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We focus on the ongoing and future observations for both the 21 cm line and the CMB B-mode
polarization produced by a CMB lensing, and study their sensitivities to the effective number of neutrino
species, the total neutrino mass, and the neutrino mass hierarchy. We find that combining the CMB
observations with future square kilometer arrays optimized for 21 cm line such as Omniscope can
determine the neutrino mass hierarchy at 2σ . We also show that a more feasible combination of
Planck + Polarbear and SKA can strongly improve errors of the bounds on the total neutrino mass and
the effective number of neutrino species to be �Σmν ∼ 0.12 eV and �Nν ∼ 0.38 at 2σ , respectively.
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1. Introduction

Since the discoveries of neutrino masses by Super-Kamiokande
through neutrino oscillation experiments in 1998, the standard
model of particle physics has been forced to change to theoreti-
cally include the neutrino masses.

So far only mass-squared differences of the neutrinos have
been measured by neutrino oscillation experiments, which are re-
ported to be �m2

21 ≡ m2
2 − m2

1 = 7.59+0.19
−0.21 × 10−5 eV2 [1] and

�m2
32 ≡ m2

3 − m2
2 = 2.43+0.13

−0.13 × 10−3 eV2 [2]. However, absolute
values and their hierarchical structure (normal or inverted) have
not been obtained yet although information for them is indispens-
able to build such new particle physics models.

In particle physics, some new ideas and new future experi-
ments based on those ideas have been proposed to observe the
absolute values and/or the hierarchy of neutrino masses, e.g.,
through tritium beta decay in KATRIN experiment [3], neutri-
noless double-beta decay [4], atmospheric neutrinos in the pro-
posed iron calorimeter at INO [5,6] and the upgrade of the Ice-
Cube detector (PINGU) [7], and long-baseline oscillation experi-
ments, e.g., NOνA [8], J-PARC to Korea (T2KK) [9,10] and Oki is-
land (T2KO) [11], and CERN to Super-Kamiokande with high energy
(5 GeV) neutrino beam [12].

On the other hand, such nonzero neutrino masses affect cos-
mology significantly because relativistic neutrinos prohibit the per-
turbation from evolving, due to following two reasons. First of all,
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in general relativity, the density perturbation of a relativistic parti-
cle can hardly evolve at all before it becomes nonrelativistic. Sec-
ond a relativistic neutrino erases its own density perturbation up
to a horizon scale through its free streaming at every cosmic time.
By measuring spectra of density perturbations by using observa-
tions of cosmic microwave background (CMB) anisotropies and
large-scale structure (LSS), we could constrain the total neutrino
mass Σmν [13–29] and the effective number of neutrino species
Nν [22,23,25–31]. So far the robust upper bound on Σmν has been
obtained to be Σmν < 0.62 eV (95% C.L.) (see Ref. [26] and refer-
ences therein) by these cosmological observations. For forecasts by
future CMB observations, see also Refs. [32,33].

In addition, by observing power spectrum of cosmological
21 cm radiation fluctuation, we will be able to obtain independent
useful information for the neutrino masses [34–37]. That is be-
cause the 21 cm radiation is emitted (1) long after the CMB epoch
(at a redshift z � 103) and (2) before an onset of the LSS for-
mation. The former condition (1) gives us information on smaller
neutrino mass (� 0.1 eV). The latter condition (2) means we can
treat only a linear regime of the matter perturbation, which can
be analytically calculated unlike the LSS case.

In actual analyses, it should be essential that we combine data
of the 21 cm with that of the CMB observations because they com-
plementary constrain cosmological parameter spaces each other.
Leaving aside minded neutrino parameters, for example, the for-
mer is quite sensitive to the dark energy density, but the latter
is relatively insensitive to it. On the other hand, the former has
only a mild sensitivity to the normalization of the matter pertur-
bation, but the latter has an obvious sensitivity to it by definition.
In pioneering works by [36], the authors tried to constrain the
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neutrino mass hierarchy by combining Planck satellite with fu-
ture 21 cm observations in case of relatively degenerate neutrino
masses Σmν ∼ 0.3 eV.

Here, however, we additionally include analyses of the CMB
B-mode polarization produced by a CMB lensing. This gives us
more detailed information on the matter power spectrum at later
epochs, which means it has better sensitivities for smaller neu-
trino masses down to � 0.1 eV. That is essential to distinguish the
normal hierarchy from the inverted one. In particular we adopt on-
going and future CMB observations such as Polarbear and CMBPol,
which have much better sensitivities to the B-mode. For ongoing
and future 21 cm observations, we adopt MWA, SKA and Omni-
scope experiments. We forecast possible allowed parameter re-
gions for both neutrino masses and effective number of neutrino
species when we use the above-mentioned ongoing and future ob-
servations of the 21 cm and the CMB. In particular we propose
a nice combination of neutrino masses, rν = (m3 − m1)/Σmν to
make the mass hierarchy bring to light as is explained in the text.

2. 21 cm radiation

Here we briefly review basic methods to use the 21 cm line
observations as a cosmological probe. For further details, we refer
readers to Refs. [34,38].

2.1. Power spectrum of 21 cm radiation

The 21 cm line of the neutral hydrogen atom is emitted by hy-
perfine splitting of the 1S ground state due to an interaction of
magnetic moments of proton and electron. Spin temperature T S of
neutral hydrogen gas is defined through a ratio between number
densities of hydrogen atom in the 1S triplet and 1S singlet lev-
els, n1/n0 ≡ (g1/g0)exp(−T�/T S ). where T� ≡ hc/kBλ21 = 0.068 K
with λ21 (� 21 cm) being the wave length of the 21 cm line at
a rest frame, and g1/g0 = 3 is the ratio of spin degeneracy fac-
tors of the two levels. A difference between the observed 21 cm
line brightness temperature at redshift z and the CMB tempera-
ture TCMB is given by

Tb(x) ≈ 27xHI(1 + δb)

(
Ωbh2

0.023

)(
0.15

Ωmh2

1 + z

10

)1/2

×
(

T S − TCMB

T S

)(
H(z)/(1 + z)

dv‖/dr‖

)
mK, (1)

where xHI is the neutral fraction of hydrogen, δb is the hydrogen
density fluctuation, and dv‖/dr‖ is the gradient of the proper ve-
locity along the line of sight due to both the Hubble expansion and
the peculiar velocity.

In general, Tb is sensitive to details of intergalactic medium
(IGM). However, with a few reasonable assumptions we can omit
this dependence [39–41]. At an epoch of reionization (EOR) long
after star formation begins, X-ray background produced by early
stellar remnants has heated the IGM. Therefore a gas kinetic tem-
perature T K could be much higher than the CMB temperature
TCMB. Furthermore the star formation produces a large background
of Lyα photons sufficient to couple T S to T K via the Wouthuysen–
Field effect [42,43]. In this scenario, we are justified in taking
TCMB � T K ∼ T S at z � 10, so that Tb does not depend on T S .

In addition, we adopt following assumptions for the EOR in the
same manner as [36,44]. If the IGM is fully neutral, fluctuations
of the 21 cm radiation arise only from density fluctuations. In this
limit, we can write the power spectrum of the 21 cm line bright-
ness fluctuation P21(k) as [36]

P21(k, z) = T̄ 2(z)
(
1 + μ2)2

Pδδ(k, z). (2)
b
Here P21(k, z) is defined by 〈δTb(k)δT ∗
b (k′)〉 ≡ (2π)3δ3(k −

k′)P21(k), where δTb ≡ Tb − T̄b is the deviation from a spatially
averaged brightness temperature T̄b , Pδδ is the matter power spec-
trum, and μ = k̂ · n̂ is the cosine of the angle between the wave
number k and the line of sight. In principle, T̄b can be calculated
although it depends on the unknown ionization and thermal his-
tory. Therefore we treat T̄b as a free parameter to be measured.

The power spectrum P21(k, z) and the comoving wave num-
ber k are not directly measured by the observations of 21 cm
radiation [45,46]. Instead, here we define u as the Fourier dual
of Θ ≡ θi êi + θ j ê j + � f êk , where θi and θ j determine an angular
location on the sky plane and � f shows the frequency difference
from the central redshift of a z bin. The vector u and its function
P21(u, z) are directly measured by the observations. Relationships
between u ≡ uiêi + u jê j + u‖êk and k are represented by u⊥ ≡
uiêi +u jê j = dA(z)k⊥ = 2πL/λ, and u‖ = y(z)k‖ . Here “⊥” denotes
the vector component perpendicular to the line of sight. “‖” de-
notes the component in the line of sight. dA(z) is the comoving an-
gular diameter distance to a given redshift. y(z) = λ21(1+ z)2/H(z)
means the conversion factor between comoving distance intervals
and frequency intervals � f . L is the baseline vector of an inter-
ferometer. λ = λ21(1 + z) denotes the observed wave length of the
redshifted 21 cm line. In u space, the power spectrum P21(u, z)
is defined by 〈δTb(u)δT ∗

b (u′)〉 ≡ (2π)3δ3(u − u′)P21(u). Then, the
relation between P21(u, z) and P21(k, z) is given by

P21(u, z) = 1

d2
A(z)y(z)

P21(k, z). (3)

We perform our analyses in terms of P21(u, z) since this quan-
tity is directly measurable without any cosmological assumptions.
For methods of foreground removals, see also recent discussions
about independent component analysis (ICA) algorithm, FastICA
[47] which will be developed in terms of the ongoing LOFAR ob-
servation [48].

2.2. Effects of neutrino masses on power spectrum

The massive neutrinos affect the growth of the matter den-
sity perturbation mainly due to following two physical mech-
anisms. [49]. First of all, a massive neutrino νi (even with its
light mass mνi � 0.3 eV) becomes nonrelativistic at T ∼ mνi

and has contributed to the energy density of cold dark matter
(CDM), which changes the matter-radiation equality epoch and
has changed an expansion rate of the universe since that time.
When we fix the total mass of neutrinos Σmν (� 0.3 eV), only
the latter effect is effective. Second, the matter density pertur-
bations on small scales can be suppressed due to the neutrinos’
free-streaming. As long as neutrinos are relativistic, they travel at
speed of light, and their free-streaming scales are approximately
equal to the Hubble horizon. Then the free-streaming effect erases
their own perturbations within such scales.

Compared with the standard ΛCDM models where three mass-
less active neutrinos are assumed, we will consider two more
freedoms. First one is an introduction of the effective number
of neutrino species Nν , which counts generations of relativistic
neutrinos before the matter-radiation equality epoch and should
not be equal to three. Second one is the neutrino mass hierar-
chy. It is clear that a change of Nν affects the epoch of matter-
radiation equality. On the other hand, the neutrino mass hierarchy
affects both the free-streaming scales and the expansion rate as
was mentioned above [50]. In terms of the observations of the
21 cm signal, the minimum cutoff of the wave number is given
by kmin = 2π/(yB) ∼ 6 × 10−2h Mpc−1 (see Section 2.3) while the
wave number corresponding to the neutrino free-streaming scale
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Table 1
Specifications for each interferometers. Lmin (Lmax) is the minimum (maximum)
baseline. For MWA, we assume a single redshift slice centered at z = 8. For SKA and
Omniscope, the observed redshift range is z = 7.8–10.3, and we divide the range
into five redshift slices with thickness �z ≈ 0.5. For each experiment, bandwidth
is B = 8 MHz, and we assumed observations for 8000 h on two places in the sky.
We assume that the effective collecting area Ae is proportional to λ2 for MWA and
SKA. For Omniscope, both Ae and FOV are fixed.

Experiment Nant Ae(z = 8)

[m2]
Lmin
[m]

Lmax

[km]
FOV
[deg2]

z

MWA 500 14 4 1.5 π162 7.8–8.2
SKA 5000 120 10 5 π5.62 7.8–10.2
Omniscope 106 1 1 1 2.1 × 104 7.8–10.2

is kfree � 10−2h Mpc−1. Therefore the main feature of the modifi-
cation of the matter density fluctuation due to the change of the
mass hierarchy comes from the modification of the cosmic expan-
sion when we fix the total matter density at the present time.

2.3. Forecasting methods and interferometers

Here we summarize future observations of the 21 cm signals
emitted at the EOR. We also provide a brief review of the Fisher
matrix formalism for the 21 cm observations. We consider MWA
[51], SKA [52] and Omniscope [53] for future observations. The
summary of the detailed specifications is listed in Table 1. Each
interferometer has its own different noise power spectrum,

P N(u⊥, z) =
(

λ2(z)Tsys(z)

Ae(z)

)2 1

t0n(u⊥)
, (4)

which affects sensitivities to the 21 cm signals. Here Tsys �
280[(1 + z)/7.4]2.3 K is the system temperature [54], t0 is the total
observation time, and Ae is the effective collecting area of each
antenna tile. The effect of the configuration of the antennae is
encoded in the number density of baseline n(u⊥). In order to cal-
culate n(u⊥), we have to assume a realization of antenna density
profiles for each interferometer. For MWA, we take 500 antennae
distributed with a filled nucleus of radius 20 m surrounded by
the remainder of the antennae distributed with an r−2 antenna
density profile out to 750 m [55]. For SKA, we distribute 20% of
a total of 5000 antennae within a 1 km radius and take the an-
tennae distributed with a nucleus surrounded by an r−2 antenna
density profile in the same way as those of MWA. These anten-
nae are surrounded by a further 30% of the total antennae in a
uniform density annulus of outer radius 6 km [36]. The remain-
der of the antennae is distributed at larger distances sparsely to
be useful for power spectrum measurements. Finally, we consider
Omniscope that is a future square-kilometer collecting area array
optimized for observations of the 21 cm signal. In case of Om-
niscope, we take all of antennae distributed with a filled nucleus
according to [45].

To forecast 1 σ errors of cosmological parameters, we use the
Fisher matrix formalism [56]. For the observations of the 21 cm
signal, the Fisher matrix for cosmological parameters pi is ex-
pressed as [57]

F21 cm
i j =

∑
pixels

1

[δP21(u)]2

(
∂ P21(u)

∂ pi

)(
∂ P21(u)

∂ p j

)
, (5)

where we sum only over half the Fourier space. The Fisher matrix
determines the errors of the parameter pi to be

�pi �
√(

F−1
)

ii . (6)

The error of the power spectrum measurement δP21(u) in a pixel
at u consists of a sum of the sample variance and the thermal
detector noise. It is expressed as

δP21(u) = P21(u) + P N(u⊥)

N1/2
c

, (7)

where Nc = 2πk⊥�k⊥�k‖V (z)/(2π)3 is the number of indepen-
dent modes in an annulus summing over the azimuthal angle,
V (z) = dA(z)2 y(z)B × FOV is the survey volume, B is the band-
width, and FOV (≈ λ2/Ae) denotes the field of view of the inter-
ferometer. For each experiment, we take account of the presence
of foregrounds and adopt a cutoff at 2π/(yB) � k‖ [57]. We also
take a maximum value of k to be kmax = 3h Mpc−1 beyond which
nonlinear effects become important and exclude all information for
kmax < k.

For each experiment, we assume a specific redshift range as
follows [44]. We consider Ly-α forests in absorption spectra of
quasars and assume that reionization occurred sharply at z = 7.5.
For an upper limit on the accessible redshift range, we take it to
be z � 10 because of increasing foregrounds and uncertainty in the
spin temperature at higher redshifts. For the above reasons, we as-
sume that the observed redshift range of EOR is 7.8–10.2. Only for
MWA, we assume a single redshift slice centered at z = 8.

When we calculate the Fisher matrix, we choose the fol-
lowing basic set of cosmological parameters: the energy den-
sity of matter Ωmh2, baryon Ωbh2, dark energy ΩΛ , the scalar
spectral index ns , the scalar fluctuation amplitude As (the pivot
scale is taken to be kpivot = 0.002 Mpc−1), the reionization op-
tical depth τ , Helium fraction YHe, and the total neutrino mass
Σmν = m1 + m2 + m3. Fiducial values of these parameters (except
for Σmν ) are adopted to be (Ωmh2,Ωbh2,ΩΛ,ns, As, τ , YHe) =
(0.147,0.023,0.7,0.95,24 × 10−10,0.1,0.24). We set a range of
the fiducial value of Σmν to be Σmν = 0.05–0.3 eV. Besides these
parameters, the brightness temperature of 21 cm radiation T̄b(z)
can be taken as a free parameter. In this study, we adopt the fidu-
cial values of T̄b(z) to be (T̄b(8), T̄b(8.5), T̄b(9), T̄b(9.5), T̄b(10)) =
(26,26,27,27,28) in units of mK.

Additionally, we separately study following two cases:

(A) Effective number of neutrino species.

We add one more parameter of the effective number of neu-
trino species Nν to the fiducial set of the parameters. The fiducial
value of this parameter is set to be Nν = 3.04. In this analysis, we
assumed three species of massive neutrinos + an extra relativistic
component.

(B) Neutrino mass hierarchy.

In a cosmological context, many different parameterizations of
the mass hierarchy have been proposed [58–61]. We adopt rν ≡
(m3 − m1)/Σmν [61] as an additional parameter to nicely dis-
criminate the true neutrino-mass hierarchy pattern from the other
between the normal and inverted hierarchies. The normal and in-
verted mass hierarchies mean m1 < m2 � m3 and m3 � m1 < m2,
respectively. We add rν to the fiducial set of the parameters. rν be-
comes positive (negative) for the normal (inverted) hierarchy. It
should be a remarkably nice point that the difference between
rν ’s of these two hierarchies becomes larger as the total mass
Σmν becomes smaller. Therefore rν is particularly useful for dis-
tinguishing the mass hierarchy. In Fig. 2 we plot behaviors of rν
as a function of Σmν . Note that there is a lowest value of Σmν

which depends on a type of the hierarchies by the neutrino os-
cillation experiments, i.e., ∼ 0.1 eV for the inverted hierarchy and
∼ 0.05 eV for the normal hierarchy. Therefore, if we could obtain
a clear constraint like 0.05 eV � Σmν � 0.10 eV, the hierarchy
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Table 2
Experimental specifications of Planck, Polarbear and CMBPol assumed in this study.
Here ν is the observation frequency, �TT is the temperature sensitivity per 1′ × 1′
pixel, �PP is the polarization sensitivity per 1′ ×1′ pixel, θFWHM is the angular reso-
lution defined as the full width at half-maximum, and fsky is the observed fraction
of the sky. We use �max = 2000 for Polarbear, and �max = 2500 for Planck and
CMBPol.

Experiment ν
[GHz]

�TT

[μK−′]
�PP

[μK−′]
θFWHM

[′]
fsky

Planck [32] 70 137 195 14 0.65
100 64.6 104 9.5 0.65
143 42.6 80.9 7.1 0.65

Polarbear [64] 150 – 8 3.5 0.017

CMBPol (EPIC-2m) [65] 70 2.96 4.19 11 0.65
100 2.29 3.24 8 0.65
150 2.21 3.13 5 0.65

should be obviously normal without any ambiguities. As will be
shown later, however, we can discriminate the hierarchy even
when 0.10 eV � Σmν .

3. CMB

3.1. CMB and neutrino

CMB power spectra are sensitive to neutrino masses. There
are three effects that provide detectable signals for the neutrino
masses: (1) the transition from relativistic neutrino to nonrela-
tivistic one, (2) smoothing of the matter perturbation by its free-
streaming in small scales, and (3) variation of lensed CMB power
spectra. Future CMB experiments are expected to set stringent con-
straints on the sum of neutrino masses [49,62]. In particular, the
last effect is unique in the CMB B-mode polarization produced by
a CMB lensing. Here we propose to combine the CMB experiments
with the 21 cm line observations. As we will see in Section 4,
the combined approach resolves degeneracy among some key cos-
mological parameters and is more powerful than individual CMB
measurements. In addition, it is notable that we are able to detect
the effective number of neutrino species [63] and determine the
neutrino mass hierarchy.

3.2. Sensitivity and analysis of the CMB experiments

In this study, we choose Planck [32], Polarbear [64] and
CMBPol [65] as examples of CMB experiments. Experimental spec-
ifications we assumed are summarized in Table 2.

In our analysis for the CMB, we also take the same fiducial
model (Ωmh2,Ωh2,ΩΛ,ns, As, τ , YHe) as that of the 21 cm line
experiments (see previous section). We evaluate errors of cosmo-
logical parameters by using Fisher matrix, which is given by [56]

FCMB
i j =

∑
l

(2� + 1)

2
fsky × Trace

[
C−1

�

∂C�

∂ pi
C−1

�

∂C�

∂ p j

]
. (8)

Here C� is a covariance matrix constructed by using CMB power
spectra CX

� (X = TT,EE,TE), deflection angle spectrum Cdd
� , cross

correlation between temperature and deflection angle CTd
� , and

noise power spectra NX
� and Ndd

� , where Cdd
� is calculated by

a lensing potential [68] and is related with CBB
� .1 We compute

1 By performing a public code HALOFIT [66,67], we have checked that modifica-
tions by including nonlinear effects for evolutions of the matter power spectrum
are much smaller than typical errors in our analyses and negligible for parameter
fittings.
Ndd
� by using a public code FUTURCMB [69] which adopts the

quadratic estimator [68]. In this algorithm, Ndd
� is reconstructed

by NY
� (Y = TT,EE,BB). The covariance matrix in the Fisher matrix

is expressed as

C� =
⎛
⎝

CTT
� + NTT

� CTE
� CTd

�

CTE
� CEE

� + NEE
� 0

CTd
� 0 Cdd

� + Ndd
�

⎞
⎠ , (9)

where NY
� is expressed by using both a beam size σbeam(ν) =

θFWHM(ν)/
√

8 ln 2 and an instrumental sensitivity �Y(ν) to be

NY
� =

[∑
ν

1

NY
� (ν)

]−1

, (10)

where

NY
� (ν) = �2

Y(ν)exp
[
�(� + 1)σ 2

beam(ν)
]
. (11)

For �EE(ν) and �BB(ν), we commonly use �PP(ν) listed in Table 2.
Ndd

� is calculated by NTT
� , NEE

� , and NBB
� .

In case of Planck and Polarbear, we combine both the ex-
periments, and assume that the 1.7% region of the whole sky is
observed by both the experiments, and the remaining 63.3% (=
65%–1.7%) region is observed by Planck only. Therefore we evalu-
ate a total Fisher matrix FCMB by summing the two Fisher matrices,

FCMB = FPlanck( fsky = 0.633)

+ FPlanck+PB( fsky = 0.017), (12)

where FPlanck is the Fisher matrix of the region observed by Planck
only and FPlanck+PB is that by both Planck and Polarbear.

In addition, we calculate noise power spectra NY,Planck+PB
� of the

CMB polarization (Y = EE or BB) in FPlanck+PB with the following
operation.

(1) 2 � � < 25, 2000 < � � 2500

NY,Planck+PB
� = NY,Planck

� . (13)

(2) 25 � � � 2000

NY,Planck+PB
� = [

1/NY,Planck
� + 1/NY,PB

�

]−1
. (14)

Since Polarbear observes only CMB polarizations, the temperature
noise power spectrum NTT,Planck+PB

� is equal to NTT,Planck
� .

In order to combine the CMB experiments with the 21 cm line
experiments, we calculate the combined fisher matrix to be

F21 cm+CMB � FCMB + F21 cm. (15)

Here we did not use information for a possible correlation between
fluctuations of the 21 cm and the CMB.

4. Results

In this section, we numerically evaluate how we can deter-
mine (A) the effective number of neutrino species, and (B) the
neutrino mass hierarchy, by combining the 21 cm line obser-
vations (MWA, SKA, or Omniscope) with the CMB experiments
(Planck + Polarbear, or CMBPol). To obtain Fisher matrices we use
CAMB [66,67] for calculations of CMB anisotropies Cl and matter
power spectra Pδδ .



1190 Y. Oyama et al. / Physics Letters B 718 (2013) 1186–1193
Fig. 1. Contours of 90% C.L. forecasts in Σmν –Nν plane, by adopting Planck + Polarbear + each 21 cm experiment (left two panels), or CMBPol + each 21 cm experiment
(right two panels). Fiducial values of neutrino parameters, Nν and Σmν , are taken to be Nν = 3.04 and Σmν = 0.1 eV (for upper two panels) or Σmν = 0.05 eV (for
lower two panels). The dashed line means the constraint obtained by only a CMB observation such as Planck + Polarbear alone (left two panels), or CMBPol alone (right
two panels). The severer constrains are obtained by combining the CMB with a 21 cm observation such as MWA (outer solid, only for left panels), SKA (middle solid), and
Omniscope (inner solid), respectively.
Table 3
1-σ experimental uncertainties of Σmν and Nν , defined by �pi = √

(F−1)ii .

Fiducial value Σmν [eV] Nν

0.05 3.04

Planck + Polarbear 0.146 0.282
+ MWA 0.114 0.240
+ SKA 0.0592 0.189
+ Omniscope 0.0226 0.0753

CMBPol 0.0538 0.0929
+ SKA 0.0276 0.0827
+ Omniscope 0.0131 0.0438

4.1. Constraints on Nν

In Fig. 1, we plot contours of 90% confidence levels (C.L.) fore-
casts in Σmν–Nν plane. The fiducial values of neutrino parameters,
Nν and Σmν , are taken to be Nν = 3.04 and Σmν = 0.1 eV (up-
per two panels), which corresponds to the lowest value of the
inverted hierarchy model, or Σmν = 0.05 eV (lower two panels),
which corresponds to the lowest value of the normal hierarchy
model. Adding the 21 cm experiments to the CMB experiment, we
see that there is a substantial improvement for the sensitivities to
Σmν and Nν . That is because several parameter degeneracies are
broken by those combinations, e.g., in particular Tb and As were
completely degenerate only in 21 cm line measurements. There-
fore it is essential to add the CMB to the 21 cm experiment to be
vital for breaking those parameter degeneracies.

If each CMB experiment is combined with SKA or Omniscope,
the corresponding constraint can be significantly improved. We
showed numerical values of those errors in Table 3 in case that
the fiducial values are taken to be Nν = 3.04 and Σmν = 0.05 eV.
On the other hand, comparing those values with the current best
bounds for Σmν + Nν model, which give Σmν < 0.89 eV and
Nν = 4.47+1.82
−1.74 obtained by CMB (WMAP) + HST (Hubble Space

Telescope) + BAO [28], we find that the ongoing and future 21 cm
line + the CMB observation will be able to constrain those param-
eters much more severely.

The case of Σmν = 0.1 eV to be fiducial (upper two panels)
corresponds to the lowest value for the inverted hierarchy when
we use oscillation data. Then it is notable that CMBPol + SKA can
detect the nonzero neutrino mass. Of course, Planck + Polarbear +
Omniscope and CMBPol + Omniscope can obviously do the same
job.

On the other hand, the case of Σmν = 0.05 eV to be fidu-
cial (lower two panels), which corresponds to the lowest value
for the normal hierarchy, only Planck + Polarbear + Omniscope or
CMBPol + Omniscope can detect the nonzero neutrino mass.

4.2. Constraints on neutrino mass hierarchy

Next we discuss if we will be able to determine the neu-
trino mass hierarchies by using those ongoing and future 21 cm
and CMB observations. In Fig. 2 we plot 2σ errors of the pa-
rameter rν ≡ (m3 − m1)/Σmν constrained by both the 21 cm
and the CMB observations in case of the inverted hierarchy to
be fiducial (left), and the normal hierarchy to be fiducial (right).
It is notable that the difference between rν ’s of these two hier-
archies becomes larger as the total mass Σmν becomes smaller.
Therefore, rν is quite useful to distinguish a true mass hierar-
chy from the other. Allowed parameters on rν by neutrino os-
cillation experiments are plotted as two bands for the inverted
and the normal hierarchies, respectively. The thin solid lines in-
side the bands are the experimental mean values by oscillations,
one of which is taken to be a corresponding fiducial value of rν
as a function of Σmν in each analysis. The constrains are ob-
tained by combining Omniscope with Planck + Polarbear (thick
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Fig. 2. Forecasts of 2σ errors on rν = (m3 − m1)/Σmν constrained by both the 21 cm and the CMB observations in case of the inverted hierarchy to be fiducial (left),
and the normal hierarchy to be fiducial (right). The constrains are obtained by combining Omniscope with Planck + Polarbear (thick dashed lines), and Omniscope with
CMBPol (thick solid lines), respectively. Allowed parameters on rν by neutrino oscillation experiments are plotted as two bands for the inverted and the normal hierarchies,
respectively (the name of each hierarchy is written in the close vicinity of the line). The solid line inside the band is the fiducial value of rν as a function of Σmν .

Fig. 3. Contours of 90% C.L. forecasts in Σmν –rν plane, by adopting CMBPol + each 21 cm experiment. Fiducial value of Σmν and the mass hierarchy (diagonal cross) are
taken to be: Σmν = 0.1 eV and the inverted (for left upper panel), Σmν = 0.12 eV and the inverted (for left lower panel), Σmν = 0.06 eV and the normal (for right upper
panel), Σmν = 0.1 eV and the normal (for right lower panel). The short dashed lines mean the constraints obtained by only a CMBPol observation, and the long dashed line
means the one by a SKA + CMBPol observation for 24 000 h on four places in the sky. The outer (inner) solid line means combining the CMBPol with SKA (Omniscope).
Allowed parameters on rν by neutrino oscillation experiments are plotted in the same way of Fig. 2.
dashed lines) and Omniscope with CMBPol (thick solid lines), re-
spectively.

For 0.3 eV � Σmν the mass eigenvalues m1, m2, and m3 are al-
most degenerate. Therefore the difference between two hierarchies
has little influence on the matter power spectrum. Therefore the
constraints on rν are significantly weak compared with the dif-
ference between them, and then we cannot distinguish the true
hierarchy from the other.

On the other hand however, the difference increases as Σmν

decreases down to mν ∼ 0.1 eV. By using this property, the CMB
(Planck+Polarbear or CMBPol)+ the 21 cm (Omniscope) observa-
tions can constrain the neutrino mass hierarchy severely. Typically
errors of Σmν at around Σmν = 0.1 eV are given by �Σmν =
0.0087 eV for Planck + Polarbear, and �Σmν = 0.0069 eV for
CMBPol at 1σ , respectively. Therefore, the error of the x-axis is
negligible compared with that of y-axis. In Fig. 3, we plot con-
tours of 90% C.L. in Σmν–rν plane in order to show errors of
Σmν along the x-axis for typical fiducial values. As is clearly
shown in Fig. 2, actually those combinations of the observations
will be able to determine the neutrino mass hierarchy to be in-
verted or normal for Σmν � 0.13 eV or Σmν � 0.1 eV at 90%
C.L., respectively. Although the determination is possible only at
around Σmν �O(0.1) eV, those results should be reasonable. That
is because a precise discrimination of the mass hierarchy itself
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may have no meaning if the masses are highly degenerate, i.e., if
Σmν � 0.1–0.3 eV.

Once a clear signature Σmν � 0.1 eV were determined by ob-
servations or experiments, it should be obvious that the hierarchy
must be normal without any ambiguities. On the other hand if the
hierarchy were inverted, we could not determine it only by using
Σmν . However, it is remarkable that our method is quite useful
because we can discriminate the hierarchy from the other even if
the fiducial values were Σmν � 0.1 eV for both the normal and in-
verted cases. This is clearly shown in Fig. 3. In case that a fiducial
value of Σmν is taken to be the lowest values in neutrino oscilla-
tion experiments, the upper left (right) figure indicates that even
CMBPol + SKA can discriminate the inverted (normal) mass hierar-
chy from the normal (inverted) one.

5. Conclusions

We have studied how we can constrain effective number of
neutrino species Nν , total neutrino masses Σmν , and neutrino
mass hierarchy by using the 21 cm observations (MWA, SKA, and
Omniscope) and the CMB observations (Planck, Polarbear, and
CMBPol). It is essential to combine the 21 cm with the CMB B-
mode polarization produced by a CMB lensing to break various de-
generacies in cosmological parameters when we perform multiple-
parameter fittings.

About the constraints on Σmν–Nν plane, for a fiducial value
Σmν = 0.1 eV which corresponds to the lowest value in the in-
verted hierarchy, we have found that CMBPol + SKA, Planck +
Polarbear + Omniscope and CMBPol + Omniscope can detect the
nonzero neutrino mass. For a fiducial value Σmν = 0.05 eV, which
corresponds to the lowest value in the normal hierarchy, Planck +
Polarbear + Omniscope or CMBPol + Omniscope can detect the
nonzero neutrino mass.

As for the determination of the neutrino mass hierarchy, we
have proposed a new parameter rν = (m3 − m1)/Σmν and studied
how to discriminate a true hierarchy from the other by constrain-
ing rν . As was clearly shown in Fig. 2, the combinations of the
CMB (Planck + Polarbear or CMBPol) + the 21 cm (Omniscope)
will be able to determine the hierarchy to be inverted or normal
for Σmν � 0.13 eV or � 0.1 eV at 2σ , respectively. Furthermore,
if the fiducial value of Σmν is taken to be the lowest value in
the neutrino oscillation experiments, even CMBPol + SKA can de-
termine the mass hierarchy.

In this study we have taken the simplified model of reioniza-
tion. In case of more likely detailed modeling of reionization [45],
it was pointed out that the constraints on cosmological parame-
ters may moderately change at ∼ 10–50%. Fortunately, this effect is
comparatively small and should not be fatal to constrain the neu-
trino mass hierarchy in the current analyses.
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