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Abstract

In this note the weighted logarithmic matrix norm is defined. The weighted logarithmic
matrix norm is less than or equal to 2-logarithmic matrix norm. The bounds of the matrix
exponential are obtained using the weighted logarithmic norm, which are sharper than those
based on the 2-logarithmic matrix norm. Numerical examples are given to illustrate the results
of the note.
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1. Introduction

The logarithmic norm of a matrix A (or the measure of a matrix) is defined by

µ[A] = lim
�→0+

‖I + �A‖ − 1

�
. (1)

for matrix norm ‖ · ‖ induced by a vector norm in Rn. For the usual 1-, 2- and ∞-
matrix norms, the following formulae are well-known [3,4]:
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µ1[A] = max
j


ajj +

n∑
i=1,i /=j

|aij |

 , µ2[A] = λmax

(
A + AT

2

)
,

and

µ∞[A] = max
i


aii +

n∑
j=1,j /=i

|aij |

 ,

where, A = (aij ) ∈ Rn×n and AT denotes the transpose of A.
Bounds of the matrix exponential have been discussed in [8] based on Jordan

normal form. But it needs a lot of computation to obtain Jordan normal form. It is
useless to estimate the matrix exponential using the bounds in [8]. The usual logarith-
mic matrix norms above can be applied to estimate bounds of the matrix exponential
[3,4]. Along the line of [3,4], the weighted logarithmic norm is defined for any real
matrix in the present note which is a continuation of [7]. Then bounds of the matrix
exponential are given using the weighted logarithmic matrix norm. Other applica-
tions of logarithmic matrix norm include: numerical analysis of ordinary differential
equations [2,3], stability and numerical analysis of neutral delay differential equa-
tions [1,6], circuit analysis [4] and estimates for solutions of Lyapunov equation
[5].

An outline of the present note is as follows: In Section 2, a class of weighted
logarithmic norm of any real matrix is constructed and its properties are discussed.
In Section 3, the weighted logarithmic matrix norm is applied to estimate the matrix
exponential. In Section 4, two examples are given to illustrate the results of Sections
3 and 4.

2. The weighted logarithmic matrix norm

In the note, (·, ·) denotes an inner product on Rn and ‖ · ‖ the corresponding inner
product norm. Let H be a symmetric positive definite matrix, the function (·, ·)(H)

defined on Rn by (x, y)(H) = yTHx is said to be weight H inner product in order to
distinguish from the standard (or Euclidean) inner product (x, y)(I) = yTx, where I

is the unit matrix.

Lemma 2.1 [3]. For any inner product on Rn, and the corresponding inner product
norm ‖ · ‖, we have

µ[A] = max
x /=0

(Ax, x)

‖x‖2
.
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Definition 2.1. For any vector x and any matrix A, the weight H vector norm,
weight H matrix norm, and weight H logarithmic matrix norm is defined, respec-
tively, by

‖x‖(H) =
√

xTHx, ‖A‖(H) = max
x∈Rn,x /=0

‖Ax‖(H)

‖x‖(H)

,

and from Lemma 2.1

µ(H)[A] = max
x /=0

(Ax, x)(H)

‖x‖2
(H)

.

Now we present two formulae for the weight H logarithmic matrix norm and
weight H matrix norm, respectively.

Theorem 2.1. For any real matrix A,

µ(H)[A] = λmax

(
Ã + ÃT

2

)
(2)

and

‖A‖(H) =
√

λmax(ÃTÃ), (3)

where Ã = H0AH−1
0 , H0 = √

H, and λmax(F ) stands for the maximal eigenvalue
of a symmetric matrix F.

Proof. By means of Ã = H0AH−1
0 and Definition 2.1, we have,

A = H0
−1(H0AH0

−1)H0 = H0
−1ÃH0,

and

µ(H)[A] = max
x /=0

(Ax, x)(H)

‖x‖2
(H)

. (4)

Notice that

‖x‖(H)
2 = xTHx and (Ax, x)(H) = xTHAx = (x, Ax)(H) = xTATHx,

(Ax, x)(H) = xT(ATH + HA)x

2
= (H0x)T(ÃT + Ã)(H0x)

2
(5)
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hold. Let y = H0x, substituting (5) into (4), we obtain

µ(H)[A] = max
x /=0

xT(ATH + HA)x

2‖x‖2
(H)

= max
y /=0

yT(ÃT + Ã)y

2yTy
= λmax

(
Ã + ÃT

2

)
.

In the same way, it is easy to prove

‖A‖(H) =
√

λmax(ÃTÃ).

The proof is completed. �

Another expression of the weighted logarithmic matrix norm is given in [10].

Lemma 2.2 [10]. For any real matrix A,

µ(H)[A] = max{λ| det(HA + ATH − 2λH) = 0}. (6)

Remark 2.1. If H = I , we can obtain µ2[A] from (2) or (6).

Remark 2.2. We now compare the formula (2) with the formula (6). Since H is
invertible, the generalized eigenvalue problem in (6) is essentially the same as the
eigenvalue problem in (2).

In the following, we will construct a weight H using Lyapunov equation such that
µ(H)[A] � µ2[A] for any real matrix A.

Definition 2.2. A real matrix A is said to be stable if the real parts of its eigenvalues
are negative.

For a stable matrix, we obtain a negative weighted logarithmic matrix norm using
the following lemma.

Lemma 2.3 [7]. If a real matrix A is stable, then there is a weight H logarithmic
matrix norm such that

µ(H)[A] = − 1

λmax(H)
, (7)

where the symmetric positive definite matrix H satisfies the following Lyapunov
equation

ATH + HA = −2I. (8)

When A is unstable, we have the following result.
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Theorem 2.2. If a real matrix A is unstable, then there is a weight H logarithmic
norm of matrix A such that

µ(H)[A] = α − 1

λmax(H)
, (9)

where, α > maxj �λj (A) for j = 1, . . . , n, and α is nonnegative, and the symmet-
ric positive definite matrix H satisfies the following Lyapunov equation:

(A − αI)TH + H(A − αI) = −2I. (10)

Proof. The matrix A − αI is stable since α > maxj �λj (A) for j = 1, . . . , n. We
can apply Lemma 2.3 to the matrix A − αI and obtain

µ(H)[A − αI ] = − 1

λmax(H)
,

where the symmetric positive definite matrix H satisfies (10). From α � 0 and the
properties of logarithmic matrix norm [3,4], we have (9). The proof is completed. �

We will give a relation between the 2-logarithmic matrix norm and the weighted
logarithmic matrix norm derived from Lyapunov equation.

Theorem 2.3. For any real matrix A, the inequality

µ(H)[A] � µ2[A] (11)

holds, where µ(H)[A] and H are given by (9) and (10) in Theorem 2.2, respectively.

The following lemma is useful to prove Theorem 2.3.

Lemma 2.4. For a real stable matrix A, the inequality

µ(H)[A] � µ2[A], (12)

holds, where µ(H)[A] and H are given by (7) and (8) in Lemma 2.3, respectively.

Proof. Let q be the maximal eigenvalue of matrix H and y the corresponding eigen-
vector, i. e., q = λmax(H) and Hy = qy. From (8),

yTATHy + yTHAy = −2yTy.

It can be rewritten

qyTSy = −yTy,
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where S = (AT+A)
2 . Hence

yTSy

yTy
= − 1

q
= − 1

λmax(H)
. (13)

According to Lemma 2.3 and (13), we have

µ(H)[A] = − 1

λmax(H)
= yTSy

yTy
� max

x /=0

xTSx

xTx
= µ2[A].

The proof is completed. �

Proof of Theorem 2.3. When A is stable, (11) holds with α = 0 from Lemma 2.4.
Now we consider the case when A is unstable. Since A − αI is stable, we can apply
Lemma 2.4 to the matrix. According to Lemma 2.4 and the properties of logarithmic
matrix norm [3,4], we obtain

− 1

λmax(H)
� µ2[A − αI ] = µ2[A] − α.

Hence the inequality

µ(H)[A] = α − 1

λmax(H)
� µ2[A]

holds. The proof is completed. �

Remark 2.3. Using Theorem 2.2, we can obtain a symmetric positive definite
weight matrix H such that µ(H)[A] � µ2[A] for any real matrix A. It will be inter-
esting to investigate the minimum value of µ(H)[A] among all possible α and H in
(10).

3. Some bounds of the matrix exponential

We will need the following lemma to prove the results in the section.

Lemma 3.1 [3, 4]. For any inner product on Rn, and the corresponding inner prod-
uct norm ‖ · ‖, we have

‖ exp(At)‖ � exp(µ[A]t), (14)

where exp(At) stands for the matrix exponential.

When A is stable, for the 2-norm, we have the following theorem.
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Theorem 3.1. If a real matrix A is stable, we have

‖ exp(At)‖2 � β exp

(
− t

λmax(H)

)
, (15)

where, H is given by Lyapunov equation (8) in Lemma 2.3 and

β =
√

λmax(H)

λmin(H)
. (16)

Proof. Let H0 = √
H and Ã = H0AH0

−1, we have

A = H0
−1(H0AH0

−1)H0 = H0
−1ÃH0,

exp(At) = H0
−1 exp(Ãt)H0,

and

‖ exp(At)‖2 = ‖H0
−1 exp(Ãt)H0‖2 � ‖H0

−1‖2‖H0‖2‖ exp(Ãt)‖2. (17)

According to Lemma 3.1 and Lemma 2.3, we have

‖ exp(Ãt)‖2 = max
x /=0

xT(exp Ãt)T exp(Ãt)x

xTx

= max
x /=0

xT(H0 exp(At)H0
−1)TH0 exp(At)H0

−1x

xTx

= max
z /=0

zT(exp(At))TH exp(At)z

zTHz

= ‖ exp(At)‖(H)

� exp

(
− t

λmax(H)

)
,

i.e.,

‖ exp(Ãt)‖2 � exp

(
− t

λmax(H)

)
, (18)

where z = H0
−1x. On the other hand, since H0 is a symmetric positive definite

matrix,

‖H0‖2‖H0
−1‖2 =

√
λmax(H)

λmin(H)
= β (19)

holds [9]. From (17)–(19), the inequality (15) holds. The proof is completed. �
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By means of Theorem 3.1, we can obtain the following corollary.

Corollary 3.1. If a real matrix A is stable and µ2[A] > 0, we have the following
inequality:

‖ exp (At)‖2 � β (20)

for t � 0, where β is defined by (16) in Theorem 3.1.

For any real matrix, we have the following result.

Theorem 3.2. For any real matrix A, the inequality

‖ exp(At)‖2 � β exp(µ(H)[A]t), (21)

holds, where µ(H)[A] and H are given by (9) and (10) in Theorem 2.2, respectively,
and

β =
√

λmax(H)

λmin(H)
.

Proof. The proof of this theorem is similar to Theorem 3.1. So the proof is
omitted. �

Remark 3.1. When A is stable, we have 0 > maxj �λj (A) for j = 1, . . . , n, and
we can set α = 0, the inequality (21) becomes (15). Hence Theorem 3.2 is an exten-
sion of Theorem 3.1.

Remark 3.2. If µ(H)[A] < µ2[A], the inequality (21) is sharper than the following
estimation:

‖ exp (At)‖2 � exp (µ2[A]t) (22)

for t � T , where T is a sufficient large positive constant.

Remark 3.3. Since the bounds of the matrix exponential in [8] are concerned with
Jordan normal form of the matrix, a lot of computation is required. If we know the
Jordan normal form of a matrix, the matrix exponential can be obtained directly. It
is useless to estimate the matrix exponential using the bounds in [8]. While only
symmetric matrices are involved to obtain the bounds in Theorems 3.1 and 3.2.

4. Numerical examples

We will illustrate our results through two numerical examples and all computa-
tions are carried out by Matlab in the section.
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Example 4.1. Let

A =

−0.8 0.4 0.2

1 −3 2
0 1 −1


 .

The matrix is stable. We can estimate the bounds of its exponential by Theorem 3.1.
We have µ1[A] = 1.2, µ2[A] = 0.0359, µ∞[A] = 0 and the maximum real part of
eigenvalues of A is −0.0566. After solving Lyapunov equation (8), we obtain

H =

5.0333 3.0266 6.9401

3.0266 2.5477 5.4324
6.9401 5.3424 13.2528


 .

Thence, µ(H)[A] = −0.0514 and β = 8.1966. According to Theorem 3.1, we have
‖ exp(At)‖2 � 8.1966 exp(−0.0514t) for t � 0. By µ1[A], µ2[A] or µ∞[A] we can
not obtain a bound which tends to 0 as t → +∞ since the three usual logarithmic
norms are nonnegative.

Example 4.2

A =

 5 6 3

−2 7 4
13 9 −1


 .

The maximum real part of eigenvalues of A is d = 12.6498. The matrix is unstable.
We can compute the bounds of its exponential by Theorem 3.2. We have µ1[A] =
22, µ2[A] = 14.7033, µ∞[A] = 21. From Theorems 2.2 and 3.2, both µH [A] and
β depend on α. The bounds of the matrix exponential also depend on α. Let α =
d + 0.01, A − αI is stable. From (10), we obtain

H =

20.7036 54.3665 20.4860

54.3665 143.8269 54.0920
20.4860 54.0920 20.4122


 .

Thence, µ(H)[A] = 12.6544 and β = 60.3543. We have ‖ exp(At)‖2 � 60.3544
exp(12.6544t) for t � 0.

Let α = µ2[A] = 14.7033, A − αI is stable. After solving Lyapunov equation
(10), we obtain

H =

0.2097 0.2198 0.1134

0.2198 0.5364 0.2015
0.1134 0.2015 0.1367


 .

Thence, µ(H)[A] = 13.3445 and β = 4.0098. We have ‖ exp(At)‖2 �
4.0098 exp(13.3445t) for t � 0.
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Let α = 30, A − αI is stable. We have by Lyapunov equation (10),

H =

0.0449 0.0085 0.0107

0.0085 0.0501 0.0112
0.0107 0.0112 0.0347


 .

Thence, µ(H)[A] = 14.4682 and β = 1.5590. We have ‖ exp(At)‖2 �
1.5590 exp(14.4682t) for t � 0. Since 12.6544, 13.3445 and 14.4682 are less than
µ2[A] = 14.7033, the three bounds are sharper than ‖ exp(At)‖2 � exp(14.7033t)

for t � T , where T is a sufficient large positive constant.

Remark 4.1. The above numerical examples show that the bounds derived by
µ(H)[A] are sharper than those by µ2[A] for t � T , where T is a sufficient large
positive constant.
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