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Abstract

Average multiplicities and transverse momenta inAA collisons at high energies are studied in the soft and hard region
fusing string and perturbative QCD scenarios, respectively. Striking similarities are found between the predictions of the tw
approaches. Multiplicities per string and averagep2

T
are found to, respectively, drop and rise withA in a very similar manner

so that their product is nearly a constant. Inboth approaches total multiplicities grow asA, that is, as the number of participan
The high tail of thepT distribution in the perturbative QCD scenario is found to behave∝ A1.1.
 2004 Elsevier B.V.Open access under CC BY license.
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1. Introduction

At present multiparticle production at high energie
is described by different models, which are suppo
to be valid in different intervals of transverse mome
of secondaries. At small momenta (soft region) one
the most popular and successful models is the co
string model. In its original formulation it assum
that in a collision a certain number of colour strin
of definite length in rapidity are stretched betwe
the colliding partons, which then independently d
cay into observed secondaries[1,2]. The colour string
is visualized as a strong colour field which is suc
sively broken by creation of quark–antiquark pa
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A more refined version takes into account not o
a finite length in rapidity but also a finite transver
dimension of the string. This inevitably leads to t
phenomenon of string fusion and percolation[3–5].
The colour string model with fusion and percolati
describes quite satisfactorily multiparticle production
in the soft region. In particular, it predicts that, due
fusion, mutiplicities become substancially damped
compared to the independent string picture. The da
ing factorF may be related to the so-called percolat
parameter

(1)η = Nσ0

S
,

whereσ0 is the transverse area of the string andN is
the number of strings in the interaction areaS. As a
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function ofη one finds for the damping factor[5]

(2)F(η) =
√

1− e−η

η
,

so that at largeη multiplicities are damped by 1/
√

η.
With all this, the colour string model remain

mostly phenomenological, although at the basis
it there lie certain ideas borrowed both from the o
Regge phenomenology and QCD in the limit of lar
number of colours (see[1]). Less phenomenologica
approaches can naturally be developed in the hard
gion where the secondaries are assumed to have
transverse momenta. The well-known hard scatte
picture has been successfully applied to productio
heavy flavour and high-mass Drell–Yan pairs. Ho
ever, this approach is valid only in the kinematic
region appropriate for the DGLAP evolution, for va
ues ofx of the order unity, and the following orderin
in transverse momenta. The region of smallx can be
reached via the evolution according to the BFKL eq
tion and its generalization for nuclei. Both hard a
proaches suffer from serious drawbacks. The DGL
evolution cannot be generalized to several hard c
sions in a convincing manner, since this involves m
tiparton distributions corresponding to higher twis
The BFKL approach does not take into account
running of the coupling. It also involves small tran
verse momenta, where it cannot be valid, and viola
unitarity for hadronic scattering. In this respect t
situation is better for scattering off nuclei, where t
small transverse momentum region is strongly dam
and unitarity is automatically fulfilled[6,7]. In spite
of these difficulties hard approaches give predicti
which are compatible with the experimental data.

In view of this split between soft and hard regio
it is of certain interest to find a bridge between the
In particular it has long been suspected that damp
of multiplicities predicted by colour string fusion ha
its obvious counterpart in the hard region in the fo
of pomeron fusion due to pomeron interaction. N
that a literal comparison between the two approac
is hardly possible. In the colour string picture fusi
leads to appearance of parts of the transverse s
with a larger colour field strength (“strings of high
colour”). As a result, damping of multiplicities is a
companied by the rise of the average transverse
mentum. In the pomeron picture, at least in the h
e

colour limit, fusion of pomerons does not lead to n
objects. Only the average number of pomerons m
become reduced, and the multiplicities with them. B
one does not naively expect any change in the tra
verse momentum. As we shall see in the follow
sections, this is fully confirmed in the simple ol
fashioned local supercritical pomeron model, in wh
also damping of the multiplicities is found to be mu
stronger than predicted by the colour string mod
with fusion. The new result reported in this Lett
is that the perturbative QCD hard pomeron appro
leads to multiparticle production which qualitative
fully agrees with the colour string approach with f
sion. Not only damping of the multiplicities turns o
to be of the same strength as in the string picture,
also the average transverse momenta are found to
nearly as predicted by the latter model. So we find
agreement between predictions of these two mod
pertaining to completely different (in fact opposit
kinematical regions of secondaries, about certain
sic features of multiparticle spectra.

These results are not fully unexpected. Indeed s
ilar predictions were found previously in simplifie
and more phenomenologically oriented approac
which do not involve quantum evolution of the gluo
density, in the framework of colour glass condens
model[8], solved numerically on the lattice[9], and
saturation model[10] (see discussion at the end of Se
tion 4). Scaling in the transverse momentum was a
observed in[11,12]. We consider this as a strong su
port for these predictions and thereby for the mode

2. Generalities. Fusing colour string predictions

Our basic quantity will be the inclusive cros
sectionIAB(y, k) to produce a particle with the tran
verse momentumk at rapidityy in a collision of two
nuclei with atomic numbersA andB:

(3)IAB(y, k) = (2π)2dσ

dy d2k
.

It can be represented as an integral over the im
parameterb:

(4)IAB(y, k) =
∫

d2b IAB(y, k, b).

To simplify our study we shall concentrate on the
clusive cross-section at fixed impact parameterb. We
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shall also limit ourselves to collision of identical n
clei A = B and for brevity denoteIAA ≡ IA and so on.
The corresponding multiplicity at fixed rapidityy will
be given by

(5)µtot
A (y, b) = 1

σA(b)

∫
d2k

(2π)2
IA(y, k, b),

whereσA(b) is the total inelastic cross-section for t
collision of two identical nuclei at fixed impact par
meterb. To study the effect of string fusion we sha
be interested in the multiplicity per stringµA(y, b),
given by the ratio of(5) to the number of stringsνA(b)

at impact parameterb

(6)µA(y, b) = µtot
A (y, b)

νA(b)
.

The latter can be determined by the number of inela
NN collisions times the number of strings in a sing
NN collision νN . For identical nuclei we find

(7)νA(b) = A2σNTAA(b)

σA(b)
νN ,

whereTAA(b) is the nuclear transverse density in t
overlap area:

(8)TAA(b) =
∫

d2c TA(c)TA(b − c),

σN is theNN total cross-section andTA(b) is the stan-
dard nuclear profile function for a single nucleusA

normalized to unity. In the ratio(6) the total nucleus–
nucleus cross-sectionσA(b) cancels;

(9)µA(b) =
∫
(d2k/(2π)2)IA(y, k, b)

A2TAA(b)σNνN

.

This point is very important, since it means that
shall have to calculate only the inclusive cross-secti
for the collision of two nuclei but not the total cros
sections, which is a problem of incomparably mo
complexity.

To simplify the problem still further, we shall con
sider the simplest choice of constant profile funct
TA(b) inside a circle of nuclear radiusRA = A1/3R0.
Then also the inclusive cross-section will be indep
dent of b inside the overlap area. We chooseb = 0
(central collision) when the overlap area coincid
with the nuclear transverse area to find from(9)

(10)µA = A−4/3 πR2
0

∫
d2k

2IA(y, k).

σNνN (2π)
Parallel to this we shall study the average transve
momentum squared, defined by

(11)
〈
k2〉

A
=

∫
d2k k2IA(y, k)∫
d2k IA(y, k)

.

Hereb = 0 is implied. Eqs.(10) and (11)will be our
basic tools in the following.

We start with the fusing colour strings picture. In
the strength of fusion is determined by the percola
parameter(1). For central collisions it is given by

(12)ηA = A2/3 σ 2
N

π2R4
0σA(b = 0)

ηN ,

whereηN is the value of the parameter forNN col-
lisions at the same energy. Note that the value oη

depends on the total inelastic nuclear cross-section
central collisions. We take it in the optical approxim
tion as

(13)σA(b = 0) = 1− e−A4/3σN/(πR2
0).

As stated in the introduction, the fusing string p
ture predicts that multiplicities are damped by the f
tor (2):

(14)µA = µ0F(ηA),

whereµ0 is the multiplicity corresponding to a sing
string. From this we find

(15)
µA

µ1
=

√
η1

ηA

√
1− e−ηA

1− e−η1
.

This relation describes theA-dependence of the mu
tiplicity. It does not involve the unknown string mu
tiplicity µ0. At high string densities and consequen
largeη’s it obviously predicts damping of multiplici
ties according to

(16)µA ∝ 1√
ηA

∝ A−1/3.

Note that, as a result of fusion, the total multiplic
from being proportional to a number of inelastic c
lisions,∝ A4/3, reduces to become proportional to t
number of participants∝ A.

It also follows from the fusing string picture th
〈k2〉A behaves inversely to multiplicity. It grow
with η:

(17)
〈
k2〉

A
= 〈

k2〉
0

1
,

F(ηA)
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so that the productµA〈k2〉A does not change with fu
sion of strings.

3. Old-fashioned local supercritical pomeron

In this section we shall compare predictions ab
the average multiplicity and transverse moment
which follow from the colour string model with thos
from the old supercritical local pomeron model. Th
will serve as a benchmark for the study in the n
section of analogous predictions following from t
non-local perturbative QCD pomeron.

As shown in[13], if the nucleus–nucleus intera
tion is governed by the exchange of pomerons w
the triple pomeron interactions, the inclusive cro
sections are given by the convolution of two sets
fan diagrams connecting the emitted particle to the
nuclei times the vertex for the emission (Fig. 1). Ex-
plicitly, at a given impact parameterb

IAB(y, k, b)

(18)= f (k)

∫
d2cΦB(Y − y, b − c)ΦA(y, c),

wheref (k) is the emission vertex,ΦA,B ’s are sums
of fan diagrams connected to nucleiA andB and it
is assumed that nucleusA is at rest and the inciden
nucleusB is at the overall rapidityY .

Fig. 1. A typical diagram for the inclusive cross-section in n
cleus–nucleus collisions.
The form(18) characteristic for the old-fashione
local Regge–Gribov theory immediately tells us th
the average transverse momentum does not depen
A or B and so does not feel fusion of pomerons at
It obviously follows from the fact that independent
A or B the observed particle is emitted from the sa
single pomeron. Therefore predictions of the old lo
pomeron theory for the transverse momentum dep
dence do not agree with those from the fusing col
string model. They rather correspond to models w
out fusion, in which indeed〈k2〉 does not depend o
the string density.

Passing to the multiplicities we use the well-know
solution for the fans[14]. TakingA = B and constan
nuclear profile functions we have for|b| < RA

(19)ΦA(y) = A1/3 g

R2
0

e∆y

1+ A1/3 λ

R2
0∆

(e∆y − 1)
,

where∆ is the pomeron intercept minus one,λ (pos-
itive) is the triple pomeron coupling with a minu
sign andg is the pomeron nucleon coupling. Takin
y = Y/2 (central rapidity) we find the inclusive cros
section defined in the previous section as

(20)IA(y, k) = A2/3πR2
0f (k)

[
ΦA

(
Y

2

)]2

.

TheA-dependence of this inclusive cross-section
viously depends on the energy. At small energ
one may neglect the second term in the denom
tor of (19), which actually means that one neglects
non-linear effects. ThenJA ∝ A4/3 and from(10)one
concludes that the multiplicity per string does not d
pend onA, as expected. At large enoughY when one
can retain only the exponential term in the deno
nator of (19) the inclusive cross-sectionIA becomes
proportional toA2/3. Then according to(10) the mul-
tiplicity per string will fall with A as 1/A2/3, much
faster than predicted by the colour string scenario.

So in the end we see that the old-fashioned p
nomenological local pomeron model leads to pred
tions which do not agree with those from the fusi
colour string model. The multiplicities fall too fast
high values ofA and the average transverse mom
tum does not grow at all. It is remarkable that th
situation radically changes with the perturbative QC
pomeron.
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4. Perturbative QCD pomeron

The fundamental change introduced by the per
bative QCD approach is that the pomeron becom
non-local. Its propagation is now governed by t
BFKL equation (see[15] for a review). Its interac-
tion is realized by the triple pomeron vertex, whi
is also non-local[16,17]. Equations which describ
nucleus–nucleus interaction in the perturbative Q
framework have been obtained in[18]. They are quite
complicated and difficult to solve (see[20] for a partial
solution), but they will be not needed for our purpo
Knowing that the AGK rules are satisfied for the d
grams with BFKL pomerons interacting via the trip
pomeron vertex[17] and using arguments of[13] it is
easy to conclude that, as with the old local pomero
the inclusive cross-section will again be given by
convolution of two sums of fan diagrams propagat
from the emitted particle towards the two nuclei. T
fundamental difference will be that the transverse m
mentum dependence will not be factorized as in(18)
but depend non-trivially on the momenta inside
two non-local fans.

Taking againA = B and constant nuclear densi
for |b| < RA we find the inclusive cross-section in th
perturbative QCD as[21]

IA(y, k) = A2/3πR2
0

8Ncαs

k2

∫
d2r eikr

(21)× [
	ΦA(Y − y, r)

][
	ΦA(y, r)

]
,

where	 is the two-dimensional Laplacian andΦ(y, r)

is the sum of all fan diagrams connecting the pome
at rapidityy and of the transverse dimensionr with
the colliding nuclei, one at rest and the other at
pidity Y . FunctionφA(y, r) = Φ(y, r)/(2πr2), in the
momentum space, satisfies the well-known non-lin
equation[6,7,19]

(22)
∂φ(y, q)

∂ȳ
= −Hφ(y, q) − φ2(y, q),

whereȳ = ᾱy, ᾱ = αsNc/π, αs andNc are the strong
coupling constant and the number of colours, resp
tively, andH is the BFKL Hamiltonian. Eq.(22) has
to be solved with the initial condition aty = 0 deter-
mined by the colour dipole distribution in the nucle
smeared by the profile function of the nucleus.

In our study we have taken the initial condition
accordance with the Golec-Biernat distribution[22],
duly generalized for the nucleus:

(23)φ(0, q) = −1

2
a Ei

(
− q2

0.3567 GeV2

)
,

with

(24)a = A1/320.8 mb

πR2
0

.

Evolving φ(y, q) up to valuesȳ = 3 we found the
inclusive cross-section(21) at center rapidity for en
ergies corresponding to the overall rapidityY = Ȳ /ᾱ

with Ȳ = 6. Taking αs = 0.2 this givesY ∼ 31,
which is far beyond the present possibilities. The over-
all cutoffs for integration momenta in Eq.(22) were
taken according to 0.3 × 10−8 GeV/c < q < 0.3 ×
10+16 GeV/c.

The found inclusive cross-sections are illustra
in Figs. 2–4. To see how the form of the distributi
changes with energy, we present inFig. 2 the distri-
butions forA = 1 and y= Y/2 normalized to unity
and multiplied byk2 to exclude the trivial 1/k2 de-
pendence present in(21),

(25)J1(y, k) = k2I1(y, k)
/∫

d2k

(2π)2I1(y, k)

at different energies corresponding toȲ = 1,3,6. One
observes how, with the growth of energy, the distrib
tions are shifted towards higher values ofk.

Fig. 2. Normalized distributionsJ1(y, k) (Eq. (25)) at y = Y/2.
Curves from top to bottom at smallk correspond to scaled ove
all rapiditiesȲ = 1,3,6.
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u- u-
Fig. 3. From top to bottom:A-dependence of momentum distrib
tions, scaled with the number of collisions, atȲ = 1,3,6. Curves
from top to bottom show ratiosIA(y, k)/A4/3I1(y, k) at center ra-
pidity (y = Y/2) for A = 8, 27, 64, 125 and 216.

In Figs. 3 and 4we illustrate theA-dependence
showing ratios

(26)Rcol
A = IA(y, k)

A4/3I1(y, k)
Fig. 4. From top to bottom:A-dependence of momentum distrib
tions, scaled with the number of participants, atȲ = 1,3,6. Curves
from bottom to top show ratiosIA(y, k)/AI1(y, k) at center rapidity
(y = Y/2) for A = 8, 27, 64, 125 and 216.

and

(27)R
part
A = IA(y, k)

AI1(y, k)
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with inclusive cross-sections scaled bythe number of
collisions, ∝ A4/3, or by the number of participants
∝ A, aty = Y/2 andY = 1, 3 and 6 (from top to bot
tom). One clearly sees that whereas at relatively sm
momenta the inclusive cross-sections are proportio
to A, that is tothe number of participants, at larger
momenta they grow withA faster, however noticeabl
slowlier than the number of collisions, approximate
as A1.1. The interval of momenta for whichIA ∝ A

is growing with energy, so that one may conject
that at infinite energies all the spectrum will be p
portional toA.

Passing to the determination of both multipliciti
and average transverse momenta one has to ob
certain care because of the properties of the pertu
tive QCD solution in the leading approximation em
bodied in Eq.(22). As follows from(21) the inclusive
cross-section blows up atk2 → 0 independent of the
rapidity y. So the corresponding total multiplicity d
verges logarithmically. However, the physical sen
has only emission of jets with high enough transve
momenta. Thus we restricted ourselves to produ
jets withk > kmin. Forkmin we chose two possibilities
kmin = 0.3 and 1.0 GeV/c. Our conclusions turned ou
to be practically independent of this choice. In the f
lowing we discuss the results withkmin = 0.3 GeV/c.
As to the average transverse momentum, the ca
lated φ(y, q) fall very slowly with q , so that〈k2〉
clearly diverges. Even the calculation of〈|k|〉, which
converges, encounters certain difficulties at highesY

due to reduced precision and influence of overall c
offs. So we found our values of averagek2 squared as
〈|k|〉2.

Due to unreasonably high value of the BFKL i
tercept∆ = ᾱ 4 ln2, both the multiplicities and av
erage transverse momenta grow very fast withY

and reach unreasonably high valuesµ ∼ 106 and
〈|k|〉 ∼ 104 GeV/c at Ȳ = 6. However, we are no
interested in theY dependence but rather in th
A-dependence, since in the fusing string scenario
energy dependence is introduced on the phenom
logical grounds.

To a very good precision, at high energies cor
sponding to scaled rapidities̄Y > 2 the total multiplic-
ities are found to be proportional toA, that is tothe
number of participants.

To compare with the string scenario we turn to m
tiplicities per stringµA. In Tables 1 and 2the ratios
e

-

Table 1
Ratiosrµ(A) = µA/µ1

A Ȳ = 1 2 3 4 5 6

8 0.695 0.611 0.585 0.572 0.565 0.560
27 0.531 0.439 0.412 0.400 0.392 0.387
64 0.429 0.341 0.317 0.306 0.299 0.294

125 0.358 0.278 0.256 0.246 0.240 0.236
216 0.306 0.233 0.214 0.205 0.200 0.196

Table 2
Ratiosrk(A) = (

〈|k|〉A〈|k|〉1 )2

A Ȳ = 1 2 3 4 5 6

8 1.305 1.606 1.718 1.745 1.713 1.651
27 1.559 2.123 2.336 2.378 2.310 2.214
64 1.810 2.643 2.922 3.001 2.839 2.685

125 2.025 3.117 3.508 3.568 3.319 3.105
216 2.226 3.575 4.010 4.070 3.761 3.488

Table 3
Productsrµ(A)rk(A)

A Ȳ = 1 2 3 4 5 6

8 0.907 0.982 1.004 0.998 0.967 0.924
27 0.828 0.933 0.963 0.950 0.906 0.857
64 0.776 0.902 0.926 0.917 0.848 0.790

125 0.725 0.866 0.898 0.878 0.797 0.732
216 0.681 0.834 0.858 0.834 0.751 0.684

(28)rµ(A) = µA

µ1
, rk(A) =

( 〈|k|〉A
〈|k|〉1

)2

at given overall scaled rapidities̄Y = 1, . . . ,6. Table 3
shows the productrµrk which is unity in the fusion
strings model. These results were obtained with
low kmin.

Already a superficial study of these results sho
their striking similarity with the predictions based o
the fusing string picture. In particular the produ
rµ(A)rk(A) result nearly universal and close to t
value unity predicted by the latter. A certain drop
this product towards higherA andȲ may to be related
to the neglected far tail of the momentum distributi
at superhigh values ofk, which is absolutely irrele
vant for the multiplicity but can give some contributio
to 〈|k|〉.

A more detailed comparison can be performed
ing Eq.(15) derived from the string picture. We fitte
the better known ratiosrµ(A) according to this equa
tion usingη1 as an adjustable parameter and taking
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σN (s) the experimental data well-reproduced by

(29)σN = 38.3+ 0.545 ln2
(

s

122 GeV2

)
.

The values ofη1 which give the best least-square
at overall scaled rapidities̄Y = 1,2, . . . ,6 are, respec
tively,

η1 = 0.267, 0.678, 0.931, 1.201, 1.348, 1.433.

With theseη1’s we reproduce the data forrµ(A) from
Table 1 by Eq. (15) with the average relative erro
which goes from the maximal 2.8% atȲ = 1 down
to minimal 0.98% atȲ = 6. Using the adjusted valu
of η1 at Ȳ = 1 and assuming that at this compa
tively low energy the number of strings in theNN

collision is exactly 2, we could determine the effect
string radius corresponding to the pomeron picture
be r0 = 0.32 fm. This value is astonishingly close
standard values used in the fusing string calculatio
If we assume that this string radius is fixed indep
dent of energy then we can find the effective aver
number of strings in aNN collision at higher energies
We find atȲ = 2,3, . . . ,6, respectively,

νN = 3.72, 4.31, 3.71, 2.81, 2.11.

It is interesting that at accessible energies (up
Ȳ = 3) the number of strings monotonously grows
accordance with the standard expectations, altho
noticeably slowlier. This may be interpreted as a sig
nal of string fusion already inNN collisions. At still
higher energies this phenomenon seems to bec
much stronger so that the effective average of stri
begins to fall.

So, to conclude, the predictions from the pertur
tive QCD pomeron approach seem to fully agree w
those from the fusing string picture.

As mentioned in the introduction, in the hard regi
the inclusive cross-sections have been previously s
ied in the framework of the colour glass condens
model[9] and saturation model[10]. Both studies are
simplified in the sense that quantum evolution of
nuclear gluon density, embodied in Eq.(22), has been
neglected. Its influence has been effectively taken into
account by introducing as a parameter the “satura
scale”Λs ([9]) or “saturation momentum”Qs ([10])
marking the transitionfrom the linear to non-linear dy
namics. Their values were adjusted to the experime
data at RHIC. In both approaches it was found t
〈k2〉 ∝ Λ2
s or ∝ Q2

s . As to the multiplicity, it was found
∝ R2

AΛ2
s in [9] and ∝ R2

AQ2
s lnQ2

s in [10]. Assum-
ing thatΛ2

s , Q2
s ∼ A1/3 and neglecting the logarithm

of A one observes that the multiplicity is propo
tional toA. The multiplicity per string then behaves
A1/3 and the product of〈k2〉AµA is independent ofA.
These results are in full correspondence with ours
tained with the full quantum evolution included.

Some difference may come from the factors lo
rithmic inA. Our calculations have not found any ex
logarithmic dependence onA: our multiplicities are
∼ A with a very good precision. Of course one m
ask what may happen if we try to change the Q
pomeron model, including into it a physically reaso
able infrared cutoff and especially a running coupl
constant. Our experience with the non-linear equa
(22) tells us that the introduction of the infrared cu
off in the region 0.4–08 GeV/c will have very little
influence on the quantitative results and none at all o
the qualitative picture. As to the introduction of th
running coupling, it implies solving the confineme
problem. It cannot be done with any rigour witho
spoiling the basic ingredients of the hard pome
model. All attempts in this direction are inevitab
very primitive and not convincing even for the line
evolution. So we prefer not to speculate on this s
ject and present the results corresponding to the Q
pomeron model as it stands, without corrupting
model with poorly based improvements.

5. Conclusions

We have compared predictions for multipliciti
and average transverse momentum which follow fr
the semi-phenomenological fusing colour string p
ture for the soft domain with those which follow fro
the pomeron approach, both phenomenological
perturbatively derived from QCD.

The old-fashioned pomeron approach with trip
pomeron interaction leads to results which disag
with the colour string models both with or witho
fusion. The average transverse momentum in this
proach is independent ofA, contrary to predictions o
the colour model with fusion. On the other hand,
multiplicity per string falls withA, in contradiction
with the predictions of the models without fusion.
fact the only way to reconciliate the two models is
assume the eikonal form for the multiple pomeron
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change without the triple pomeron interaction. Su
a model gives prediction equivalent to the indep
dent string picture (without fusion). In fact this is th
dynamics tacitly assumed in the original form of t
string model[1,2]

The perturbative QCD pomeron gives results wh
are in remarkable agreement with the string mo
with fusion. The behaviour of the multiplicities an
average transverse momentum are in good agree
not only qualitatively but also quantitatively. More
over, the effective string radius extracted from thes
results turns out to be in agreement with the standa
assumed value in fusing colour string calculatio
This overall agreement mayappear to be astonishin
in view of very different dynamical pictures put in th
basis of the two approaches and also quite diffe
domains of their applicability: soft for the string pi
ture and hard for the pomeron picture. However,
second thought, one may come to the conclusion
the dynamical difference between the two approac
is not so unbridgeable. Two phenomenons are p
ing the leading role in both approaches. One is fus
of exchanged elemental objects, strings in one pic
and pomerons in the other. This explains damping
multiplicities per one initial elemental object. Seco
phenomenon is the rise of average transverse mom
tum with this fusion. It is generated by formation
strings of higher tension (colour) in the string sc
nario. In the pomeron model this rise occurs due
growth of the so-called saturation momentum, wh
shifts the momentum distribution to higher mome
with A (andY ). Due to this shift non-linear effects i
Eq. (22) in some sense reproduce formation of strin
of higher colour in the string model.

The discovered similarity in predictions betwe
the perturbative QCD pomeron and fusing str
model indicates that the dynamics of strong inter
tion does not radically change when passing from
soft to very hard region, in spite of the change in
microscopic content, from strings to partons. It a
leaves certain hopes that these predictions are
founded in spite of all known limitations in validit
and applicability of these models.
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