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Abstract

The vacuum expectation value of the surface energy–momentum tensor is evaluated for a scalar field obeying Robin boundary condition on a
spherical brane in (D + 1)-dimensional spacetime Ri×SD−1, where Ri is a two-dimensional Rindler spacetime. The generalized zeta function
technique is used in combination with the contour integral representation. The surface energies on separate sides of the brane contain pole and
finite contributions. Analytic expressions for both these contributions are derived. For an infinitely thin brane in odd spatial dimensions, the pole
parts cancel and the total surface energy, evaluated as the sum of the energies on separate sides, is finite. For a minimally coupled scalar field the
surface energy–momentum tensor corresponds to the source of the cosmological constant type.
© 2006 Elsevier B.V.
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1. Introduction

Motivated by string/M-theory, the AdS/CFT correspon-
dence, and the hierarchy problem of particle physics, brane-
world models were studied actively in recent years [1]. In this
models, our universe is realized as a boundary of a higher
dimensional spacetime. In particular, a well studied example
is when the bulk is an AdS space. The problem of studying
quantum effects in braneworld scenarios is of considerable phe-
nomenological interest, both in particle physics and in cosmol-
ogy. The braneworld corresponds to a manifold with dynamical
boundaries and all fields which propagate in the bulk will give
Casimir-type contributions to the vacuum energy, and as a result
to the vacuum forces acting on the branes. In dependence of the
type of a field and boundary conditions imposed, these forces
can either stabilize or destabilize the braneworld. In addition,
the Casimir energy gives a contribution to both the brane and
bulk cosmological constants and, hence, has to be taken into
account in the self-consistent formulation of the braneworld
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dynamics. Motivated by these, the role of quantum effects on
background of Randall–Sundrum geometry has received a great
deal of attention. The models with dS and AdS branes, and
higher-dimensional brane models are considered as well (see,
for instance, references given in [2]).

In view of the recent developments in braneworld scenar-
ios, it seems interesting to generalize the study of quantum
effects to other types of bulk spacetimes. In particular, it is of
interest to consider non-Poincaré invariant braneworlds, both
to better understand the mechanism of localized gravity and
for possible cosmological applications. Bulk geometries gener-
ated by higher-dimensional black holes are of special interest.
In these models, the tension and the position of the brane are
tuned in terms of black hole mass and cosmological constant
and brane gravity trapping occurs in just the same way as in
the Randall–Sundrum model. Braneworlds in the background
of the AdS black hole were studied in [3]. Like pure AdS space
the AdS black hole may be superstring vacuum. It is of inter-
est to note that the phase transitions which can be interpreted as
confinement-deconfinement transition in AdS/CFT setup may
occur between pure AdS and AdS black hole [4]. Though, in
the generic black hole background the investigation of brane-
induced quantum effects is technically complicated, the exact
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analytical results can be obtained in the near horizon and large
mass limit when the brane is close to the black hole horizon.
In this limit the black hole geometry may be approximated
by the Rindler-like manifold (for some investigations of quan-
tum effects on background of Rindler-like spacetimes see [5]
and references therein). In the paper [6] we have investigated
the Wightman function, the vacuum expectation values of the
field square and the energy–momentum tensor for a scalar field
with an arbitrary curvature coupling parameter for the spheri-
cal brane on the bulk Ri×SD−1, where Ri is a two-dimensional
Rindler spacetime. This problem is also of separate interest as
an example with gravitational and boundary-induced polariza-
tions of the vacuum, where all calculations can be performed in
a closed form. Note that the corresponding quantities induced
by a single and two parallel flat branes in the bulk geome-
try Ri×RD−1 for both scalar and electromagnetic fields are
investigated in [7]. For scalar fields with general curvature cou-
pling, in Ref. [8] it has been shown that in the discussion of
the relation between the mode sum energy, evaluated as the
sum of the zero-point energies for each normal mode of fre-
quency, and the volume integral of the renormalized energy
density for the Robin parallel plates geometry it is necessary to
include in the energy a surface term concentrated on the bound-
ary (see also the discussion in Ref. [9]). An expression for the
surface energy–momentum tensor for a scalar field with a gen-
eral curvature coupling parameter in the general case of bulk
and boundary geometries is derived in Ref. [10]. The vacuum
expectation values of the surface energy–momentum tensor on
the branes in AdS bulk are investigated in [11]. In particular, it
has been shown that the surface densities induced by quantum
fluctuations of bulk fields can serve as a natural mechanism for
the generation of cosmological constant in braneworld models
of the Randall–Sundrum type with the value in good agree-
ment with recent cosmological observations. The purpose of
the present Letter is to study the vacuum expectation value of
the surface energy–momentum tensor for a scalar field obey-
ing Robin boundary condition on a spherical brane on the bulk
Ri×SD−1. The Letter is organized as follows. In Section 2 we
consider the surface energy–momentum tensor and the eigen-
functions for the problem. The vacuum expectation value of the
surface energy–momentum tensor in the R-region (the defin-
itions of the R- and L-regions see below) are investigated in
Section 3. The corresponding quantities for the L-region are
discussed in Section 4. Section 5 summarizes the main results
of the Letter.

2. Surface energy–momentum tensor

Consider a real scalar field ϕ(x) on background of (D +
1)-dimensional spacetime Ri×SD−1, where Ri is a two-
dimensional Rindler spacetime. The corresponding line ele-
ment has the form

(1)ds2 = ξ2 dτ 2 − dξ2 − r2
H dΣ2

D−1,

with the Rindler-like (τ, ξ) part and dΣ2
D−1 is the line element

for the space with positive constant curvature with the Ricci
scalar R = (D − 2)(D − 1)/r2 . Line element (1) describes
H
the near horizon geometry of (D + 1)-dimensional topologi-
cal black hole with coordinate ξ determining the distance from
the horizon. For example, in the case of a (D + 1)-dimensional
Schwarzschild black hole one has r − rH = (D − 2)ξ2/4rH ,
where r is the Schwarzschild radial coordinate and r = rH cor-
responds to the horizon. For the scalar field ϕ(x) with curvature
coupling parameter ζ the dynamics is governed by the field
equation

(2)
(∇l∇ l + m2 + ζR

)
ϕ = 0,

where ∇l is the covariant derivative operator associated with
the corresponding metric tensor gik . In the cases of mini-
mally and conformally coupled scalars one has ζ = 0 and
ζ = (D − 1)/4D, respectively. Our main interest in this Let-
ter will be the surface Casimir energy and stresses induced on a
spherical brane located at ξ = a. We will assume that the field
satisfies the Robin boundary condition

(3)
(
As + nl∇l

)
ϕ(x) = 0

on the brane, where As is a constant, nl is the unit inward nor-
mal to the brane. This type of conditions is an extension of
Dirichlet and Neumann boundary conditions and appears in a
variety of situations, including the considerations of vacuum ef-
fects for a confined charged scalar field in external fields [12],
spinor and gauge field theories, quantum gravity and supergrav-
ity [13]. Robin boundary conditions naturally arise for scalar
and fermion bulk fields in the Randall–Sundrum model [14].
For boundary condition (3) the vacuum expectation value of the
bulk energy–momentum tensor induced by a spherical brane is
evaluated in Ref. [6]. In Ref. [10] it was argued that the energy–
momentum tensor for a scalar field on manifolds with bound-
aries in addition to the bulk part contains a contribution located
on the boundary. The surface part of the energy–momentum
tensor is given by the formula [10]

(4)T
(surf)
ik = δ(x; ∂Ms)τik,

where the “one-sided” delta-function δ(x; ∂Ms) locates this
tensor on boundary ∂Ms and

(5)τik = ζϕ2Kik − (2ζ − 1/2)hikϕnl∇lϕ.

Here Kik is the extrinsic curvature tensor for the boundary and
hik is the corresponding induced metric.

Let {ϕα(x),ϕ∗
α(x)} be a complete set of positive and neg-

ative frequency solutions to the field equation (2), obeying
boundary condition (3). Here α denotes a set of quantum num-
bers specifying the solution. By expanding the field operator
over the eigenfunctions ϕα(x), using the standard commutation
rules, for the vacuum expectation value of the surface energy–
momentum tensor one finds

〈0|T (surf)
ik |0〉 = δ(x; ∂Ms)〈0|τik|0〉,

(6)〈0|τik|0〉 =
∑
α

τik

{
ϕα(x),ϕ∗

α(x)
}
,

where |0〉 is the amplitude for the vacuum state, and the bi-
linear form τik{ϕ,ψ} on the right of the second formula is
determined by the classical energy–momentum tensor (5). To
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evaluate the vacuum expectation value of the surface energy–
momentum tensor we need the eigenfunctions ϕα(x). In the
consideration below we will use the hyperspherical angular co-
ordinates (ϑ,φ) = (θ1, θ2, . . . , θn,φ) on SD−1 with n = D − 2,
0 � θk � π , k = 1, . . . , n, and 0 � φ � 2π . In these coordinates
the variables are separated and the eigenfunctions can be writ-
ten in the form

(7)ϕα(x) = Cαf (ξ)Y (mk;ϑ,φ)e−iωτ ,

where mk = (m0 ≡ l,m1, . . . ,mn), and m1,m2, . . . ,mn are in-
tegers such that

(8)0 � mn−1 � · · · � m1 � l, −mn−1 � mn � mn−1,

Y (mk;ϑ,φ) is the surface harmonic of degree l [15]. The equa-
tion for f (ξ) is obtained from field equation (2). The corre-
sponding linearly independent solutions are the Bessel modified
functions I±iω(λlξ) and Kiω(λlξ) with the imaginary order,
where

(9)λl = 1

rH

√
l(l + n) + ζn(n + 1) + m2r2

H .

The eigenfrequencies are determined from the boundary condi-
tion imposed on the field at ξ = a. The brane divides the space-
time into two regions with ξ > a (R-region) and 0 < ξ < a

(L-region). The vacuum properties in these regions are differ-
ent and we consider them separately.

3. Surface energy in the R-region

For the R-region the unit normal to the boundary and
nonzero components of the extrinsic curvature tensor have the
form

(10)nl = δl
1, K00 = a,

and f (ξ) = Kiω(λlξ). For a given λla, the corresponding
eigenfrequencies ω = ωj = ωj (λla), j = 1,2, . . . , are deter-
mined from boundary condition (3) and are solutions to the
equation

(11)AKiω(x) + xK ′
iω(x) = 0, x = λla, A = Asa,

where the prime denotes the differentiation with respect to the
argument of the function. For As > 0 this equation has purely
imaginary solutions with respect to ω. To avoid the vacuum
instability, below we will assume that As � 0. Under this condi-
tion all solutions to (11) are real. The coefficient Cα in Eq. (7) is
determined by the normalization condition. Using the relation

(12)
∫ ∣∣Y(mk;ϑ,φ)

∣∣2
dΩ = N(mk)

for the spherical harmonics (the explicit form for N(mk) will
not be necessary in the following consideration), one finds

(13)C2
α = 1

rn+1
H N(mk)

Īiωj
(λla)

∂
∂ω

K̄iω(λla)|ω=ωj

,

where for a given function F(x) we use the notation

(14)F̄ (x) = AF(x) + xF ′(x).
Substituting the eigenfunctions into the mode-sum formula
(6) and using the relations Kiωj

(λla)Īiωj
(λla) = 1 and

(15)
∑
mk

|Y(mk;ϑ,φ)|2
N(mk)

= Dl

SD

,

the vacuum expectation value of the surface energy–momentum
tensor can be presented in the form

〈0|τ k
l |0〉 = IR(A)

2rD−1
H aSD

[
2ζ δ0

l δ
k
0 + (4ζ − 1)Aδk

l

]
,

(16)l, k = 0,2, . . . ,D,

and 〈0|τ 1
1 |0〉 = 0, with SD = 2πD/2/�(D/2) being the total

area of the surface of the unit sphere in D-dimensional space,
and

(17)IR(A) =
∞∑
l=0

Dl

∞∑
j=1

Kiωj
(λla)

∂
∂ω

K̄iω(λla)|ω=ωj

.

Here and below the quantities for the R- and L-regions are
denoted by the indices R and L, respectively, and we use the
notation

(18)Dl = (2l + D − 2)
�(l + D − 2)

�(D − 1)l!
for the degeneracy factor. The vacuum expectation value of the
surface energy–momentum tensor (16) has a diagonal structure:

(19)〈0|τ k
l |0〉 = diag

(
ε(R),0,−p(R), . . . ,−p(R)

)
,

with the surface energy density ε(R), the stress

(20)p(R) = AIR(A)

2rD−1
H a

(1 − 4ζ ),

and with the equation of state

(21)ε(R) = −
[

1 + 2ζ

A(4ζ − 1)

]
p(R).

For a minimally coupled scalar field, the latter corresponds to
a cosmological constant induced on the brane. Note that the
vacuum expectation values of the field square on the brane is
also expressed in terms of the function IR(A):

(22)〈0|ϕ2|0〉ξ=a = IR(A)

rD−1
H SD

.

The quantity (17) and, hence, the surface energy–momentum
tensor diverges and needs some regularization. Many regular-
ization techniques are available nowadays and, depending on
the specific physical problem under consideration, one of them
may be more suitable than the others. Here we will use the
method which is an analog of the generalized zeta function ap-
proach. We define the function

(23)FR(s) =
∞∑
l=0

DlζR(s, λla),

where

(24)ζR(s, λla) =
∞∑ ω−s

j Kiωj
(λla)

∂
∂ω

K̄iω(λla)|ω=ωj

.

j=1
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Note that for Dirichlet boundary condition this function van-
ishes. The computation of vacuum expectation value for the
surface energy–momentum tensor requires an analytical con-
tinuation of the function FR(s) to the value s = 0,

(25)IR(A) = FR(s)|s=0.

The starting point of our consideration is the representation
of the function (24) in terms of contour integral

(26)ζR(s, x) = 1

2πi

∫
C

dz z−s Kiz(x)

K̄iz(x)
,

where C is a closed counterclockwise contour in the complex
z plane enclosing all zeros ωj (x). The location of these zeros
enables one to deform the contour C into a segment of the imag-
inary axis (−iR, iR) and a semicircle of radius R in the right
half-plane. We will also assume that the origin is avoided by
the semicircle Cρ with small radius ρ. For sufficiently large s

the integral over the large semicircle in (26) tends to zero in
the limit R → ∞, and the expression on the right can be trans-
formed to

(27)

ζR(s, x) = 1

2πi

∫
Cρ

dz z−s Kiz(x)

K̄iz(x)
− 1

π
cos

πs

2

∞∫
ρ

dz z−s Kz(x)

K̄z(x)
.

Below we will consider the limit ρ → 0. In this limit the first
integral vanishes in the case s = 0, and in the following we
will concentrate on the contribution of the second integral. For
the analytic continuation of this integral we employ the uni-
form asymptotic expansion of the MacDonald function and its
derivative for large values of the order [16]. We will rewrite this
expansion in the form

(28)Kz(x) ∼
√

π

2

e−zη(x/z)

(x2 + z2)1/4

∞∑
q=0

(−1)q ũq(t)

(x2 + z2)q/2
,

where

t = z√
x2 + z2

, η(x) =
√

1 + x2 + ln
x

1 + √
1 + x2

,

(29)ũq(t) = uq(t)

tq
,

and the expressions for the functions uq(t) are given in [16].
From these expressions it follows that the coefficients ũq(t)

have the structure

(30)ũq(t) =
q∑

m=0

uqmt2m,

with numerical coefficients uqm. From Eq. (28) and the corre-
sponding expansion for the derivative of the MacDonald func-
tion we obtain the asymptotic expansion

(31)K̄z(x) ∼ −
√

π

2

(
x2 + z2)1/4

e−zη(x/z)

∞∑
q=0

(−1)q ṽq(t)

(x2 + z2)q/2
,

where

(32)ṽq(t) = vq(t)

q
+ Aũq−1,
t

and the expressions for vq(t) = tq
∑q

m=0 vqmt2m are presented
in [16]. Note that the functions (32) have the structure

(33)ṽq(t) =
q∑

m=0

ṽqmt2m, ṽqm = vqm + Auq−1,m.

From Eqs. (28) and (31) we can find the asymptotic expansion
for the ratio in the second integral on the right of formula (27):

(34)
Kz(x)

K̄z(x)
∼ − 1

(x2 + z2)1/2

∞∑
q=0

(−1)qUq(t)

(x2 + z2)q/2
,

where the coefficients Uq(t) are defined by the relation

(35)
∞∑

q=0

(−1)q
ũq(t)

rq

[ ∞∑
q=0

(−1)q
ṽq(t)

rq

]−1

=
∞∑

q=0

(−1)qUq(t)

rq
,

and similar to (30), (33), are polynomials in t :

(36)Uq(t) =
q∑

j=0

Uqj t
2j .

The first three coefficients are given by expressions

U0(t) = 1, U1(t) = 1

2
− A − t2

2
,

U2(t) = 3

8
− A + A2 −

(
A − 7

32

)
t2 + 49

576
t4.

Now let us consider the function

(37)FR(s) = − 1

π
cos

πs

2

∞∑
l=0

Dl

∞∫
ρ

dz z−s Kz(λla)

K̄z(λla)
.

We subtract and add to the integrand in this equation the first N

terms of the corresponding asymptotic expansion. This allows
us to split (37) into the following pieces

(38)FR(s) = F
(as)
R (s) + F

(1)
R (s),

where

(39)

F
(as)
R (s) = 1

π
cos

πs

2

∞∑
l=0

Dl

∞∫
ρ

dz z−s

N∑
q=0

(−1)qUq(t)

(z2 + λ2
l a

2)(q+1)/2
,

(40)

F
(1)
R (s) = − 1

π
cos

πs

2

∞∑
l=0

Dl

∞∫
ρ

dz z−s

[
Kz(λla)

K̄z(λla)

+
N∑

q=0

(−1)qUq(t)

(z2 + λ2
l a

2)(q+1)/2

]
,

and

(41)t = z/

√
z2 + λ2

l a
2.

For N � D − 1 the expression for F
(1)
R (s) is finite at s = 0

and, hence, for our aim it is sufficient to subtract N = D − 1
asymptotic terms. At s = 0 the function F

(1)
R (s) is finite for

ρ = 0 and we can directly put this value. The integral over z
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in the expression for F
(as)
R (s) is finite in the limit ρ → 0 for

0 < Re s < 1. For these values we can put ρ = 0 in Eq. (39). By
making use formulae (36), (41), after the integration over z, the
asymptotic part is presented in the form

F
(as)
R (s) = 1

2π
cos

πs

2

N∑
q=0

(−1)q
(

rH

a

)q−s

(42)

×
q∑

j=0

UqjB

(
j + 1 − s

2
,
q + s

2

)
ζSD−1

(
q + s

2

)
,

with the beta function B(x, y). In formula (42)

(43)ζSD−1(z) =
∞∑
l=0

Dl

[
(l + D/2 − 1)2 + bD

]−z
,

is the zeta function for a scalar field on the spacetime R ×SD−1

and

(44)bD = ζ(D − 2)(D − 1) − (D − 2)2/4 + m2r2
H .

This function is well investigated in literature (see, for exam-
ple, [17]) and can be presented as a series of incomplete zeta
functions. Here we recall that the function ζSD−1(z) is a mero-
morphic function with simple poles at z = (D − 1)/2 − j ,
where j = 0,1,2, . . . for D even and 0 � j � (D − 3)/2 for
D odd. For D even one has ζSD−1(−j) = 0, j = 1,2, . . . . In
(42), the pole term in the q = 0 summand comes from the pole
of the beta function, whereas in the terms with q �= 0 the pole
terms come from the poles of the function ζSD−1(z). Laurent-
expanding near s = 0 we find

(45)FR(s) = F
(as)
R,−1

s
+ F

(as)
R,0 + F

(1)
R (0) +O(s).

Using this result, for the surface energy density induced on the
brane one obtains

(46)p(R) = p(R)
p + p

(R)
f ,

where for the pole and finite contributions one has

(47)ε(R)
p = A(4ζ − 1) + 2ζ

2srD−1
H aSD

F
(as)
R,−1,

(48)ε
(R)
f = A(4ζ − 1) + 2ζ

2rD−1
H aSD

[
F

(as)
R,0 + F

(1)
R (0)

]
.

The corresponding formulae for the pole and finite parts of the
surface stress are obtained by using the equation of state (21).
The surface energy can be found integrating the energy density,

(49)E(R,surf) =
∫

dDx
√|g|〈0|T (surf)0

0 |0〉 = arD−1
H SDε(R).

The pole and finite parts of the vacuum expectation value of
the field square on the brane are obtained by the formulae (22),
(25), (45).
4. Surface densities in the L-region

In this section we consider the region between the hori-
zon and the brane, 0 < ξ < a (L-region), for which one has
nl = −δl

1 and K00 = −a. As in the previous section we will
assume that the field obeys boundary condition (3) on the sur-
face ξ = a. To deal with discrete spectrum, we can introduce
the second brane located at ξ = b < a, on whose surface we
impose boundary conditions as well. After the construction of
the corresponding zeta function we take the limit b → 0. As a
result, we can see that the surface energy–momentum tensor in
the L-region has the structure given by (19) and with the equa-
tion of state (21). For the surface energy density one obtains the
expression

(50)ε(L) = A(4ζ − 1) + 2ζ

2rD−1
H aSD

IL(A), A = −aAs,

where now IL(A) = FL(s)|s=0 with

(51)FL(s) = − 1

π
cos

πs

2

∞∑
l=0

Dl

∞∫
ρ

dz z−s Iz(λla)

Īz(λla)
.

For a given A this expression differs from the corresponding
expression for the R-region by the replacement Kz(x) → Iz(x).
Note that the similar relation takes place for the bulk energy–
momentum tensor as well. As in the previous section, to avoid
the vacuum instability, here we assume that As � 0. Under this
condition, for a given λla the function Īz(λla) has no real posi-
tive zeros with respect to z. The uniform asymptotic expansion
for the integrand in (51) is obtained from the corresponding
formula with the functions Kz(λla) (see formula (34)) by the
replacement

(52)(−1)qUq(t) → −Uq(t).

The vacuum stress is a sum of pole and finite parts

(53)ε(L) = ε(L)
p + ε

(L)
f ,

with

(54)ε(L)
p = A(4ζ − 1) + 2ζ

2srD−1
H aSD

F
(as)
L,−1,

ε
(L)
f = A(4ζ − 1) + 2ζ

2rD−1
H aSD

[
F

(as)
L,0 + F

(1)
L (0)

]
.

The formulae for F
(as)
L,−1, F

(as)
L,0 , F

(1)
L (0) are obtained from the

corresponding expressions for the R-region by the replacements
Kz(x) → Iz(x) and (52). In particular,

F
(as)
L (s) = − 1

2π
cos

πs

2

N∑
q=0

(
rH

a

)q−s

(55)

×
q∑

j=0

UqjB

(
j + 1 − s

2
,
q + s

2

)
ζSD−1

(
q + s

2

)
.

The surface energy density is related to the stress by formula
(21) with the replacement R→L and for the total surface energy
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one has

(56)E(L,surf) = arD−1
H SDε(L).

The vacuum expectation value of the field square on the brane
for the L-region is also expressed in terms of the function
IL(A). For an infinitely thin brane taking the R- and L-regions
together, the pole parts of the surface energy densities cancel
for odd values of the spatial dimension D. In this case the total
surface energy E(surf) = E(R,surf) +E(L,surf) is finite and can be
directly evaluated by the formula

E(surf) = A(1 − 4ζ ) + 2ζ

2π

{
N1∑
k=0

(
rH

a

)2k+1

ζSD−1

(
k + 1

2

)

×
2k+1∑
j=0

U2k+1,jB

(
j + 1

2
, k + 1

2

)

+
∞∑
l=0

Dl

∞∫
0

dz

[
Iz(λla)

Īz(λla)
+ Kz(λla)

K̄z(λla)

(57)−
N1∑
k=0

2U2k+1(t)

(z2 + λ2
l a

2)

k+1
]}

,

where N1 = [(N − 1)/2], N � D − 1, and t is defined by re-
lation (41). Note that the cancellation of the pole terms coming
from oppositely oriented faces of infinitely thin smooth bound-
aries takes place in vary many situations encountered in the
literature. It is a simple consequence of the fact that the sec-
ond fundamental forms are equal and opposite on two faces of
each boundary and, consequently, the values of the correspond-
ing coefficient in the heat kernel expansion summed over two
faces of each boundary vanishes.

We have investigated the surface densities for both R- and
L-regions. In the corresponding braneworld scenario the geom-
etry is made up by two slices of the region 0 < ξ < a glued
together at the brane with a orbifold-type symmetry condition
analogous to that in the Randall–Sundrum model (see, for in-
stance, [6]). For an untwisted scalar field the coefficient As in
the boundary condition is related to the brane mass parameter c

of the field and the extrinsic curvature of the brane by the rela-
tion As = (c − ζ/a)/2. For a twisted scalar Dirichlet boundary
condition is obtained. It should be noted that in the orbifolded
version due to Z2 symmetry the extrinsic curvature tensor is the
same on both sides of the fixed point and the cancellation of the
pole terms for odd values D does not take place. A natural way
to deal with surface divergences is to consider more realistic
brane models with finite thickness. As it has been discussed in
[18] for de Sitter brane model, the finite thickness of the brane
regularizes the ultraviolet behavior and acts as a natural cutoff.

5. Conclusion

In this Letter we have investigated the surface Casimir den-
sities induced on a spherical brane in the Rindler-like space-
time Ri×SD−1 by quantum fluctuations of a scalar field with
an arbitrary curvature coupling parameter. The corresponding
volume vacuum expectation values of the energy–momentum
tensor were investigated in [6]. We consider a scalar field with
Robin boundary conditions and as a regularization method the
zeta function technique is employed. The spherical brane di-
vides the background space into two regions, referred as R- and
L-regions. We have constructed an integral representations for
the corresponding zeta functions in both these regions, which
are well suited for the analytic continuation. Subtracting and
adding to the integrands the leading terms of the corresponding
uniform asymptotic expansions, we present the corresponding
functions as a sum of two parts. The first one is convergent at
the physical point and can be evaluated numerically. In the sec-
ond, asymptotic part the pole contributions are given explicitly
in terms of the zeta function for a scalar field on the space-
time R × SD−1. The latter is well-investigated in literature.
As a consequence, the vacuum expectation values of the sur-
face energy–momentum tensor for separate R- and L-regions
contain pole and finite contributions. The remained pole term
is a characteristic feature for the zeta function regularization
method and has been found for many other cases of boundary
geometries. For a minimally coupled scalar field, the surface
energy–momentum tensor induced by quantum vacuum effects
corresponds to a source of a cosmological constant type located
on the brane. In odd spatial dimensions in the case of an in-
finitely thin brane, taking the R- and L-regions together, the
pole parts of the surface vacuum energies cancel. As a result
the total surface energy is finite and is determined by formula
(57) with the function Uq(t) is defined by relation (35). The re-
sults obtained here can be applied to the braneworld in the AdS
black hole bulk in the limit when the brane is close to the black
hole horizon. In this Letter we have considered the surface
energy–momentum tensor on a codimension one smooth brane.
For non-smooth boundaries an additional part in the energy–
momentum tensor arises located on corners. The corresponding
corner terms can be important in codimension two braneworld
scenarios (see, for instance, [19] and references therein).
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