n, we get

Hi
P+(P ) =

{
P0 ⊗k Hn

(y)(S) for i = n,

0 for i �= n.

Let M be a graded S-module. We write M∨ = HomK(M,K) and consider M∨ a graded
S-module as follows: for ϕ ∈ M∨ and f ∈ S we let f ϕ be the element in M∨ with

f ϕ(m) = ϕ(f m) for all m ∈ M,

and define the grading by setting (M∨)j := HomK(M−j ,K) for all j ∈ Z.
Let ωS be the canonical module of S. Note that ωS = S(−n), since S is a polynomial

ring in n indeterminates. By the graded version of the local duality theorem, see [1, Ex-
ample 13.4.6] we have Hn

S+(S)∨ = S(−n) and Hi
S+(S) = 0 for i �= n. Applying again the

functor (_ )∨ we obtain

Hn
S+(S) = HomK

(
S(−n),K

) = HomK(S,K)(n).

We can thus conclude that

Hn
S+(S)j = Homk(S,K)n+j = HomK(S−n−j ,K) for all j ∈ Z.

Let Sl = ⊕
|a|=l Kya . Then

HomK(S−n−j ,K) =
⊕

|a|=−n−j

Kza,

where z ∈ HomK(S−n−j ,K) is the K-linear map with

za
(
yb

) =
{

za−b, if b � a,

0, if b � a.
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Here we write b � a if bi � ai for i = 1, . . . , n. Therefore Hn
S+(S)j = ⊕

|a|=−n−j Kza ,
and this implies that

Hn
P+(P )j = P0 ⊗K Hn

(y)(S)j =
⊕

|a|=−n−j

P0z
a. (1)

Hence we see that Hn
P+(P )j is free P0-module of rank

(−j−1
n−1

)
. Moreover, if P0 is graded

Hn
P+(P )(i,j) =

⊕
|b|=−n−j

(P0)iz
b =

⊕
|a|=i

|b|=−n−j

Kxazb.

The next theorem describes how the local cohomology of a graded P -module can be
computed from its graded free P -resolution.

Theorem 1.1. Let M be a finitely generated graded P -module. Let F be a graded free
P -resolution of M . Then we have graded isomorphisms

Hn−i
P+ (M) ∼= Hi

(
Hn

P+(F)
)
.

Proof. Let

F : · · · → F2 → F1 → F0 → 0.

Applying the functor Hn
P+ to F , we obtain the complex

Hn
P+(F) : · · · → Hn

P+(F2) → Hn
P+(F1) → Hn

P+(F0) → 0.

We see that

Hn
P+(M) = Coker

(
Hn

P+(F1) → Hn
P+(F0)

) = H0
(
Hn

P+(F)
)
,

since Hi
P+(N) = 0 for each i > n and all finitely generated P -modules N .

We define the functors:

F(M) := Hn
P+(M) and Fi (M) := Hn−i

P+ (M).

The functors Fi are additive, covariant and strongly connected, i.e., for each short exact
sequence 0 → U → V → W → 0 one has the long exact sequence

0 · · · → Fi (U) → Fi (V ) → Fi (W) → Fi−1(U) → ·· · →F0(V ) → F0(W) → 0.

Moreover, F0 = F and Fi (F ) = Hn−i
P+ (F ) = 0 for all i > 0 and all free P -modules F .

Therefore, the theorem follows from the dual version of [1, Theorem 1.3.5]. �
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Note that if M is a finitely generated bigraded P -module. Then Hn
P+(M) with natural

grading is also a finitely generated bigraded P -module, and hence in Theorem 1.1 we have
bigraded isomorphisms

Hn−i
P+ (M) ∼= Hi

(
Hn

P+(F)
)
.

2. Regularity of the graded components of local cohomology for modules
of small dimension

Let P0 = K[x1, . . . , xm], and M be a finitely generated graded P0-module. By Hilbert’s
syzygy theorem, M has a graded free resolution over P0 of the form

0 → Fk → ·· · → F1 → F0 → M → 0,

where Fi = ⊕ti
j=1 P0(−aij ) for some integers aij . Then the Castelnuovo–Mumford regu-

larity reg(M) of M is the nonnegative integer

regM � max
i,j

{aij − i}

with equality holding if the resolution is minimal. If M is an Artinian graded P0-module,
then

reg(M) = max{j : Mj �= 0}.

We also use the following characterization of regularity

reg(M) = min{μ: M�μ has a linear resolution}.

Let M be a finitely generated bigraded P -module, thus Hi
P+(M)j is a finitely generated

graded P0-module. Let fi,M be the numerical function given by

fi,M(j) = regHi
P+(M)j

for all j . In this section we show that fi,M is bounded provided that M/P+M has
Krull dimension � 1. There are some explicit examples which show that the condition
dimP0 M/P+M � 1 is indispensable. We postpone the example to Section 4. First one has
the following

Lemma 2.1. Let M be a finitely generated graded P -module. Then

dimP0 Mi � dimP0 M/P+M for all i.

Proof. Let r = min{j : Mj �= 0}. We prove the lemma by induction on i � r . Let i = r .
Note that
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M/P+M = Mr ⊕ Mr+1/P1Mr ⊕ · · · .

It follows that Mr is a direct summand of the P0-module M/P+M , so that dimP0 Mr �
dimP0 M/P+M . We now assume that i > r and dimP0 Mj � dimP0 M/P+M , for j =
r, . . . , i − 1. We will show that dimP0 Mi � dimP0 M/P+M . We consider the exact se-
quence of P0-modules

0 → P1Mi−1 + · · · + Pi−rMr → Mi
ϕ→ (M/P+M)i → 0.

By the induction hypothesis, one easily deduces that

dimP0

i−r∑
j=1

PjMi−j � dimP0 M/P+M,

and since (M/P+M)i is a direct summand of M/P+M it also has dimension �
dimP0 M/P+M . Therefore, by the above exact sequence, dimMi � dimP0 M/P+M ,
too. �

The following lemma is needed for the proof of the next proposition.

Lemma 2.2. Let M be a finitely generated graded P -module. Then there exists an integer
i0 such that

AnnP0 Mi = AnnP0 Mi+1 for all i � i0.

Proof. Since P1Mi ⊆ Mi+1 for all i and M is a finitely generated P -module, there ex-
ists an integer t such that P1Mi = Mi+1 for all i � t . This implies that AnnP0 Mt ⊆
AnnP0 Mt+1 ⊆ · · · . Since P0 is Noetherian, there exists an integer k such that AnnP0 Mt+k =
AnnP0 Mi for all i � t + k = i0. �
Proposition 2.3. Let M be a finitely generated graded P -module. Then

dimP0 Hi
P+(M)j � dimP0 Mj for all i and j 
 0.

Proof. Let P+ = (y1, . . . , yn). Then by [1, Theorem 5.1.19] we have

Hi
P+(M) ∼= Hi

(
C(M).

)
for all i � 0,

where C(M). denote the (extended) Čech complex of M with respect to y1, . . . , yn defined
as follows:

C(M). : 0 → C(M)0 → C(M)1 → ·· · → C(M)n → 0
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with

C(M)t =
⊕

1�i1<···<it�n

Myi1 ...yit
,

and where the differentiation C(M)t → C(M)t+1 is given on the component

Myi1 ...yit
→ Myj1 ...yjt+1

to be the homomorphism

(−1)s−1nat :Myi1 ...yit
→ (Myi1 ...yit

)yjs
,

if {i1, . . . , it } = {j1, . . . , ĵs , . . . , jt+1} and 0 otherwise. We set I = {i1, . . . , it } and yI =
yi1 . . . yit . For m/yk

I ∈ MyI , m homogeneous, we set degm/yk
I = degm − degyk

I . Then
we can define a grading on MyI by setting

(MyI )j = {
m/yk

I ∈ MyI : degm/yk
I = j

}
for all j.

In view of Lemma 2.2 there exists an ideal I ⊆ P0 and an integer j0 such that
AnnP0 Mj = I for all j � j0. We now claim that I ⊆ AnnP0(MyI )j for all j � j0. Let
a ∈ I and m/yk

I ∈ (MyI )j for some integer k. We may choose an integer l such that

degm + degyl
I = degmyl

I = t � j0.

Thus am/yk
I = amyl

I/yk+l
I = 0, because myl

I ∈ Mt . Thus we have

dimP0(MyI )j = dimP0 P0/Ann(MyI )j � dimP0 P0/I = dimP0 Mj.

Since Hi
P+(M)j is a subquotient of the j th graded component of C(M)i , the desired result

follows. �
Now we can state the main result of this section as follows.

Theorem 2.4. Let M be a finitely generated bigraded P -module such that

dimP0 M/P+M � 1.

Then for all i the functions fi,M(j) = regHi
P+(M)j are bounded.

In a first step we prove the following

Proposition 2.5. Let M be a finitely generated bigraded P -module with

dimP0 M/P+M � 1.

Then the function fn,M(j) = regHn (M)j is bounded above.
P+
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Proof. By the bigraded version of Hilbert’s syzygy theorem, M has a bigraded free reso-
lution of the form

F : 0 → Fk → ·· · → F1 → F0 → M → 0,

where Fi = ⊕ti
k=1 P(−aik,−bik). Applying the functor Hn

P+(−)j to this resolution yields
a graded complex of free P0-modules

Hn
P+(F)j : 0 → Hn

P+(Fk)j → ·· · → Hn
P+(F1)j → Hn

P+(F0)j → Hn
P+(M)j → 0.

Theorem 1.1, together with Proposition 2.3, Lemma 2.1 and our assumption imply that for
j 
 0 we have

dimP0 Hi

(
Hn

P+(F)j
) = dimP0 Hn−i

P+ (M)j � dimP0 M/P+M � 1 � i for all i � 1.

Moreover we know that

Hn
P+(M) = H0

(
Hn

P+(F)
)
.

Then by a theorem of Lazarsfeld [6, Lemma 1.6], see also [4, Theorem 12.1], one has

regHn
P+(M)j = regH0

(
Hn

P+(F)
)
j

� max
{
bi

(
Hn

P+(F)j
) − i for all i � 0

}
,

where bi(H
n
P+(F)j ) is the maximal degree of the generators of Hn

P+(Fi)j . Note that

Hn
P+(Fi)j =

ti⊕
k=1

⊕
|a|=−n−j+bik

P0(−aik)z
a.

Thus we conclude that

regHn
P+(M)j � max

i,k
{aik − i} = c for j 
 0,

as desired. �
Next we want to give a lower bound for the functions fi,M . We first prove

Proposition 2.6. Let

G : 0 → Gp

dp−→ Gp−1 → ·· · → G1
d1−→ G0 → 0,

be a complex of free P0-modules, where Gi = ⊕
j P0(−aij ) for all i � 0. Let mi =

minj {aij }. Then

regHi(G) � mi.
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Proof. Since Hi(G) = Kerdi/ Imdi+1 and Kerdi ⊆ Gi for all i � 0, it follows that

regHi(G) � largest degree of generators of Hi(G)

� lowest degree of generators of Hi(G)

� lowest degree of generators of Kerdi

� lowest degree of generators of Gi

= mi,

as desired. �
Corollary 2.7. Let M be a finitely generated bigraded P -module. Then for each i, the
function fi,M is bounded below.

Proof. Let G be the complex Hn
P+(F)j in the proof of Proposition 2.5, then the assertion

follows from Proposition 2.6. �
Proof of Theorem 2.4. Because of Corollary 2.7 it suffices to show that for each i, fi,M

is bounded above.
There exists an exact sequence 0 → U → F

ϕ→ M → 0 of finitely generated bigraded
P -modules where F is free. This exact sequence yields the exact sequence of P0-modules

0 → Hn−1
P+ (M)j → Hn

P+(U)j → Hn
P+(F )j

ϕ→ Hn
P+(M)j → 0.

Let Kj := Kerϕ. We consider the exact sequences

0 → Kj → Hn
P+(F )j → Hn

P+(M)j → 0,

0 → Hn−1
P+ (M)j → Hn

P+(U)j → Kj → 0.

Thus we have

regKj � max
{
regHn

P+(F )j , regHn
P+(M)j + 1

}
, (2)

regHn−1
P+ (M)j � max

{
regHn

P+(U)j , regKj + 1
}
. (3)

Let F = ⊕k
i=1 P(−ai,−bi), then

Hn
P+(F )j =

k⊕ ⊕
P0(−ai)z

a.
i=1 |a|=−n−j+bi
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Therefore, regHn
P+(F )j = maxi{ai}. By Proposition 2.7, the functions fn,M and fn,U are

bounded above, so that, by the inequalities (2) and (3), fn−1,M is bounded above. To com-
plete our proof, for i > 1 we see that

Hn−i
P+ (M)j ∼= Hn−i+1

P+ (U)j .

Thus fn−i,M = fn−i+1,U for i > 1. By induction on i > 1 all fi,M are bounded above, as
required. �

3. The Hilbert function of the components of the top local cohomology
of a hypersurface ring

Let R be a hypersurface ring. In this section we want to show that the Hilbert function of
the P0-module Hn

P+(R)j is a nonincreasing function in j . Let f ∈ P be a bihomogeneous
form of degree (a, b). Write

f =
∑
|α|=a
|β|=b

cαβxαyβ where cαβ ∈ K.

We may also write f = ∑
|β|=b fβyβ where fβ ∈ P0 with degfβ = a. The monomials

yβ for which |β| = b are ordered lexicographically induced by y1 > y2 > · · · > yn. We
consider the hypersurface ring R = P/f P . From the exact sequence

0 → P(−a,−b)
f→ P → P/f P → 0,

we get an exact sequence of P0-modules

⊕
|c|=−n−j+b

P0(−a)zc f→
⊕

|c|=−n−j

P0z
c → Hn

P+(R)j → 0.

We also order the bases elements zc lexicographically induced by z1 > z2 > · · · > zn.
Applying f to the bases elements we obtain f zc = ∑

|β|=b fβzβ−c , where zβ−c = 0 if
c � β componentwise. With respect to these bases the map of free P0-modules is given
by a

(−j−1
n−1

) × (−j+b−1
n−1

)
matrix which we denote by Uj . This matrix also describes the

image of this map as submodule of the free module Fj where Fj = ⊕
|c|=−n−j P0z

c , so
that Hn

P+(R)j is just Cokerf = Fj/Uj . Note that Hn
P+(R)j = 0 for all j > −n.

Let Bd denote the set of all monomials of degree d in the indeterminates z1, . . . , zn. Let
h = ∑

v∈B−n−j
hvv ∈ Uj where hv ∈ P0 for all v. Then huu is called the initial term of h if

hu �= 0 and hv = 0 for all v > u, and we set in(h) = huu. The polynomial hu ∈ P0 is called
the initial coefficient and the monomial u is called the initial monomial of h.

Now for a monomial u ∈ B−n−j we denote Uj,u the set of elements in Uj whose initial
monomial is u, and we denote by Ij,u the ideal generated by the initial coefficients of the
elements in Uj,u.
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Note that

Uj \ {0} =
⋃

u∈B−n−j

Uj,u.

We fix the lexicographical order introduced above, and let in(Uj ) be the submodule gener-
ated by {in(h): h ∈ Uj }. Then

in(Uj ) =
⊕

u∈B−n−j

Ij,uu. (4)

Proposition 3.1. With the above notation we have

Ij,u = Ij−1,z1u for all j � −n and u ∈ B−n−j .

Proof. Let h0 ∈ Ij,u. Then there exists h ∈ Uj such that h = h0u+ lower terms. We set k =
−n − j + b, for short. Since h is in the image of f , we may also write h = ∑

|c|=k fcf zc

where fc ∈ P0 and f zc = ∑
β�c fβzc−β . We define g = ∑

|c|=k fcf zc+e1 where f zc+e1 =∑
β�c+e1

fβzc+e1−β and e1 = (1,0, . . . ,0). We see that g ∈ Uj−1. We may write

g =
∑
|c|=k

fc

∑
β�c

fβzc+e1−β +
∑
|c|=k

fc

∑
β�c

β�c+e1

fβzc+e1−β.

Thus we conclude that g = z1h + h1 where

h1 =
∑
|c|=k

fc

∑
β�c

β�c+e1

fβzc+e1−β.

We now claim that h1 does not contain z1 as a factor. For each α ∈ Nn we denote by α(i)

the ith component of α. Assume that (c + e1 − β)(1) > 0 for some β appearing in the
sum of h1. Then c(1) � β(1). Moreover, if i > 1, then (c + e1 − β)(i) � 0 implies that
c(i) � β(i). Hence c(i) � β(i) for all i, a contradiction. It follows that in(g) = in(h)z1.
Therefore hu ∈ Ij−1,z1u.

Conversely, suppose h0 ∈ Ij−1,z1u. Then there exists g ∈ Uj−1 such that g = h0z1u +
lower terms. We may write g = ∑

|c|=k f ′
cf zc+e1 where f ′

c ∈ P0 and f zc+e1 =∑
β�c+e1

fβzc+e1−β . Thus

g =
∑
|c|=k

f ′
c

∑
β�c

fβzc+e1−β +
∑
|c|=k

f ′
c

∑
β�c

fβzc+e1−β.
β�c+e1
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As above we see that g = z1f
′ + lower terms, where f ′ = ∑

|c|=k f ′
cf zc . We see

that f ′ ∈ Uj , and that in(f ′)z1 = in(g) = h0z1u. Therefore, in(f ′) = h0u, and hence
h0 ∈ Ij,u. �

Let M and N be graded P0-modules. We denote by Hilb(M) = ∑
i∈Z dimK Mit

i the
Hilbert-series of M . We write Hilb(M) � Hilb(N) when dimK Mi � dimK Ni for all i.

Let F be a free P0-module with basis β = {u1, . . . , ur}. Let U be a graded submodule
of F . For f ∈ U , we write f = ∑r

i=1 fiui where fi ∈ P0. We set in(f ) = fjuj where
fj �= 0 and fi = 0 for all i < j . We also set in(U) be the submodule of F generated by
all in(f ) such that f ∈ U . Let I be a homogeneous ideal of P0. We say that set of homo-
geneous elements of P0 forms a K-basis for P0/I if its image forms a K-basis for P0/I .
Now we can state the following result which is related to a theorem of Macaulay [2, The-
orem 4.2.3], see also [2, Corollary 4.2.4]. For the convenience of the reader we include its
proof.

Lemma 3.2. With notation as above we have

Hilb(F/U) = Hilb
(
F/ in(U)

)
.

Proof. As in (4) we have in(U) = ⊕r
i=1 Iui

ui where Iui
is the ideal generated by all fi ∈

P0 such that there exists f ∈ F with in(f ) = fiui . Thus we have F/ in(U) = ⊕r
i=1 P0/Iui

.
For each j let βj be a set of homogeneous elements hij ∈ P0 which forms a K-basis of
P0/Iuj

. Then β = {β1u1, . . . , βrur} is a homogeneous K-basis of F/ in(U). To complete
our proof we will show that β is also a K-basis of F/U . We first show that the elements
of β in F/U are linearly independent. Suppose that in F/U , we have

∑
i,j aij hij uj = 0

with aij ∈ K . Thus
∑r

j=1(
∑

i aij hij )uj ∈ U . We set hj = ∑
i aij hij , so that h1u1 + · · · +

hrur ∈ U . If all hj = 0, then aij = 0 for all i and j , as required. Assume that hj �= 0
for some j , and let k be the smallest integer such that hk �= 0. It follows that hkuk +
hk+1uk+1 +· · · ∈ U , so that hk ∈ Ik , and hence

∑
i aikhik = 0 modulo Ik . Since hik are part

of a K-basis of P0/Ik , it follows that aik = 0 for all i, and hence hk = 0, a contradiction.
Now we want to show that each element in F/U can be written as a K-linear combi-

nation of elements of β . Let f + U ∈ F/U where f ∈ F . Thus there exists fi ∈ P0 such
that f = ∑r

i=1 fiui . Since f1 + Iu1 ∈ P0/Iu1 , there exists λi1 ∈ K such that f1 + Iu1 =∑
i λi1(hi1 + Iu1), so that f1 = ∑

i λi1hi1 + hu1 for some hu1 ∈ Iu1 . Hence

f =
∑

i

λi1hi1u1 + hu1u1 +
r∑

i=2

fiui .

We set

f ′ = f −
∑

i

λi1hi1u1 = hu1u1 +
r∑

i=2

fiui .

Since hu1 ∈ Iu1 , there exist g2, . . . , gr ∈ P0 such that hu1u1 + ∑r
i=2 giui ∈ U . Therefore,

hu u1 = −∑r
giui modulo U . Hence it follow that
1 i=2
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f ′ = −
r∑

i=2

giui +
r∑

i=2

fiui =
r∑

i=2

f ′
i ui modulo U.

Here f ′
i = −gi + fi for i = 2, . . . , r . By induction on the number of summands, we may

assume that
∑r

i=2 f ′
i ui is a linear combination of elements of β modulo U . Since f differs

from f ′ only by a linear combination of elements of β , the assertion follows. �
Now we are able to prove that the Hilbert-series of the P0-module Hn

P+(R)j is a nonin-
creasing function in j .

Theorem 3.3. Let R = P/f P be a hypersurface ring. Then

Hilb
(
Hn

P+(R)j−1
)
� Hilb

(
Hn

P+(R)j
)

for all j � −n.

Proof. Let Fj = ⊕
u∈B−n−j

P0u where u = z
a1
1 . . . z

an
n with

∑n
i=1 ai = −n − j . In view

of (4) we have Fj/ in(Uj ) = ⊕
u∈B−n−j

P0/Ij,u. By Lemma 3.2 we know that Fj/Uj and
Fj/ in(Uj ) have the same Hilbert function. Thus Proposition 3.1 implies that for all j � −n

we have

Hilb
(
Hn

P+(R)j
) = Hilb(Fj /Uj ) =

∑
i

dimK

( ⊕
u∈B−n−j

P0/Ij,u

)
i

t i

=
∑

i

∑
u∈B−n−j

dimK(P0/Ij,u)i t
i

=
∑

i

∑
u∈B−n−j

dimK(P0/Ij−1,z1u)i t
i

=
∑

i

∑
v∈B−n−j+1

a1>0

dimK(P0/Ij−1,v)i t
i

�
∑

i

∑
v∈B−n−j+1

dimK(P0/Ij−1,v)i t
i

=
∑

i

dimK

( ⊕
v∈B−n−j+1

P0/Ij−1,v

)
i

t i = Hilb
(
Hn

P+(R)j−1
)
,

as desired. �
Corollary 3.4. Let R be the hypersurface ring P/f P such that the P0-module Hn

P+(R)j
has finite length for all j . Then

regHn
P+(R)j−1 � regHn

P+(R)j for all j � −n.
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Proof. The assertion follows from the fact that

regHn
P+(R)j = deg Hilb

(
Hn

P+(R)j
)
. �

Now one could ask when P0-module Hn
P+(R)j is of finite length. To answer this ques-

tion we need some preparation. Let A be a Noetherian ring and M be a finitely generated
A-module with presentation

Am ϕ→ An → M → 0.

Let U be the corresponding matrix of the map ϕ and In−i (U) for i = 0, . . . , n − 1 be the
ideal generated by the (n − i)-minors of matrix U . Then Fitti (M) := In−i (U) is called the
ith Fitting ideal of M . We use the convention that Fitti (M) = 0 if n − i > min{n,m}, and
Fitti (M) = A if i � n. In particular, we obtain Fittr (M) = 0 if r < 0, Fitt0(M) is generated
by the n-minors of U , and Fittn−1(M) is generated by all entries of U . Note that Fitti (M)

is an invariant on M , i.e., independent of the presentation. By [5, Proposition 20.7] we have
Fitt0(M) ⊆ AnnM and if M can be generated by r elements, then (AnnM)r ⊆ Fitt0(M).
Thus we can conclude that

√
Fitt0(M) = √

AnnM . Therefore

dimM = dimA/AnnM = dimA/In(U). (5)

Now we can state the following

Proposition 3.5. Let R be the hypersurface ring P/f P , and I (f ) the ideal generated by
all the coefficients of f . Then dimP0 Hn

P+(R)j � dimP0/I (f ). In particular, if I (f ) is
m-primary where m = (x1, . . . , xn), then P0-module Hn

P+(R)j is of finite length for all j .

Proof. Note that Hn
P+(R)j = 0 for j > −n. Therefore we may suppose that j � −n. As

we have already seen, Hn
P+(R)j has P0-presentation

P
n1
0 (−a)

ϕ→ P
n0
0 → Hn

P+(R)j → 0,

where n0 = (−j−1
n−1

)
and n1 = (−j+b−1

n−1

)
. In view of (5) we have dimP0 Hn

P+(R)j =
dimP0/In0(Uj ) where Uj is the corresponding matrix of the map ϕ. By [9, Lemma 1.4]
we have

√
I (f ) ⊆ √

In0(Uj ). It follows that dimP0 Hn
P+(R)j � dimP0/I (f ). Since I (f )

is m-primary it follows that dimP0/I (f ) = 0. Therefore dimP0 Hn
P+(R)j = 0, and hence

Hn
P+(R)j has finite length, as required. �

4. The regularity of the graded components of local cohomology for a special class
of hypersurfaces

Let A = ⊕n
i=0 Ai be a standard graded Artinian K-algebra, where K is a field of char-

acteristic 0. We say that A has the weak Lefschetz property if there is a linear form l of
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degree 1 such that the multiplication map Ai
l→ Ai+1 has maximal rank for all i. This

means the corresponding matrix has maximal rank, i.e., l is either injective or surjec-
tive. Such an element l is called a weak Lefschetz element on A. We also say that A

has the strong Lefschetz property if there is a linear form l of degree 1 such that the

multiplication map Ai
lk→ Ai+k has maximal rank for all i and k. Such an element l is

called a strong Lefschetz element on A. Note that the set of all weak Lefschetz elements
on A is a Zariski-open subset of the affine space A1, and the same holds for the set of all
strong Lefschetz elements on A. For an algebra A as above, we say that A has the strong
Stanley property (SSP) if there exists l ∈ A1 such that ln−2i :Ai → An−i is bijective for
i = 0,1, . . . , [n/2]. Note that the Hilbert function of standard graded K-algebra satisfying
the weak Lefschetz property is unimodal. Stanley [10] and Watanabe [11] proved the fol-
lowing result: Let a1, . . . , an be the integers such that ai � 1 and assume as always in this
section that charK = 0. Then A = K[x1, . . . , xn]/(xa1

1 , . . . , x
an
n ) has the strong Lefschetz

property.

Theorem 4.1. Let r ∈ N and fλ = ∑n
i=1 λixiyi with λi ∈ K and n � 2, and assume

that charK = 0. Then there exists a Zariski open subset V ⊂ Kn such that for all
λ = (λ1, . . . , λn) ∈ V one has

regHn
P+

(
P/f r

λ P
)
j

= −n − j + r − 1.

Proof. We first prove the theorem in the case that f = f(1,...,1) = ∑n
i=1 xiyi , and set R =

P/f rP . From the exact sequence

0 → P(−r,−r)
f r

−→ P → R → 0,

we get an exact sequence of P0-modules,

⊕
|b|=−n−j+r

P0(−r)zb f r

−→
⊕

|b|=−n−j

P0z
b → Hn

P+(R)j → 0. (6)

Note that Hn
P+(R)j is generated by elements of degree 0 and the ideal generated by the

coefficients of f is m-primary. By Proposition 3.5, we need only to show that

(a)
[
Hn

P+(R)j
]
−n−j+r−1 �= 0, and

(b)
[
Hn

P+(R)j
]
−n−j+r

= 0.

Let k = −n − j for short. For the proof of (a), we take the (k + r − 1)th component of the
exact sequence (6), and obtain the exact sequence of K-vector spaces

⊕
|a|=k−1

Kxazb f r

−→
⊕

|a|=k+r−1

Kxazb → [
Hn

P+(R)j
]
k+r−1 → 0.
|b|=k+r |b|=k



328 A. Rahimi / Journal of Algebra 302 (2006) 313–339
We set

Vα,β :=
⊕
|a|=α
|b|=β

Kxazb.

Hence one has dimK Vk−1,k+r = (
n+k−2
k−1

)(
n+k+r−1

k+r

)
which is less than dimK Vk+r−1,k =(

n+k+r−2
k+r−1

)(
n+k−1

k

)
for n � 2. Thus f r is not surjective, so (a) follows. For the proof of (b),

we take the (k + r)th component of the exact sequence (6), and obtain the exact sequence
of K-vector spaces

⊕
|a|=k

|b|=k+r

Kxazb f r

−→
⊕

|a|=k+r
|b|=k

Kxazb → [
Hn

P+(R)j
]
k+r

→ 0.

Note that dimK Vk,k+r = dimK Vk+r,k . We will show that f r is an isomorphism, then we
are done. We fix c ∈ Nn

0 such that c = (c1, . . . , cn) where ci � 0. We set

V c
α,β :=

⊕
|a|=α
|b|=β
a+b=c

Kxazb and Ac
i :=

⊕
|a|=i
a�c

Kxa.

We define ϕ :V c
k,k+r → Ac

k by setting ϕ(xazb) = xa . Note that ϕ is an isomorphism
of K-vector spaces. Let Ac = ⊕|c|

i=0A
c
i . We can define an algebra structure on Ac . For

xs, xt ∈ Ac we define

xsxt =
{

xs+t , if s + t � c,
0, if s + t � c.

A K-basis of Ac is given by all monomials xa with a � c. It follows that

Ac = K[x1, . . . , xn]
/(

x
c1+1
1 , . . . , xcn+1

n

)
.

Now we see that the map

Vk,k+r =
⊕

|c|=2k+r

V c
k,k+r

f r

−→
⊕

|c|=2k+r

V c
k+r,k = Vk+r,k

is an isomorphism if and only if restriction map f ′ := f r |V c
k,k+r

:V c
k,k+r → V c

k+r,k is an
isomorphism for all c with |c| = 2k + r .
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For each such c we have a commutative diagram

V c
k,k+r

f ′
V c

k+r,k

Ac
k

lr

Ac
k+r

with l = x1 + x2 + · · · + xn ∈ Ac
1 and where Ac

k

lr→ Ac
k+r is multiplication by lr in the

K-algebra Ac. Since the socle degree of Ac equals s = 2k + r , we have k + r = s − k.
Therefore the multiplication map lr :Ac

k → Ac
s−k with r = s − 2k is an isomorphism by

the strong Stanley property of the algebra Ac , see [11, Corollary 3.5].
Now if we replace f by fλ, then the corresponding linear form in the above commuta-

tive diagram is the form lλ = λ1x1 + λ2x2 + · · · + λnxn. It is known that the property of
lλ to be a weak Lefschetz element is an open condition, that is, there exists a Zariski open
set V ⊂ Kn such that lλ is a weak Lefschetz element. This open set is not empty since
λ = (1, . . . ,1) ∈ V . Since any weak Lefschetz element satisfies (SSP), we can replace in
the above proof f by fλ for each λ ∈ V , and obtain the same conclusion. �
Remark 4.2. It is now the time that to show Theorem 2.4 may fail without the assump-
tion that dimP0 M/P+M � 1. In case of Theorem 4.1 we have M = R = P/f r

λ P , and so
M/P+M = P0. Therefore in that case dimP0 M/P+M = dimP0 P0 = n � 2, and in fact
fn,R is not bounded.

Now in Theorem 4.1, we want to compute the Hilbert function of the P0-module
Hn

P+(R)j .

Corollary 4.3. With the assumption of Theorem 4.1, we have

dimK

(
Hn

P+(R)j
)
i
=

⎧⎨
⎩

(
n+i−1

i

)(−j−1
−n−j

)
, if i � r ,(

n+i−1
i

)(−j−1
−n−j

) − (
n+i−r−1

i−r

)(−j+r−1
−n−j+r

)
, if r � i � −n − j + r − 1.

Proof. We set −n − j = k, for short. We take ith component of exact sequence (6), and
obtain the exact sequence of K-vector space

⊕
|a|=i−r
|b|=k+r

Kxazb f r

−→
⊕
|a|=i
|b|=k

Kxazb → [
Hn

P+(R)j
]
i
→ 0.

If i � r , from the above exact sequence we see that

dimK

(
Hn

P+(R)j
)
i
= dimK Vi,k =

(
n + i − 1

)(−j − 1
)

.

i −n − j
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Now let r � i � −n − j + r − 1. First one has dimK Vi−r,k+r < dimK Vi,k . We claim that
f r is injective, then we are done. We see that the map

Vi−r,k+r =
⊕

|c|=i+k

V c
i−r,k+r

f r

−→
⊕

|c|=i+k

V c
i,k = Vi,k,

where f r(V c
i−r,k+r ) ⊂ V c

i,k is injective if and only if restriction map f ′ := f r |V c
i−r,k+r

:
V c

i−r,k+r → V c
i,k is injective for all c with |c| = i + k.

For each such c we have a commutative diagram

V c
i−r,k+r

f ′
V c

i,k

Ac
i−r

lr

Ac
i

with l = x1 + x2 + · · · + xn ∈ Ac
1. Since i < −n − j + r , then i < |c| − (i − r) and by the

weak Lefschetz property the algebra Ac is unimodal. Therefore dimK Ac
i−r � dimK Ac

i .
The strong Lefschetz property implies that the map lr is injective, and hence f ′ is injective,
as required. �
Corollary 4.4. Assume that charK = 0. Then with the notation of Theorem 4.1, we have

regHn−1
P+

(
P/f r

λ P
)
j

= −n − j + r + 1.

Proof. We consider the exact sequence of P0-modules

0 → Hn−1
P+ (R)j →

⊕
|b|=−n−j+r

P0(−r)zb f r

−→
⊕

|b|=−n−j

P0z
b → Hn

P+(R)j → 0, (7)

where R = P/f r
λ P . It follows that Hn−1

P+ (R)j is the second syzygy module of Hn
P+(R)j .

Let

· · · →
t2⊕

j=1

P0(−a1j ) →
t1⊕

j=1

P0(−a0j ) → Hn−1
P+ (R)j → 0

be the minimal graded free resolution of Hn−1
P+ (R)j . We combine two above resolutions,

and obtain a graded free resolution for Hn
P+(R)j of the form

· · · →
t1⊕

P0(−a0j )
d0−→

⊕
P0(−r)zb f r

−→
⊕

P0z
b → Hn

P+(R)j → 0.
j=1 |b|=−n−j+r |b|=−n−j
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We choose a basis element h ∈ ⊕t1
j=1 P0(−a0j ) of degree a0j . Thus

d0(h) =
∑

|b|=−n−j+r

hbz
b,

where hb ∈ P0 with deghb = a0j − r . Because the free resolution is minimal, at least one
hb �= 0, so that r < a0j and hence r − 1 � a0j − 2. Thus we have

regHn
P+(R)j = max

i,j
{0, r − 1, aij − i − 2} = max

i,j
{aij − i − 2}.

Theorem 4.1 implies that

regHn−1
P+ (R)j = max

i,j
{aij − i} = −n − j + r + 1. �

Corollary 4.5. Assume that charK = 0. Then with the notation of Theorem 4.1 the
P0-module Hn−1

P+ (P/f r
λ P )j has a linear resolution.

Proof. Taking the kth component of the exact sequence (7), we obtain the exact sequence
of K-vector spaces

0 → [
Hn−1

P+ (R)j
]
k
→

⊕
|a|=k−r

|b|=−n−j+r

Kxazb f r

−→
⊕
|a|=k

|b|=−n−j

Kxazb → [
Hn

P+(R)j
]
k
→ 0.

For k we distinguish several cases. Let k = −n − j + r + 1. One has

dimK Vk−r,−n−j+r > dimK Vk,−n−j .

This implies that

[
Hn−1

P+ (R)j
]
k
�= 0 for all k � −n − j + r + 1,

since Hn−1
P+ (R)j is torsion-free.

Let k = −n−j +r . Then dimK Vk−r,−n−j+r = dimK Vk,−n−j , so that [Hn−1
P+ (R)j ]k = 0.

Finally let k < −n − j + r . We claim that

dimK Vk−r,−n−j+r =
(

n + k − r − 1

k − r

)(−j + r − 1

−n − j + r

)

is less than

dimK Vk,−n−j =
(

n + k − 1

k

)(−j − 1

−n − j

)
.

Indeed,
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(
n + k − r − 1

k − r

)(−j + r − 1

−n − j + r

)
<

(
n + k − 1

k

)(−j − 1

−n − j

)
if and only if

r∏
i=1

−j + r − i

−n − j + r − i + 1
<

r∏
i=1

n + k − i

k − i + 1
.

Since

−j + r − i

−n − j + r − i + 1
<

n + k − i

k − i + 1
for all i = 1, . . . , r if and only if

k(n − 1) < (−n − j + r)(n − 1),

the claim is clear. Thus the regularity of Hn−1
P+ (R)j is equal to the least integer k such that

[Hn−1
P+ (R)j ]k �= 0. This means that P0-module Hn−1

P+ (R)j has a linear resolution, and its
resolution is the form

· · · → P
β3
0 (n + j − r − 2) → P

β2
0 (n + j − r − 1) → Hn−1

P+ (R)j → 0. �
Combining the above resolution with the exact sequence

0 → Hn−1
P+ (R)j → P

β1
0 (−r) → P

β0
0 → Hn

P+(R)j → 0,

we obtain a graded free resolution for Hn
P+(R)j of the form

· · · → P
β3
0 (n + j − r − 2) → P

β2
0 (n + j − r − 1) → P

β1
0 (−r) → P

β0
0 → Hn

P+(R)j → 0.

In this resolution we know already the Betti numbers

β0 =
(−j − 1

−n − j

)
and β1 =

(−j + r − 1

−n − j + r

)
.

Next we are going to compute the remaining Betti numbers and also the multiplicity of
Hn

P+(R)j . For this we need to prove the following extension of the formula of Herzog and
Kühl [2].

Proposition 4.6. Let M be a finitely generated graded Cohen–Macaulay P0-module of
codimension s with minimal graded free resolution

0 → P
βs

0 (−ds) → ·· · → P
β1
0 (−d1) → P

β0
0 → M → 0.

Then

βi = (−1)i+1β0

∏
j �=i

dj

(dj − di)
.
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Proof. We consider the square matrix A of size s and the following s × 1 matrices of X

and Y :

A =

⎛
⎜⎜⎝

1 1 · · · 1
d1 d2 · · · ds
...

...
...

...

ds−1
1 ds−1

2 · · · ds−1
s

⎞
⎟⎟⎠ , X =

⎛
⎜⎜⎝

−β1
β2
...

(−1)sβs

⎞
⎟⎟⎠ and Y =

⎛
⎜⎜⎝

−β0
0
...

0

⎞
⎟⎟⎠ .

With similar arguments as in the proof of Lemma 1.1 in [8] one has

s∑
i=1

(−1)iβid
k
i =

{
0 for 1 � k < s,
(−1)ss!e(M) for k = s.

Note that
∑s

i=1(−1)iβi = β0. Thus we can conclude that AX = Y . Now we can apply
Cramer’s rule for the computation of βi . We replace the ith column of A by Y , then we
expand the determinant |A| of A along to the Y , we get βi = −β0|A′|/|A| where A′ is the
matrix ⎛

⎜⎜⎝
d1 · · · di−1 di+1 · · · ds

d2
1 · · · d2

i−1 d2
i+1 · · · d2

s

...
...

...
...

...
...

ds−1
1 · · · ds−1

i−1 ds−1
i+1 · · · ds−1

s

⎞
⎟⎟⎠ ,

of size s − 1. A is a Vandermonde matrix whose determinant is
∏

1�j<i�s(di − dj ). We
also note that

|A′| =
∏
j �=i

dj

∏
1�t<k�s

t �=i

(dk − dt ),

so the desired formula follows. �
We also have the following generalization of a formula of Huneke and Miller [7].

Proposition 4.7. With the assumption of Proposition 4.6, we have

e(M) = β0

s!
s∏

i=1

di.

Proof. We consider the square matrix

M =

⎛
⎜⎜⎝

β1d1 β2d2 · · · βs−1ds−1 βsds

β1d
2
1 β2d

2
2 · · · βs−1d

2
s−1 βsd

2
s

...
...

...
...

...

β1d
s
1 β2d

s
2 · · · βs−1d

s
s−1 βsd

s
s

⎞
⎟⎟⎠ (8)

of size s.
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We will compute the determinant |M| of M in two different ways. First we replace the
last column of M by the alternating sum of all columns of M . The resulting matrix will be
denoted by M ′. It is clear that |M| = (−1)s |M ′|. Moreover, due to [8, Lemma 1.1], the last
column of M ′ is the transpose of the vector (0, . . . ,0, (−1)sse(M)). Thus if we expand M ′
with respect to the last column we get

|M| = (−1)s |M ′| = s!e(M)|N |,

where N is the matrix

N =

⎛
⎜⎜⎝

β1d1 β2d2 · · · βs−1ds−1
β1d

2
1 β2d

2
2 · · · βs−1d

2
s−1

...
...

...
...

β1d
s−1
1 β2d

s−1
2 · · · βs−1d

s−1
s−1

⎞
⎟⎟⎠

of size s − 1. Thus

|M| = s!e(M)

s−1∏
i=1

βi

s−1∏
i=1

di

∣∣V (d1, . . . , ds−1)
∣∣, (9)

where V (d1, . . . , ds−1) is the Vandermonde matrix of size s − 1 whose determinant is∏
1�j<i�s−1(di − dj ). On the other hand, directly from (8) we get

|M| =
s∏

i=1

βi

s∏
i=1

di

∣∣V (d1, . . . , ds)
∣∣, (10)

where V (d1, . . . , ds) is the Vandermonde matrix of size s whose determinant is∏
1�j<i�s(di − dj ). In view of (9) and (10) we get the desired formula. �
Now we are able to compute all Betti numbers and the multiplicity of Hn

P+(R)j . We
recall that its resolution is the form

0 → P
βn

0 (j − r + 1) → P
βn−1
0 (j − r + 2) → ·· · → P

β3
0 (n + j − r − 2)

→ P
β2
0 (n + j − r − 1) → P

β1
0 (−r) → P

β0
0 → Hn

P+(R)j → 0,

where β0 =
(−j − 1

−n − j

)
and β1 =

(−j + r − 1

−n − j + r

)
.

Corollary 4.8. With the above notation we have

βi = (−1)ir(n − 1)!β0β1 for all i � 2,

(i − 2)!(n − i)!(−n − j + r + i − 1)(n + j − i + 1)
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and

e
(
Hn

P+(R)j
) = r(−j + r − 1)!β0

n!(−n − j + r)! .

Proof. The assertion follows from Propositions 4.7 and 4.6. �

5. Linear bounds for the regularity of the graded components of local cohomology
for hypersurface rings

In this section for a bihomogeneous polynomial f ∈ P we want to give a linear bound
for the function fi,R(j) = regHi

P+(R)j where R = P/f P . First we prove the following

Proposition 5.1. Let R be the hypersurface ring P/f P where f = ∑n
i=1 fiyi with fi ∈ P0.

Suppose that degfi = d and that I (f ) is m-primary. Then there exists an integer q such
that for j � 0 we have

(a) regHn
P+(R)j � (−n − j + 1)d + q , and

(b) regHn−1
P+ (R)j � (−n − j + 1)d + q + 2.

Proof. (a) From the exact sequence 0 → P(−d,−1)
f→ P → R → 0, we get exact se-

quence P0-modules

⊕
|b|=−n−j+1

P0(−d)zb f→
⊕

|b|=−n−j

P0z
b → Hn

P+(R)j → 0. (11)

We first assume that fi = xi . Theorem 4.1 implies that regHn
P+(R)j = −n − j . We set

k = −n − j . Thus we can get the surjective map of K-vector spaces

⊕
|a|=k

|b|=k+1

Kxazb →
⊕

|a|=k+1
|b|=k

Kxazb.

Replacing xi by fi , we therefore get a surjective map

⊕
|b|=k+1

(
I (f )k

)
dk

zb =
⊕
|a|=k

|b|=k+1

Kf
a1
1 . . . f an

n zb

f→
⊕

|a|=k+1

Kf
a1
1 . . . f an

n zb =
⊕
|b|=k

(
I (f )k+1)

d(k+1)
zb.
|b|=k
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Since I (f ) is m-primary by [3, Theorem 2.4] there exists an integer q such that

reg
(
P0/I (f )k+1) = (k + 1)d + q for k 
 0.

We set l = (k + 1)d + q . Then for l 
 0 we have

(P0)l+1 = (
I (f )k+1)

l+1.

We take the (l + 1)th component of the exact sequence (11) and consider the following
diagram

⊕
|b|=k+1(P0)l−d+1z

b
⊕

|b|=k(P0)l+1z
b [Hn

P+(R)j ]l+1 0

⊕
|b|=k+1(I (f )k)l−d+1z

b
⊕

|b|=k(I (f )k+1)l+1z
b 0

in which left-hand vertical homomorphism is inclusion. Thus we conclude that

[
Hn

P+(R)j
]
l+1 = 0,

so that regHn
P+(R)j � l = (k + 1)d + q , as required.

For the proof (b), we notice that the exact sequence of P0-modules of (11) breaks into
two short exact sequence of P0-modules

0 → Kj →
⊕
|b|=k

P0z
b → Hn

P+(R)j → 0,

0 → Hn−1
P+ (R)j →

⊕
|b|=k+1

P0(−d)zb → Kj → 0,

where Kj = Imf . We see from the first of these sequences that regKj � regHn
P+(R)j +1.

The second short exact sequence, together with part (a) of this theorem and the fact that
d � regKj implies that

regHn−1
P+ (R)j � max{d, regKj + 1} = regKj + 1 � (−n − j + 1)d + q + 2,

as desired. �
Proposition 5.2. Let Nn

d = {β ∈ Nn: |β| = d}, P0 = K[{xβ}β∈Nn
d
] and P = P0[y1, . . . , yn].

Let R = P/f P where f = ∑
|β|=d xβyβ . Then

regHn
P+(R)j � (−n − j + 1)d − 1.
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Proof. We set P+ = (y1, . . . , yn) and P0 = K[x1, . . . , xm] where m = (
n+d−1

d

)
, as usual.

From the exact sequence

0 → P(−1,−d)
f→ P → R → 0,

we get the exact sequence of P0-modules

⊕
|b|=−n−j+d

P0(−1)
(
yb

)∗ f→
⊕

|b|=−n−j

P0
(
yb

)∗ → Hn
P+(R)j → 0,

whose ith graded component is

⊕
|a|=i−1

|b|=−n−j+d

Kxa
(
yb

)∗ f→
⊕
|a|=i

|b|=−n−j

Kxa
(
yb

)∗ → Hn
P+(R)(i,j) → 0. (12)

Here (yb)∗ = zb in the notation of Section 1. Now we exchange the role of x and y: We
may write f = ∑

|β|=d yβxβ and set Q+ = (x1, . . . , xm) and Q0 = K[y1, . . . , yn]. From
the exact sequence

0 → P(−d,−1)
f→ P → R → 0,

we get the exact sequence of P0-modules

⊕
|b|=−m−t+1

Q0(−d)
(
xb

)∗ f→
⊕

|b|=−m−t

Q0
(
xb

)∗ → Hm
Q+(R)t → 0,

whose sth graded component is

⊕
|a|=s−d

|b|=−m−t+1

Kya
(
xb

)∗ f→
⊕
|a|=s

|b|=−m−t

Kya
(
xb

)∗ → Hm
Q+(R)(s,t) → 0.

Applying the functor HomK(−,K) to the above exact sequence and due to the exact se-
quence (12) we have

0 → Hm
Q+(R)∗(s,t) →

⊕
|a|=s

|b|=−m−t

K
(
ya

)∗
xb f→

⊕
|a|=s−d

|b|=−m−t+1

K
(
ya

)∗
xb

→ Hn
P+(R)(−m−t+1,−n−s+d) → 0.

Therefore

Hm (R)∗ ∼= Hn−1(R)(−m−t+1,−n−s+d).
Q+ (s,t) P+
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Thus we have

0 → (
Hn−1

P+ (R)−n−s+d

)
−m−t+1 →

⊕
|a|=s

|b|=−m−t

K
(
ya

)∗
xb

f→
⊕

|a|=s−d
|b|=−m−t+1

K
(
ya

)∗
xb → (

Hn
P+(R)−n−s+d

)
−m−t+1 → 0.

We set j = −n − s + d . Proposition 5.1 implies that

regHn
P+(R)j � (−n − j + 1)d + q for some q.

Since I (f ) = (y1, . . . , yn)
d , thus reg(P0/I (f )k+1) = (k + 1)d − 1. Hence in Proposi-

tion 5.1 we have q = −1. �
Now the main result of this section is the following

Theorem 5.3. Let P = K[x1, . . . , xm, y1, . . . , yn], and f ∈ P be a bihomogeneous poly-
nomial such that I (f ) is m-primary. Let R = P/f P . Then the regularity of Hn

P+(R)j is
linearly bounded.

Proof. We may write f = ∑
|β|=d fβyβ and let degfβ = c. From the exact sequence

0 → P(−c,−d)
f→ P → R → 0,

we get the exact sequence of P0-modules

⊕
|b|=−n−j+d

P0(−c)zb f→
⊕

|b|=−n−j

P0z
b → Hn

P+(R)j → 0.

We first assume that fβ = xβ . Proposition 5.2 implies that regHn
P+(R)j � (−n − j + 1) ×

d − 1. We set k = (−n − j + 1)d . Thus we get the surjective map of K-vector spaces

⊕
|a|=k−1

|b|=−n−j+d

Kxazb →
⊕
|a|=k

|b|=−n−j

Kxazb.

We proceed as in the proof of Proposition 5.1, and we get [Hn
P+(R)j ]kd+q ′+1 = 0 for

some q ′. Therefore

regHn
P+(R)j � (−n − j + 1)d2 + q ′. �
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Corollary 5.4. With the assumption of Theorem 5.3, we have

regHn−1
P+ (R)j � (−n − j + 1)d2 + q ′ + 2.

Proof. For the proof one use the same argument as in the proof of Proposition 5.1(b). �
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