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We investigate the phase-space structure of the quintom dark energy paradigm in the framework of
spatially flat and homogeneous universe. We have also included radiation and dark matter, both matter
components are described as perfect fluids. Considering arbitrary decoupled potentials, we find certain
general conditions under which the phantom-dominated solution is a late time attractor, generalizing
previous results found for the case of an exponential potential. Center Manifold Theory is employed to
obtain sufficient conditions for the instability of de Sitter solution either with phantom or quintessence
potential dominance.
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1. Introduction

Recent cosmological observations point to a strong evidence
for a spatially flat and accelerated expanding universe [1–3]. De-
spite the great agreement of observations with the concordance
model [4],1 it is a fact that quintom model, whose Equation of
State (EoS) can cross the cosmological constant barrier w = −1,
is not excluded by observations [5–13]. A popular way to realize
a viable quintom model and, at the same time, avoid the restric-
tions imposed by the No-Go Theorem [14–18] is the introduction
of extra degrees of freedom.2 Following this recipe, the simplest
quintom paradigm requires a canonical quintessence scalar field σ
and simultaneously a phantom scalar field φ where the effective
potential can be of arbitrary form, while the two components can
be either coupled [20] or decoupled [6,21].

The properties of the quintom models have been studied from
different points of view. Among them, the phase space studies, us-
ing the dynamical systems tools, are very useful since they permit
to bypass the complexities and non-linearities of the cosmological
models, allowing to get insight into the asymptotic and intermedi-
ate behavior of solutions [22,23]. In quintom models this program
has been carried out in [18,20,21,24–28]. In [21], the decoupled
case between the canonical and phantom fields with an exponen-

* Corresponding author.
E-mail addresses: genly.leon@ucv.cl (G. Leon), yoelsy.leyva@ucv.cl (Y. Leyva),

socorro@fisica.ugto.mx (J. Socorro).
1 The Cosmological Constant Model.
2 The only way to realize the crossing without any ghosts and gradient instabili-

ties in standard gravity and with one single scalar degree of freedom was obtained
in [19].
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0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
tial potential was studied showing that the phantom-dominated
scaling solution is the unique late-time attractor. In [20], the au-
thors considered a potential with an interaction between the fields
and show that, in the absence of interactions, the solution domi-
nated by the phantom field should be the attractor of the system
and the interaction does not affect its attractor behavior. However,
in [24] it was shown that this result is correct only in the case in
which the existence of the phantom phase excludes the existence
of scaling attractors. Some of these previous results were extended
in [25] to arbitrary potentials. Finally in [28], the authors showed
that all quintom models with nearly flat potentials converge to a
single expression for EoS of dark energy; in addition, the necessary
conditions for the determination of the direction of the w = −1
crossing were found.

Another interesting feature concerning quintom models is that
some potentials can be constructed using the Bohm-like ap-
proach [29–31], known as amplitude-real-phase formalism [32].
This scheme was used in [33] to derive the corresponding quin-
tom potentials that emerge from quantum cosmology and pro-
vide a physical context for those potentials.3 Among all the po-
tentials found, only V (σ ,φ) = V 0 sinh2(ασ ) + V 1 cosh2(βφ) and
V (σ ,φ) = V 0 exp[±(ασ + βφ)] satisfy the quantum constraint of
this approach [33].

The objective of this paper is to investigate the dynamics of a
general quintom dark energy model with the aim of finding vi-
able scenarios that provide a crossing of the cosmological constant
barrier (phantom divide) at low redshift and at the same time, ex-
tend the previous results in the literature [18,21,24–26]. We will

3 In the sense that, some potentials can be constructed [29,30,33].
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investigate a wide variety of potentials, for which there is no inter-
action between the fields, by using the dynamical systems tools. In
order to be able to analyze self-interaction potentials beyond the
exponential one, we rely on the method introduced in the con-
text of quintessence models [34] and that have been generalized
to several cosmological contexts like: Randall–Sundrum II and DGP
branes [35–38], Scalar Field Dark Matter models [39], tachyon and
phantom fields [40–42] and loop quantum gravity [43].

The plan of the paper is as follows. In Section 2 we introduce
the quintom model for arbitrary potentials and in Section 3 we
build the corresponding autonomous system. The results of the
study of the corresponding critical points, their stability proper-
ties and the physical discussion are shown in Section 4. Section 5
is devoted to conclusions.

Finally, we include two appendices, Appendix A and Appendix B,
with the center manifold calculation of the solutions dominated by
either the phantom or quintessence potential, respectively.

2. The model

The starting action of our model, containing the canonical field
σ and the phantom field φ, is [6,20,21]:

S =
∫

d4x
√−g

(
1

2
R − 1

2
gμν∂μσ∂νσ + Vσ (σ )

+ 1

2
gμν∂μφ∂νφ + Vφ(φ) +Lr +Lm

)
, (1)

where we used natural units (8πG = 1) and Vσ (σ ) and Vφ(φ) are
respectively the self interaction potentials of the quintessence and
phantom fields. The term Lr accounts for the radiation content of
the universe, with energy density ρr and pressure Pr connected
by the equation of state ρr = Pr/3, and Lm accounts for pressure-
less dark matter with energy density ρm and pressure Pm = 0.
From this action the Friedmann equations for a flat Friedmann–
Lemaître–Robertson–Walker (FLRW) geometry reads [20,21]:

H2 = 1

3

(
σ̇ 2

2
+ Vσ (σ ) − φ̇2

2
+ Vφ(φ) + ρm + ρr

)
, (2a)

Ḣ = −1

2

(
σ̇ 2 − φ̇2 + ρm + 4

3
ρr

)
, (2b)

where H = ȧ
a is the Hubble parameter and the dot denotes deriva-

tive with respect the time. The conservation equations for the mat-
ter components leads to

ρ̇m = −3Hρm, (3a)

ρ̇r = −4Hρr, (3b)

while the evolution of the quintessence and phantom fields are:

σ̈ + 3Hσ̇ + V ′
σ (σ ) = 0 (4a)

φ̈ + 3Hφ̇ − V ′
φ(φ) = 0, (4b)

where the prime ′ denotes the derivative of a function with respect
to its argument.

Additionally we can introduce the total energy density and
pressure for the dark energy as:

ρDE = ρσ + ρφ, pDE = pσ + pφ (5)

where

ρσ = σ̇ 2

2
+ Vσ (σ ), ρφ = − φ̇2

2
+ Vφ(φ) (6)

pσ = σ̇ 2

− Vσ (σ ), pφ = − φ̇2

− Vφ(φ) (7)

2 2
and the equation of state parameter of the dark energy component
is given by

wDE = pσ + pφ

ρσ + ρφ

= σ̇ 2 − φ̇2 − 2Vσ (σ ) − 2Vφ(φ)

σ̇ 2 − φ̇2 + 2Vσ (σ ) + 2Vφ(φ)
. (8)

Alternatively, we introduce the total (effective) equation of state
parameter as:

wtot = ptot

ρtot

= 3σ̇ 2 − 3φ̇2 − 6Vσ (σ ) − 6Vφ(φ) + 2ρr

3σ̇ 2 − 3φ̇2 + 6Vσ (σ ) + 6Vφ(φ) + 6ρr + 6ρm
. (9)

For convenience, we also introduce the dimensionless energy den-
sities

Ωσ = ρσ

3H2
, (10a)

Ωφ = ρφ

3H2
, (10b)

Ωr = ρr

3H2
, (10c)

Ωm = ρm

3H2
, (10d)

which are related through4:

Ωσ + Ωφ + Ωr + Ωm = 1. (11)

3. The autonomous system

In order to study the dynamical properties of the system
(2a)–(4b), we introduce the following dimensionless phase space
variables to build an autonomous dynamical system [44,45]:

xσ = σ̇√
6H

, xφ = φ̇√
6H

, (12a)

yσ =
√

Vσ (σ )√
3H

, yφ =
√

Vφ(φ)√
3H

, (12b)

λσ = − V ′
σ (σ )

Vσ (σ )
, λφ = − V ′

φ(φ)

Vφ(φ)
, (12c)

and the additional variables Ωr and Ωm defined by (10c) and (10d)
respectively. Using the constraint (11) one is able to eliminate one
degree of freedom, namely the variable yφ . Notice that the phase
space variables, λσ and λφ , are sensitive of the kind of self interac-
tion potentials chosen for quintessence and phantom components,
respectively and are introduced in order to be able to study arbi-
trary potentials. Applying the above dimensionless variables to the
system (2a)–(4b), we obtain the following autonomous system:

dxσ

dN
= 3x3

σ + xσ

(
3Ωm

2
− 3x2

φ + 2Ωr − 3

)
+

√
3

2
λσ y2

σ , (13a)

dxφ

dN
= −3x3

φ + xφ

(
3Ωm

2
+ 3x2

σ + 2Ωr − 3

)

+
√

3

2
λφ

(
x2
σ − x2

φ + Ωm + Ωr + y2
σ − 1

)
, (13b)

dyσ

dN
= 1

2
yσ

(
3Ωm + 6x2

σ − √
6λσ xσ − 6x2

φ + 4Ωr
)
, (13c)

4 This relationship is obtained by substituting the above definitions (10) in the
Friedmann equation (2a).
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Table 1
Properties of the critical points for the autonomous system (13). The upper asterisk is used to denote values of λσ and λφ such that λσ ∈ f −1(0) and λφ ∈ g−1(0), i.e.,
f (λ∗

σ ) = 0 and g(λ∗
φ) = 0, respectively. We use the definition 1

λ2 = 1
(λ∗

σ )2 − 1
(λ∗

φ )2 .

Label xσ yσ xφ λσ λφ Ωr Ωm Existence Stability

P±
1 0 0 ±i λσ λ∗

φ 0 0 Non-real Unstable

P±
2 ±1 0 0 λ∗

σ λφ 0 0 λφ ∈R Unstable

P±
3 ±

√
1 + x2

φ 0 xφ λ∗
σ λ∗

φ 0 0 Always Unstable

P4
λ∗
σ√
6

√
1 − (λ∗

σ )2

6 0 λ∗
σ λφ 0 0 (λ∗

σ )2 � 6 Saddle

P5 0 0 0 λσ 0 0 0 λσ ∈R Saddle

P6 0 1 0 0 λφ 0 0 λφ ∈R Saddle

P7 0 yσ 0 0 0 0 0 0 < yσ < 1 Stable for f (0) > 0, g(0) < 0,
saddle otherwise

P8 0 0 − λ∗
φ√
6

λσ λ∗
φ 0 0 λσ ∈R Stable for g′(λ∗

φ)λ∗
φ < 0,

saddle otherwise

P9 0 0 0 λσ λφ 1 0 λσ ,λφ ∈R Saddle

P10
2
√

2
3

λ∗
σ

2√
3
√

(λ∗
σ )2

0 λ∗
σ λφ 1 − 4

(λ∗
σ )2 0 (λ∗

σ )2 � 4 Saddle

P11
2
√

2
3

λ∗
σ

2√
3
√

(λ∗
σ )2

2
√

2
3

λ∗
φ

λ∗
σ λ∗

φ 1 − 4
λ2 0 0 � 4

λ2 � 1 Saddle

P12 0 0 0 λσ λφ 0 1 λσ ,λφ ∈R Saddle

P13

√
3
2

λ∗
σ

√
3

2(λ∗
σ )2 0 λ∗

σ λφ 0 1 − 3
(λ∗

σ )2 (λ∗
σ )2 � 3 Saddle

P14

√
3
2

λ∗
σ

√
3

2(λ∗
σ )2

√
3
2

λ∗
φ

λ∗
σ λ∗

φ 0 1 − 3
λ2 0 � 3

λ2 � 1 See discussion at the end of
Section 4.1
dΩr

dN
= Ωr

(
3Ωm + 6x2

σ − 6x2
φ + 4(Ωr − 1)

)
, (13d)

dΩm

dN
= Ωm

(
3(Ωm − 1) + 6x2

σ − 6x2
φ + 4Ωr

)
, (13e)

dλσ

dN
= −√

6xσ f (λσ ), (13f)

dλφ

dN
= −√

6xφ g(λφ), (13g)

where N = ln a is the number of e-foldings, f (λσ ) = λ2
σ (Γσ − 1),

g(λφ) = λ2
φ(Γφ − 1) and:

Γσ = Vσ (σ )V ′′
σ (σ )

(V ′
σ (σ ))2

, Γφ = Vφ(φ)V ′′
φ(φ)

(V ′
φ(φ))2

. (14)

In order to get from the autonomous equations (13) a closed sys-
tem of ordinary differential equations we have assumed that the
functions Γσ and Γφ can be written as a function of the variables
λσ ∈ R and λφ ∈ R respectively [34].

The phase space for the autonomous dynamical system (13) can
be defined as follows:

Ψ = {
(xσ , xφ, yσ ,Ωr,Ωm) ∈R

5: yσ � 0, 0 � ΩDE � 1,

x2
σ − x2

φ + y2
σ + Ωr + Ωm � 1,

0 �Ωr � 1, 0 � Ωm � 1
} × {

(λσ ,λφ) ∈R
2}, (15)

where

ΩDE ≡ Ωσ + Ωφ = 1 − Ωr − Ωm, (16a)

follows from definitions (10).
Now, with the aim of explaining the physical significance of the

critical points of the autonomous system (13) we need to obtain
the relevant cosmological parameters in terms of the dimension-
less phase space variables (12a). Following this, the cosmological
parameters (8), (9) and (10) can be expressed as

wDE = 2x2
σ − 2x2

φ + Ωm + Ωr − 1

1 − Ωm − Ωr
(17a)

wtot = −1 + Ωm + 2x2
σ − 2x2

φ + 4Ωr

3
(17b)

Ωσ = x2
σ + y2

σ , (17c)

Ωφ = 1 − Ωσ − Ωr − Ωm, (17d)

while the deceleration parameter becomes

q = −
[

1 + Ḣ

H2

]
= −1 + 3Ωm

2
+ 3x2

σ − 3x2
φ + 2Ωr . (18)

Observe that: wtot = 2q−1
3 .

4. Critical points and stability

The critical points of the system (13) are summarized in Ta-
ble 1. The eigenvalues of the corresponding Jacobian matrices are
shown in Table 2, while the basic observables evaluated at the
critical points are displayed in Table 3. In all cases, λ∗

σ and λ∗
φ

are the values which make the functions f (λσ ) = λ2
σ (Γσ − 1) and

g(λφ) = λ2
φ(Γφ − 1) vanish respectively.

As we see from Table 1, the points P±
1 do not exist in

the strict sense (xφ is purely imaginary at the fixed points).
Point P5 (resp. P6) is associated with a combination of a phan-
tom (resp. quintessence) potential whose first φ-derivative (resp.
σ -derivative) vanishes at some/several point/points, i.e., λφ = 0
(resp. λσ = 0), and an arbitrary self interaction potential for the
quintessence (resp. phantom) component, i.e., for arbitrary value
of λσ (resp. λφ ). For the point P7, both λφ = 0 and λφ = 0.
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Table 2
Eigenvalues of the linear perturbation matrix associated to each of the critical points displayed in Table 1. The upper asterisk is used to denote values of λσ and λφ

such that λσ ∈ f −1(0) and λφ ∈ g−1(0), i.e., f (λ∗
σ ) = 0 and g(λ∗

φ) = 0, respectively. Here we use the definitions 1
λ2 = 1

(λ∗
σ )2 − 1

(λ∗
φ )2 , Δ±

1 = − 3
2 (1 ±

√
1 + 4

3 g(0) ), Δ±
2 =

− 3
2 (1 ±

√
1 − 4

3 f (0) ), Δ±
3 = − 3

2 (1 ±
√

1 − 4
3 f (0)y2

σ ), Δ±
4 = − 3

2 (1 ±
√

1 + 4
3 g(0)(1 − y2

σ ) ), χ±(z) = − 1
2 (1 ±

√
64
z2 − 15 ), and η±(z) = − 3

4 (1 ±
√

24
z2 − 7 ) where z is a

dummy variable.

Label m1 m2 m3 m4 m5 m6 m7

P±
1 3 0 0 ∓i

√
6g′(λ∗

φ) 6 ∓ i
√

6λ∗
φ 2 3

P±
2 6 0 0 ∓√

6 f ′(λ∗
σ ) 3 ∓

√
3
2 λ∗

σ 2 3

P±
3 0 −√

6g′(λ∗
φ)xφ ∓√

6 f ′(λ∗
σ )

√
1 + x2

φ 3 ∓
√

3
2

√
1 + x2

φλ∗
σ 6 − √

6xφλ∗
φ 2 3

P4 0 − f ′(λ∗
σ )λ∗

σ (λσ ∗)2 1
2 ((λ∗

σ )2 − 6) 1
2 ((λ∗

σ )2 − 6) (λ∗
σ )2 − 4 (λ∗

σ )2 − 3

P5 −3 0 0 Δ+
1 Δ−

1 −4 −3

P6 −3 0 0 Δ+
2 Δ−

2 −4 −3

P7 0 Δ+
3 Δ−

3 Δ+
4 Δ−

4 −4 −3

P8 0 g′(λ∗
φ)λ∗

φ − 1
2 (λ∗

φ)2 − 1
2 ((λ∗

φ)2 + 6) − 1
2 ((λ∗

φ)2 + 6) −(λ∗
φ)2 − 4 −(λ∗

φ)2 − 3

P9 4 2 −1 −1 0 0 1

P10 4 −1 0 1 χ+(λ∗
σ ) χ−(λ∗

σ ) − 4 f ′(λ∗
σ )

λ∗
σ

P11 − 1
2 + i

√
15

2 − 1
2 − i

√
15

2 1 χ+(λ) χ−(λ) − 4 f ′(λ∗
σ )

λ∗
σ

− 4g′(λ∗
φ )

λ∗
φ

P12 0 0 3
2 3 − 3

2 − 3
2 −1

P13 0 − 3
2 3 −1 η+(λ∗

σ ) η−(λ∗
σ ) − 3 f ′(λ∗

σ )

λ∗
σ

P14 − 3
4 (1 + i

√
7) − 3

4 (1 − i
√

7) −1 η+(λ) η−(λ) − 3 f ′(λ∗
σ )

λ∗
σ

− 3g′(λ∗
φ )

λ∗
φ

Table 3
Basic observables evaluated at the critical points of the autonomous system (13). The upper asterisk is used to denote values of λσ and λφ such that λσ ∈ f −1(0) and
λφ ∈ g−1(0), i.e., f (λ∗

σ ) = 0 and g(λ∗
φ) = 0, respectively.

Label Ωr Ωm ΩDE q wDE wtot

P±
1 0 0 1 2 1 1

P±
2 0 0 1 2 1 1

P±
3 0 0 1 2 1 1

P4 0 0 1 −1 + (λ∗
σ )2

2 −1 + (λ∗
σ )2

3 −1 + (λ∗
σ )2

3

P5 0 0 1 −1 −1 −1

P6 0 0 1 −1 −1 −1

P7 0 0 1 −1 −1 −1

P8 0 0 1 −1 − (λ∗
φ )2

2 −1 − (λ∗
φ )2

3 −1 − (λ∗
φ )2

3

P9 1 0 0 1 Indeterminate 1
3

P10 1 − 4
(λ∗

σ )2 0 4
(λ∗

σ )2 1 1
3

1
3

P11 1 − 4
λ2 0 4

λ2 1 1
3

1
3

P12 0 1 0 1
2 Indeterminate 0

P13 0 1 − 3
(λ∗

σ )2
3

(λ∗
σ )2

1
2 0 0

P14 0 1 − 3
λ2

3
λ2

1
2 0 0
It is worth noticing that the existence conditions for the rest of
the points displayed in Table 1 depends of the concrete form of
the potential. Besides, from the table of the eigenvalues (Table 2)
follows that all the points, with the exception of P11 and P14, be-
long to nonhyperbolic sets of critical point with a least one null
eigenvalue.

For these nonhyperbolic sets, we are not able to extract infor-
mation about their stability by using the standard tools of the lin-
ear dynamical analysis, unless they were normally hyperbolic sets.
We recall that an invariant set of non-isolated singular points is
normally-hyperbolic if the equilibrium set has only one zero eigen-
value at each point, all other eigenvalues have non-zero real parts,
and the eigenvector associated to the zero eigenvalue is tangent to
the set. Thus its stability is determined by the sign of the remain-
ing non-null eigenvalues. Nonhyperbolic fixed points, with both
non-empty stable and unstable subspaces, will have saddle behav-
ior. In case that the standard linear dynamical systems analysis
fails to be applied, then we need to rely our analysis on numer-
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ical inspection of the phase portrait for specific potentials or using
more sophisticated techniques like the Center Manifold Theory (for
technical discussions see Refs. [22,23,46–48]).

4.1. Stability of the critical points

Although all these critical points are shown in Table 1 here we
have summarized their basic properties:

• P±
1 , P±

2 and P±
3 correspond to a solution dominated by the

kinetic energy of the scalar fields (stiff fluid solution: q = 2
and wtot = 1). The exact cosmological behavior differs for
each point. P±

1 corresponds to a phantom kinetic energy-
dominated solutions (Ωσ = 0 and Ωφ = 1). However, these
points have a purely imaginary values of xφ , thus, they do not
exist in the strict sense. They have a three-dimensional center
subspace and a four-dimensional unstable manifold (m1,m6,

m7 > 0, �(m5) > 0). Thus they cannot be late-time attractors.
P±

2 are dominated by the quintessence kinetic term (Ωσ = 1
and Ωφ = 0), they are non-hyperbolic due to the existence of
two null eigenvalues, so, as commented before we are not able
to extract information about their stability by using the stan-
dard tools of the linear dynamical analysis. However, since for
these points the unstable manifold is at least 3D, then, typi-
cally, they are unstable (a local source or a saddle depending
on the parameter choices). P±

3 represent solutions dominated
by the kinetic energies of both the quintessence and phantom
fields (Ωσ = 1 + x2

φ and ΩDE = 1), i.e., the cosmic evolution
is dominated by the kinetic term of the quintom field. These
points depend of the form of the potentials and under cer-
tain conditions they have a six-dimensional unstable subspace
which could correspond to the past attractor, otherwise it is a
saddle point. In fact P+

3 has a 6D unstable manifold for either:

(i) xφ < 0, λ∗
σ <

√
6

1+x2
φ

, λ∗
φ >

√
6

xφ
, f ′(λ∗

σ ) < 0, g′(λ∗
φ) > 0, or

(ii) xφ > 0, λ∗
σ <

√
6

1+x2
φ

, λ∗
φ <

√
6

1+x2
φ

, f ′(λ∗
σ ) < 0, g′(λ∗

φ) < 0;

whereas P−
3 has a 6D unstable manifold for either:

(i) xφ < 0, λ∗
σ > −

√
6

1+x2
φ

, λ∗
φ >

√
6

xφ
, f ′(λ∗

σ ) > 0, g′(λ∗
φ) > 0, or

(ii) xφ > 0, λ∗
σ > −

√
6

1+x2
φ

, λ∗
φ <

√
6

xφ
, f ′(λ∗

σ ) > 0, g′(λ∗
φ) < 0.

P±
3 contains, as a particular case, the points P±

2 for the choice
xφ = 0, g(λφ) = 0.
None of the these critical points are relevant for the late-time
dynamics, thus the corresponding center manifold calculation
and its stability analysis is not presented.

• P4 is a scaling solution between the kinetic and the potential
energy of the quintessence component of dark energy. This so-
lution in sensitive to the explicit form of the potential. This is
always a saddle equilibrium point in the phase space since for
example m2 = (λ∗

σ )2 and m4 = 1
2 ((λ∗

σ )2 − 6) are of opposite
sign in the existence region of this point. It represents an ac-
celerated solution for a potential Vσ (σ ) whose function f (λσ )

vanish for λσ = λ∗
σ in the interval −√

2 < λ∗
σ <

√
2, leading to

a −1 � wtot < −1/3. When λ∗
σ = 0 the critical point P4 be-

comes in P6. In the regions −√
6 � λ∗

σ � −√
2 or

√
2 � λ∗

σ �√
6, the critical point P4 represents a non-accelerated phase.

A very interesting issue of this critical point appears when the
quintessence field is able to mimic the behavior of radiation
(wr = 1/3) or dark matter (wm = 0) at background level. This
happens when, for an specific form of the quintessence poten-
tial, λ∗
σ = ±2 leading to wtot = 1/3 or λ∗

σ = ±√
3 driving to

wtot = 0 respectively.5

• P5, P6 and P7 represent solutions dominated by the poten-
tial energies of the potentials (all of them represent de Sitter
solutions: q = −1 and wtot = −1). Once again the exact cos-
mological nature of them differs from one point to the other:
P5 is dominated by the potential energy of the phantom com-
ponent (Ωσ = 0 and Ωφ = 1). Because of the existence of two
null eigenvalues is not possible to conclude about its dynam-
ics from the linear analysis. However, it has a five-dimensional
stable manifold for g(0) < 0 (in the interval g(0) < − 3

4 it has
to complex conjugated eigenvalues with negative real parts).
In these cases it is worthy to analyze its stability using the
center manifold theory. P6 is a critical point dominated by the
quintessence potential energy term (Ωσ = 1 and Ωφ = 0), de-
spite its nonhyperbolicity, it has five-dimensional stable man-
ifold for f (0) > 0 (in the case f (0) > 3

4 , it has to complex
conjugated eigenvalues with negative real parts), thus, it is
worthy to analyze its stability using the center manifold the-
ory. P7 denotes a segment (curve) of non-isolated fixed points,
representing a scaling regimen between the quintessence and
phantom potential (Ωσ = y2

σ and Ωφ = 1− y2
σ ). It is normally-

hyperbolic, since the eigenvector associated to the zero eigen-
value, (0,0,1,0,0)T , is tangent to the curve. Thus its stability
is determined by the sign of the remaining non-null eigen-
values. Hence, it is stable for f (0) > 0, g(0) < 0 or a saddle
otherwise.

• P8 is a line of fixed points parametrized by λσ ∈ R and it is
normally-hyperbolic, due to the eigenvector associated to the
zero eigenvalue, (0,0,0,1,0)T , is tangent to the curve. Like
P7, its stability is determined by the sign of the remaining
non-null eigenvalues. From Table 2 follows that P8 admits a
six-dimensional stable subspace provided g′(λ∗

φ)λ∗
φ < 0, thus,

the invariant curve is stable for these parameter conditions.
It represents accelerated solutions dominated by the phantom
potential (Ωσ = 0 and Ωφ = 1) providing a crossing through
the phantom divide. For every value of λ∗

φ this point pro-
vides the super-accelerated expansion typical of the quintom

paradigm (wtot = −1 − (λ∗
φ)2

3 ) the only exception occurs when
λ∗

φ = 0 recovering the behavior of the de Sitter solution P5
(wtot = −1). This line of critical points corresponds to the
stable point P in [21] and B in [18] (phantom-dominated solu-
tion). Summarizing, the line P8 is the late-time stable attractor
provided g′(λ∗

φ)λ∗
φ < 0, otherwise, it is a saddle point.

• P9 corresponds to a radiation-dominated solution (Ωr = 1)
which is a saddle point since the stable manifold is 2D and
the unstable one is 3D.

• P10 represents a scaling radiation-quintessence solution which
is a saddle because at least two eigenvalues have different
signs, say m1 = 4 and m2 = −1.

• P11 represents a scaling radiation–DE (quintom) solution
which is a saddle because at least two eigenvalues have re-
als parts of different signs, say �(m1) = − 1

2 and m2 = 1. Thus,
P9, P10 and P11 correspond to transient stages for the cosmic
evolution which corresponds to an effective radiation source
(wtot = 1

3 ), so they cannot represent the late-time universe.
• P12 corresponds to a dark-matter-dominated universe (Ωm =

1) which is a saddle point since the stable manifold is 3D and
the unstable one is 2D.

• P13 represents a scaling dark matter–quintessence solution. It
is a saddle because at least two eigenvalues have different
signs, say m2 = − 3

2 and m3 = 3. Summarizing, P12 and P13,

5 See next subsection for a detailed discussion about this critical point.
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which corresponds to an effective dust source (wtot = 0), are
transient stages for the cosmic evolution, and thus they are
not good candidates for the late-time universe.

• P14 corresponds to scaling dark matter–DE (quintom) solution
which can be either stable or saddle depending on choice of
the parameters.

Actually, P14 is stable for either:

(i) λ∗
σ �−√

3, λ∗
φ < 0, f ′(λ∗

σ ) < 0, g′(λ∗
φ) < 0, or

(ii) λ∗
σ �−√

3, λ∗
φ > 0, f ′(λ∗

σ ) < 0, g′(λ∗
φ) > 0, or

(iii) −√
3 < λ∗

σ < 0, −
√

3(λ∗
σ )2

3−(λ∗
σ )2 < λ∗

φ < 0, f ′(λ∗
σ ) < 0, g′(λ∗

φ) < 0,

or

(iv) −√
3 < λ∗

σ < 0, 0 < λ∗
φ <

√
3(λ∗

σ )2

3−(λ∗
σ )2 , f ′(λ∗

σ ) < 0, g′(λ∗
φ) > 0,

or

(v) 0 < λ∗
σ <

√
3, −

√
3(λ∗

σ )2

3−(λ∗
σ )2 < λ∗

φ < 0, f ′(λ∗
σ ) > 0, g′(λ∗

φ) < 0,

or

(vi) 0 < λ∗
σ <

√
3, 0 < λ∗

φ <

√
3(λ∗

σ )2

3−(λ∗
σ )2 , f ′(λ∗

σ ) > 0, g′(λ∗
φ) > 0, or

(vii) λ∗
σ �

√
3, λ∗

φ < 0, f ′(λ∗
σ ) > 0, g′(λ∗

φ) < 0, or

(viii) λ∗
σ �

√
3, λ∗

φ > 0, f ′(λ∗
σ ) > 0, g′(λ∗

φ) > 0.

It is a saddle otherwise.
When P14 is stable, it provides a good candidate for solving or

alleviating the coincidence problem (why Ωm ∼ ΩDE nowadays?).
However, since in this case it corresponds to an effective dust
source (wtot = 0), then, it is unlikely that this point represents
accurately the late-time universe. But if we restrict the param-
eter space in order to avoid all the above conditions (i)–(viii),
but preserving the existence condition 0 � 3

λ2 � 1, where 1
λ2 =

1
(λ∗

σ )2 − 1
(λ∗

φ)2 , we obtain that P14 will be a saddle point, thus rep-

resenting a transient stage of the cosmic evolution.6

4.2. Cosmological consequences

As was shown in the previous subsection the autonomous sys-
tem (13) only admits fifteen classes of critical points (some of
them are actually curves of fixed points).7 The curves P±

2 cor-
respond to decelerated solutions, with q = 2, where the Fried-
mann constraint (2a) is dominated by the kinetic energy of the
quintessence field with an stiff-like equation of state, wtot = 1.
These solutions are only relevant at early times [44].

In order that our model can be in line with the current observa-
tional data, it must have to follow a complete cosmological dynamics
[49], namely: it should describe an early radiation-dominated era
(RDE), later enter into an epoch of mater domination (MDE), and
finally reproduce the present speed up of the Universe. At each
of these stages some special forms of matter seems to dominate
the evolution, and the required dominance should be translated
in different critical points, around which cosmological solutions
remain a lapse of time, before ultimately approaching an stable
late-time configuration. In the dynamical systems language a com-
plete cosmological dynamics can be understood as an heteroclinic
orbit connecting a past attractor, also called source, with a late-
time attractor, also called sink, that passes through some saddle
points, such that a RDE precedes a MDE. Recall that critical points

6 The trivial way to avoid this unwanted late-time behavior is choosing 3
λ2 > 1

which immediately gives that P14 does not exist.
7 P±

1 is ruled out because of they lead to imaginary values of dimensionless vari-
able xφ .
are often the extreme points of the orbits and therefore describe
the asymptotic behavior. However, there are solutions that inter-
polate between critical points, and then, they provide information
of the intermediate stages of the evolution. These kind of solutions
can be divided into heteroclinic orbit and homoclinic orbit (that
looks like closed loop). The heteroclinic orbit connects two differ-
ent critical points and the homoclinic orbit is an orbit connecting
a critical point to itself. We are interested in heteroclinic orbits
that should correspond to an specific cosmological history where a
RDE precedes a MDE and thus, following a complete cosmological
dynamics. We submit the reader to Refs. [22,23,50,51], for recent
discussions on the role of heteroclinic orbits in cosmology.

The condition for a purely RDE (Ωr = 1) is satisfied by P9,
this critical point always exists with a saddle behavior. As Ta-
ble 3 shown, P9 represents a decelerating expansion solution with
q = 1. For certain potentials, another possible critical points for a
RDE, with saddle behavior, would be the decelerating expansion
solutions (q = 1) P10 and P11.8 In both cases, the dark energy
component is able to mimic a radiation like fluid with wDE = 1/3
(see Table 3). In order to recover a period dominated by radiation,
we need to check the bounds imposed by the Big Bang Nucleosyn-
thesis over the allowed amount of dark energy [52–57]. This bound
comes from the primordial abundances of the light elements at the
BBN (T ≈ 1 MeV) time. The current upper bound on the dark en-
ergy density at redshift of BBN (z = 109) was obtained in [56]:
Ωmax

DE � 0.064 at 3σ , then this implies9:

P10: ΩDE = 4

(λ∗
σ )2

< 0.064 ⇒ (
λ∗
σ

)2
> 62.5 (19)

P11: ΩDE = 1

λ2
< 0.064. (20)

Although the value of the total (effective) equation of state pa-
rameter for P10 and P11 implies that, at the background level, they
are able to describe a radiation-like expansion (wtot = 1/3), it is
mandatory to fulfill the previous conditions (19)–(20) in order to
be a realistic RDE, otherwise there is a relic abundance problem.10

As we mention before, the Universe requires the existence of
a long enough MDE in order to explain the formation of the cos-
mic structure. In our system, this period is recovered by a pure
dark matter critical point P12 (Ωm = 1), which corresponds to a
decelerated expansion solution with q = 1/2. As Table 1 shows,
the existence of this point is always guaranteed in the phase space
(15). As in the case of RDE, is possible to obtain two additional
critical points with saddle behavior that may be associated with a
MDE: P13 and P14. Both critical points represent scaling solutions
between the dark matter and the quintom field, where this lat-
ter component mimics a pressureless fluid (wDE = 0, see Table 3).
In order to recover a MDE (Ωm ≈ 1 and ΩDE ≈ 0), the following
conditions must be met11:

P13:
(
λ∗
σ

)2 � 3, (21)

P14: 1

λ2
 3. (22)

As in the case of critical points P10 and P11 in the RDE, the
existence of P13 and P14 depends of the explicit form of the po-
tentials. Both pairs of critical points are related, namely:

8 As Table 1 shown, the existence of both critical points is sensitive to the explicit
form of the potential.

9 Recall that we used the definition 1
λ2 = 1

(λ∗
σ )2 − 1

(λ∗
φ )2 .

10 See [44] for a similar analysis in exponential potential quintessence model.
11 The value of wtot = 0 for P13 and P14 implies that, at background level, both

critical points are able to match a MDE, even if (21)–(22) are not satisfied.
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• if P10 exists for a given potential, then P13 will exist as well.
• if P11 exists for a given potential, then P14 will exist as well.

In both cases the opposite statement is not necessarily true. De-
spite being related, the saddle nature of their behavior does not
guarantee that initial conditions lead orbits to connect both groups
of critical points, e.g.: P10 −→ P13.

An interesting result comes from the stability of critical
point P4. This point exists if −√

6 � λ∗
σ �

√
6 and always behaves

as a saddle fixed point. As Table 1 shown, its existence condition
is independent of whether the radiation and cold dark matter are
considered since Ωr = Ωm = 0. In the case of this point, as we
mentioned before, if the quintessence potential fulfill the condi-
tion:

λ∗
σ = ±2, (23)

then the effective equation of state of this dark energy component
would mimic a radiation fluid (wDE = wtot = 1/3) or if:

λ∗
σ = ±√

3, (24)

then the dark energy component would mimic pressureless fluid
(wtot = 0), in other words: it will dynamically behave exactly as ra-
diation (23) or cold dark matter (24) at background level. However,
this statement is no enough to guarantee a realistic RDE. Since a
null value of Ωr (ΩDE = 1) implies a relic abundance problem at
BBN period [44], P4 is ruled out as true period of radiation dom-
ination. The possibility of this dynamical characteristic impose a
fine tuning over the shape of quintessence potentials and a priori
there is no guarantee that all possible quintessence potentials may
satisfy the above conditions (23)–(24).

Another important feature of the model is the presence of three
accelerated solutions, described by critical points P5, P6 and P7.
All of them are de Sitter solutions (wtot = −1) dominated by the
potentials of the scalar fields. P5 and P6 have a saddle behavior
but P7 can be stable for f (0) > 0, g(0) < 0 or a saddle otherwise.
A favorable scenario would be one in which the initial conditions
lead to a complete cosmological dynamics, e.g.: P2 −→ P9 −→ P12,
and then the orbits tend to one of the de Sitter solutions with
saddle behavior P5, P6, and finally approaching either the late-
time de Sitter point P7 or the late time phantom attractor P8. In
terms of the cosmological evolution of the Universe, the above fa-
vorable scenario implies that the Universe started at early times
from an stage dominated by the kinetic energy of the quintessence
field, then evolve into an RDE from which, a MDE emerge to finally
enter in the final phase of accelerated expansion. This accelerated
phase can be the de Sitter solutions or a phantom-dominated so-
lution (wtot < −1).12 This final stage of evolutions towards critical
point P8 is consistent with the observational results from [12,13]
which suggest a mild preference for a dark energy equation-of-
state parameter in the phantom region (wtot < −1).

Finally, in order to examine the stability of the nonhyperbolic
points that cannot consistently be studied via the present linear
analysis, we present a concrete example. We provide a numerical
elaboration of the phase space orbits of the corresponding quintom
model.

4.3. V (σ ,φ) = V 0 sinh2(ασ ) + V 1 cosh2(βφ)

This potential is derived, in a Friedmann–Robertson–Walker
cosmological model, from canonical quantum cosmology under de-

12 In fact, these models admit the possibility of having two stable solutions: a de
Sitter solution (P7) and a phantom solution (P8), each one within their basin of
attraction as was shown in previous subsection.
termined conditions in the evolution of our universe, using the
Bohmian formalism [29,33].

For this potential:

f (λσ ) = −λ2
σ

2
+ 2α2, λ∗

σ = ±2α, f ′(λ∗
σ

) = −λ∗
σ (25)

and

g(λφ) = −λ2
φ

2
+ 2β2, λ∗

φ = ±2β, g′(λ∗
φ

) = −λ∗
φ. (26)

Substituting the functions (25) and (26) in (13f) and (13g), re-
spectively, we deduce the equations

d(λσ ± 2α)

dN
=

√
6

2
xσ (λσ ∓ 2α)(λσ ± 2α), (27)

d(λφ ± 2β)

dN
=

√
6

2
xφ(λφ ∓ 2β)(λφ ± 2β). (28)

Using elementary dynamical systems theory follows from (27) and
(28) that the subsets of the phase space given by λσ � ±2α;
λσ = ±2α; λσ � ±2α; λφ � ±2β; λφ = ±2β; and λφ � ±2β and
their combinations (non-empty intersections and/or unions) are in-
variant sets for the flow of the dynamical system. This means, for
example, that orbits initially in the strep −2β < λφ < 2β , remain
in this set for every time. These results allows to consider the dy-
namics restricted to several of these invariant sets since they act as
independent dynamical objects, with the additional simplification
of the dynamics.

From Table 2 and Eq. (26) we see that the condition to ensure
that point P8 has a four-dimensional stable subspace is always sat-
isfied due to the opposite signs between λ∗

φ and g′(λ∗
φ).

To finish this section let’s us discuss some numerical elabora-
tions.

In Fig. 1 are presented the projections of some orbits of the

phase space of the system (13) for the parameter choice α =
√

5
2 ,

β = 1
2 at (a) the invariant set Ωσ = 0,Ωr = 0,Ωm = 0; (b) the

subspace (Ωr,Ωr). For this choice of parameters the points P11
and P14 do not exist since at these points Ωr < 0. The remaining
points in Table 1 always exist.

Fig. 1(a) captures the typical behavior in the plane (xφ,λφ);
i.e., we have two attractors: P8 evaluated at the value λ∗

φ = +1,
labeled in the figure by P8a , and P8b which corresponds to the
value λ∗

φ = −1 irrespectively the initial values of Ωσ , Ωr , Ωm .
The phase space is divided in two portions where the attractor
solution is either P8a or P8b . For the simulation in Fig. 1(b) we
kept fixed the values xσ (0) = 0, yσ (0) = 0, xφ(0) = 0, λσ (0) = 0,
λφ(0) = 0 in all the initial conditions. In the figure it is shown
that the matter-dominated epoch is a transient one preceded by a
radiation-dominated epoch. Additionally these energy components
become negligible late times.

In Fig. 2 are presented the projections of some orbits of the
phase space of the system (13) for the parameter choice α =√

5
2 , β = 1

2 in the subspaces (a) (xσ , yσ , xφ); (b) (xσ , yσ ) and
(c) (xσ , xφ). It is easy to see from the figures that the quintessence
component tends to zero at late times dominating the phantom
component. For the numerics we kept fixed the initial condi-
tions Ωr(0) = 10−5, Ωm(0) = 0.3, λφ(0) = −1, λσ (0) = √

5. It is
worth noticing that λφ = −1, λσ = √

5 defines an invariant set.
The attractor solution is always the phantom solution P8b , i.e.,
the solution P8 for the choice λ∗

φ = −1. Choosing the initial value
λφ(0) = +1 the universe results at late times in the phantom so-
lution P8a .
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Fig. 1. Projections of some orbits of the phase space of the system (13) for the

parameter choice α =
√

5
2 , β = 1

2 at: (a) the invariant set Ωσ = 0, Ωr = 0, Ωm = 0
and (b) the subspace (Ωr ,Ωm). In the figure (a) we have two attractors: P8a which
corresponds to the value λ∗

φ = +1 and P8b which corresponds to the value λ∗
φ =

−1 irrespectively the initial values of Ωσ , Ωr , Ωm . The phase space is divided in
two portions where the attractor solution is either P8a or P8b . For (b) we kept
fixed the values xσ (0) = 0, yσ (0) = 0, xφ(0) = 0, λσ (0) = 0, λφ(0) = 0 in all the
initial conditions. In this figure, it is showed that the matter-dominated epoch is a
transient one preceded by a radiation-dominated epoch. Additionally these energy
components become negligible at late time, since the orbits tend to the origin as
time goes forward.

5. Conclusions

In the present paper we studied a quintom dark energy model,
that consists on an hybrid model with the simultaneously con-
tribution of a canonical quintessence field and a phantom field.
Additionally, we included dark matter and radiation that are rep-
resented by perfect fluids. An important assumption was that we
only consider arbitrary decoupled potentials, which constrains the
type of quintom dark energy scenarios covered by our analy-
sis.

First, we conducted a comprehensive dynamical system analy-
sis of the model in order to investigate both its asymptotic and
intermediate evolution. Additionally, we demanded that our model
must follow a complete cosmological dynamics: namely, the exis-
tence of a viable radiation dominate era (RDE) and a matter-
dominated era (MDE) preceding to a late-time acceleration stage;
these three different eras have to be present in any model of phys-
ical interest. The imposition of this requirement allows to demon-
strate that this model is able to describe the aforementioned pe-
Fig. 2. Projections of some orbits of the phase space of the system (13) for the

parameter choice α =
√

5
2 , β = 1

2 in the subspaces (a) (xσ , yσ , xφ); (b) (xσ , yσ ) and
(c) (xσ , xφ). For the numerics we kept fixed the values Ωr(0) = 10−5, Ωm(0) = 0.3,
λφ(0) = −1, λσ (0) = √

5 in all the initial conditions. It is worth to mention that
λφ = −1, λσ = √

5 defines an invariant set. The attractor solution is always the
phantom solution P8b , i.e., the solution P8 for the choice λ∗

φ = −1.

riods. Specifically, is possible to have three classes of solutions for
the RDE: the standard pure radiation solution and two additional
solutions, in which the dark energy component is able to mimic a
radiation-like fluid. In the latter it was necessary to use the bounds
imposed by the Big Bang Nucleosynthesis (BBN) over the allowed
amount of dark energy at the RDE in order to constrains the free
parameters of the quintom potentials. Similarly, four classes of so-
lutions were found for the MDE: the standard pure dark matter
solution, two scaling solutions between the dark matter and quin-
tom field, where the dark energy component mimics a pressureless
fluid. And for some especial conditions on the parameter space,
is possible to obtain a saddle-like class of solutions where the
quintessence field behaves as a dark matter at background level,
even if radiation and dark matter are not considered in the setup
of the model.
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We presented general conditions on the quintom potentials for
the stability of the phantom-dominated solutions (late time at-
tractors), generalizing the results shown in [18,21] for exponen-
tial potentials. Under these conditions the Universe evolves from
a quintessence-dominated phase to a phantom dominated phase,
crossing the wtot = −1 divide line as a transient stage [58]. This
important result is in correspondence with the cosmological ob-
servations that mildly favors the phantom regime [12,13].

An important feature of this model is the existence of three de
Sitter solutions. The dynamical behavior of two of these solutions
cannot be anticipated using the linearization due to their nonhy-
perbolic nature. Thus, to examine them, we employed the Center
Manifold Theory. After deriving the evolution equation on the cen-
ter manifolds and making several numerical integrations we have
concluded that, in both cases, the corresponding de Sitter solu-
tion is unstable (saddle-like). In addition, it was shown that the
remaining de Sitter solution, which is actually normally-hyperbolic,
is stable under certain conditions, which makes it a viable late
time solution.

For purposes of illustration, we have applied our general results
to the specific quintom potential obtained from a canonical quan-
tum cosmology [33].
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Appendix A. Center manifold dynamics for the solution
dominated by the potential energy of the phantom
component P5

In this section we apply the Center Manifold Theorem [22,23,
46–48] to study the stability of non-hyperbolic point P5 corre-
sponding to the solution dominated by the potential energy of the
phantom component. Without loosing generality we set Ωr = 0,
Ωm = 0 in the following discussion.

First, we restrict our attention to the domain − 3
4 < g(0) < 0 to

dealing with real eigenvalues.
The first step is to translate the point P5 (xσ = 0, xφ = 0, yσ =

0, λσ = μ, λφ = 0) to the origin, where μ denotes an arbitrary
value for λσ .

The next step is to transform the system to its real Jordan form:

du

dN
= Zu + F (u,v) (A.1)

dv

dN
= P v + G(u,v) (A.2)

where the square matrices Z , P have 2 zero eigenvalues and 3
eigenvalues with negative real part, respectively. In order to do that
we introduce the new variables:

u1 = yσ ,

u2 = −
√

2
xσ f (μ) − μ + λσ ,
3

v1 =
√

2

3
xσ f (μ),

v2 = 2
√

6g(0)xφ + (
√

12g(0) + 9 − 3)λφ

2
√

12g(0) + 9
,

v3 = (
√

12g(0) + 9 + 3)λφ − 2
√

6g(0)xφ

2
√

12g(0) + 9
. (A.3)

Using the above transformation, the system (A.1)–(A.2) is ex-
plicitly given by:

u′
1 = F1(u1, u2, v1, v2, v3) (A.4)

u′
2 = −3v1( f (μ + u2 + v1) − f (μ))

f (μ)
+ H(u1, u2, v1, v2, v3)

≡ F2(u1, u2, v1, v2, v3) (A.5)

v ′
1 = −3v1 + G1(u1, u2, v1, v2, v3) (A.6)

v ′
2 = 1

2

(−√
12g(0) + 9 − 3

)
v2 + G2(u1, u2, v1, v2, v3) (A.7)

v ′
3 = 1

2

(√
12g(0) + 9 − 3

)
v3 + G3(u1, u2, v1, v2, v3), (A.8)

where f ′ = df
dN , F1, H, G1, . . . , G3 are homogeneous polynomials of

degree greater than 2 in the coordinates (u1, u2, v1, v2, v3).
Following the standard formalism of the Center Manifold The-

ory, the coordinates which correspond to the non-zero eigenvalues
(v1, v2, v3) can be approximated by the functions:

k1(u1, u2) = a1u2
1 + a2u3

1 + a3u1u2 + a4u2
1u2 + a5u2

2

+ a6u1u2
2 + a7u3

2 + · · · + O
(
un

1, un
2

)
(A.9)

k2(u1, u2) = b1u2
1 + b2u3

1 + b3u1u2 + b4u2
1u2 + b5u2

2

+ b6u1u2
2 + b7u3

2 + · · · + O
(
un

1, un
2

)
(A.10)

k3(u1, u2) = c1u2
1 + c2u3

1 + c3u1u2 + c4u2
1u2 + c5u2

2

+ c6u1u2
2 + c7u3

2 + · · · + O
(
un

1, un
2

)
(A.11)

with this set of functions we can solve, to any n desired degree of
accuracy, the quasilinear partial differential equation for the center
manifold:

Dk(u)
[

Zu + F
(
u,k(u)

)] − Pk(u) − G
(
u,k(u)

) = 0. (A.12)

In our case: Z = ( 0 0
0 0

)
and

P =
⎛
⎝ −3 0 0

0 1
2 (−√

12g(0) + 9 − 3) 0
0 0 1

2 (
√

12g(0) + 9 − 3)

⎞
⎠

k(u) =
⎛
⎝ k1(u1, u2)

k2(u1, u2)

k3(u1, u2)

⎞
⎠

Dk(u) =

⎛
⎜⎜⎝

∂k1
∂u1

∂k1
∂u2

∂k2
∂u1

∂k2
∂u2

∂k3
∂u1

∂k3
∂u2

⎞
⎟⎟⎠

G
(
u,k(u)

) =
⎛
⎝ G1(u1, u2,k1(u1, u2),k2(u1, u2),k3(u1, u2))

G2(u1, u2,k1(u1, u2),k2(u1, u2),k3(u1, u2))

G (u , u ,k (u , u ),k (u , u ),k (u , u ))

⎞
⎠ .
3 1 2 1 1 2 2 1 2 3 1 2
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In order to solve equation (A.12) we put together Z , P ,
k(u1, u2), Dk(u1, u2) and G(u1, u2,k(u1, u2)), then we equate
equal powers of u1 and u2, and in that way we compute k(u1, u2).
Finally we obtain, in the neighborhood of P5, the reduced system:

u′ = Zu + F
(
u,k(u)

)
. (A.13)

Applying the above procedure to the equations (A.4)–(A.8) we
get:

v1 = 1

3
μ f (μ)u2

1 + 1

3
f (μ)u2

1u2 + O (4),

v2 = v3 = O (4). (A.14)

Neglecting the fourth order terms, the evolution equations on
the center manifold are

u′
1 = −1

2
μ2u3

1, (A.15)

u′
2 = −u2

1(μ + u2) f (μ) − μu2
1u2 f ′(μ). (A.16)

For μ f ′(μ) + f (μ) �= 0, the orbit of (A.15)–(A.16) passing
through (u10, u20) is given by

u1

u10
= 1√

1 + μ2u2
10N

, N � 0, (A.17)

u2 = (
η(μ) + u20

)( u1

u10

) 2(μ f ′(μ)+ f (μ))

μ2

− η(μ), (A.18)

where η(μ) = μ f (μ)
μ f ′(μ)+ f (μ)

. Then, for f (μ)+μ f ′(μ) > 0, the orbits
approach the point with coordinates (u1 = 0, u2 = −η(μ)) when
N → +∞. If f (μ) + μ f ′(μ) � 0, then, as N → +∞, u1 tends to
zero and u2 becomes unbounded. Generically, the origin is not ap-
proached as N → +∞, unless μ f (μ) = 0.

In the special case μ f ′(μ)+ f (μ) = 0, the system (A.15)–(A.16)
reduces to

u′
1 = −1

2
μ2u3

1, (A.19)

u′
2 = −μ f (μ)u2

1. (A.20)

The orbit of (A.19)–(A.20) passing through (u10, u20) is given by

u1

u10
= 1√

1 + μ2u2
10N

, N � 0, (A.21)

u2 = u20 + ln

[
u1

u10

] 2 f (μ)
μ

. (A.22)

In this case, u1 tends to zero and u2 becomes unbounded. Sum-
marizing, for − 3

4 < g(0) < 0, P5 is unstable.
For g(0) < − 3

4 , there are two complex eigenvalues. In this case,
in order to obtain the real Jordan form, we introduce the new vari-
ables

V 2 = v2 + v3

2
, V 3 = v2 − v3

2i
.

Using the above transformation, the system (A.1)–(A.2) is given ex-
plicitly by:

u′
1 = F̃1(u1, u2, v1, V 2, V 3), (A.23)

u′
2 = F̃2(u1, u2, v1, V 2, V 3), (A.24)

v ′
1 = −3v1 + G̃1(u1, u2, v1, V 2, V 3), (A.25)
V ′
2 = −3

2
V 2 − 1

2

√−12g(0) − 9V 3 + G̃2(u1, u2, v1, V 2, V 3),

(A.26)

V ′
3 = −1

2

√−12g(0) − 9V 2 − 3

2
V 3 + G̃3(u1, u2, v1, V 2, V 3),

(A.27)

where F̃1, G̃1, . . . , G̃3 are homogeneous real polynomials of degree
greater than 2 in the coordinates (u1, u2, v1, V 2, V 3). Using the
same procedure as before, we obtain that the center manifold is
given locally by the graph

v1 = 1

3
μ f (μ)u2

1 + 1

3
f (μ)u2

1u2 + O (4),

V 2 = V 3 = O (4). (A.28)

Thus the dynamics on the center manifold is given by the system
(A.15)–(A.16) analyzed before. Summarizing, for g(0) < 0, P5 is un-
stable.

Appendix B. Center manifold dynamics for the solution
dominated by the potential energy of the quintessence
component P6

Now, let us implement the center manifold calculation for the
non-hyperbolic point P6 (corresponding to the solution dominated
by the potential energy of the quintessence component), and dis-
cuss about its stability, by means of the powerful Center Manifold
Theory [22,23,46–48]. As before, we set Ωr = 0, Ωm = 0 for sim-
plicity.

The first step is to translate the point P6 (xσ = 0, xφ = 0,
yσ = 1, λσ = 0, λφ = ν) to the origin, where ν denotes an arbi-
trary value for λφ .

The next step is to transform the system to its real Jordan form:

u̇ = Zu + F (u,v), (B.1)

v̇ = P v + G(u,v), (B.2)

where the square matrices Z , P have 2 zero eigenvalues and 3
eigenvalues with negative real part, respectively.

In order to do that we introduce the new variables:

u1 = −2ν(yσ − 1)g(ν),

u2 = −1

3
g(ν)

(√
6xφ − 2ν(yσ − 1)

) − ν + λφ,

v1 = 1

3
g(ν)

(√
6xφ − 2ν(yσ − 1)

)
,

v2 = 2
√

6 f (0)xσ + (
√

9 − 12 f (0) − 3)λσ

2
√

9 − 12 f (0)
,

v3 = −2
√

6 f (0)xσ + (
√

9 − 12 f (0) + 3)λσ

2
√

9 − 12 f (0)
. (B.3)

Using the above transformation, the system (B.1)–(B.2) is given
explicitly by:

u′
1 = F1(u1, u2, v1, v2, v3), (B.4)

u′
2 = −3v1(g(ν + u2 + v1) − g(ν))

g(ν)
+ u1 g(ν + u2 + v1)

g(ν)

+ H(u1, u2, v1, v2, v3) ≡ F2(u1, u2, v1, v2, v3), (B.5)

v ′
1 = −3v1 + G1(u1, u2, v1, v2, v3), (B.6)

v ′
2 = 1

2

(−√
9 − 12 f (0) − 3

)
v2 + G2(u1, u2, v1, v2, v3), (B.7)

v ′
3 = 1 (√

9 − 12 f (0) − 3
)

v3 + G3(u1, u2, v1, v2, v3), (B.8)

2
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Fig. 3. Vector field in the plane (u1, u2) for the potential V (σ ,φ) = V 0 sinh2(ασ ) +
V 1 cosh2(βφ). In (a), the free parameters have been chosen to be: (α, β , ν):
(−√

3/2, 0.35, 0.50). In this case g(ν) = 0.12 > 0. The sign of u1 is invariant. For
u1 < 0 the origin is approached as the time goes forward whereas for u1 > 0 the
orbits depart from the origin. In (b) the free parameters have been chosen to be:
(α, β , ν): (−√

3/2, 0.35, −0.50). The orbits are the same as in (a), with the arrows
in reverse orientation. Thus, the accelerated de Sitter solution P6 is a transient era
in the evolution of the Universe.

where f ′ = df
dN , and F1, H, G1, . . . , G3 are homogeneous polynomi-

als of degree greater than 2 in the coordinates (u1, u2, v1, v2, v3).
Following the standard formalism of the Center Manifold The-

ory, we obtain that the center manifold of P6 is given by the graph

v1 = νu2
1

18g(ν)
+ u2

1

12νg(ν)
+ u2

1

9ν
− u1u2

3ν
+ O (3);

v2 = O (3), v3 = O (3). (B.9)

Neglecting the third order terms, the evolution equations on the
center manifold are

u′
1 = νu2

1

g(ν)
, (B.10)

u′
2 = u1u2

ν
− (2ν2 + 3)u2

1

12νg(ν)
. (B.11)

Let us assume g(ν) �= 0, ν �= 0. Hence, the orbit of (B.10)–(B.11)
passing through (u10, u20) is given by
Fig. 4. Vector field in the plane (u1, u2) for the potential V (σ ,φ) = V 0 sinh2(ασ ) +
V 1 cosh2(βφ). In (a) the free parameters have been chosen to be (α, β , ν): (−√

3/2,
0.35, 1.30). In this case g(ν) = −0.60 < 0. In (b) the free parameters have been cho-
sen to be (α, β , ν): (−√

3/2, 0.35, −1.30). The orbits are the same as in (a), with
the arrows in reverse orientation. This suggest that the origin is a saddle, thus the
accelerated de Sitter solution P6 is a transient era in the evolution of the Universe.

u2 = ((2ν2 + 3)u10 + 12ν2u20 − 12u20 g(ν))

12(ν2 − g(ν))

(
u1

u10

) g(ν)

ν2

+ (2ν2 + 3)u1

12(g(ν) − ν2)
, (B.12)

u1

u10
= g(ν)

g(ν) − νu10N
, N � 0. (B.13)

In order to investigate the stability of the center manifold of P6
we have resorted to several numerical integrations of the system
(B.10)–(B.11). We find four typical situations that suggest that P6
is unstable (saddle type).

In Fig. 3(a) is displayed the vector field in the plane (u1,
u2) for the potential V (σ ,φ) = V 0 sinh2(ασ ) + V 1 cosh2(βφ). The
free parameter has been chosen to be (α, β , ν): (−√

3/2, 0.35,
0.50). In this case g(ν) = 0.12 > 0. The sign of u1 is invariant.
For u1 < 0 the origin is approached as the time goes forward
whereas for u1 > 0 the orbits depart from the origin. On the other
hand, for the choice (α, β , ν): (−√

3/2, 0.35, −0.50) we have also
g(ν) = 0.12 > 0, additionally, the orbits are the same as in the for-
mer case, but the time flow is oriented in reverse. Both numerical
elaborations suggest that the accelerated de Sitter solution P6 (the
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origin of coordinates), is a transient era in the evolution of the
Universe for g(ν) > 0 irrespectively the sign of ν .

Furthermore, in Fig. 4(a) is presented the vector field in the
plane (u1, u2) for the same potential as before, but for the choice
of parameters (α, β , ν): (−√

3/2, 0.35, 1.30). In this case g(ν) =
−0.60 < 0. The sign of u1 is invariant. As shown is this figure, all
the orbits depart from the origin. For the choice (α, β , ν): (−√

3/2,
0.35, −1.30), we have also g(ν) = −0.60 > 0. In this case all the
orbits are the same, they departs for the origin but with the arrows
in reverse orientation as displayed in Fig. 4(b). Thus, summarizing,
this numerical elaboration suggest that the accelerated de Sitter
solution P6, is a transient era in the evolution of the Universe for
g(ν) < 0 irrespectively the sign of ν .

As in Appendix A, for analyzing the case of complex eigenval-
ues, we can introduce the new variables

V 2 = v2 + v3

2
, V 3 = v2 − v3

2i
for deriving the real Jordan form of the Jacobian. The procedure is
straightforward, so we won’t enter into the details here.
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