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ABSTRACT

The concept of k-EP matrix is introduced. Relations between k-EP and EP
matrices are discussed. Necessary and sufficient conditions are determined for a
matrix to be k-EP,.  © 1998 Elsevier Science Inc.

1. INTRODUCTION

Let C, ., be the space of n X n complex matrices of order n. Let C, be
the space of complex n-tuples. For AeC,,,, let AT, A*, A", R(A), N(A),
and (A) denote the transpose, conjugate transpose, Moore-Penrose inverse,
range space, null space, and rank of A respectively. We denote a solution X
of the equation AXA = A by A™. Throughout let k be a fixed product of
disjoint transpositions in S, = {1,2,...,n}, and K be the associated permu-
tation matrix. A matrix A = (a;;)eC,, is k-hermitian if a;; = @, ;) for
i,j =1 to n. A theory for k-hermitian matrices is developed in [31 In this
paper, we introduce the concept of k-EP matrices as a generalization of
k-hermitian and EP matrices and extend many of the basic results on
k-hermitian [3] and EP matrices [1, 4, 6, 7). A matrix AeC,,, is EP if
N(A) = N(A*). Relations between k-EP and EP matrices are discussed.

LINEAR ALGEBRA AND ITS APPLICATIONS 269:219-232 (1998)

© 1998 Elsevier Science Inc. All rights reserved. 0024-3795 /98 /$19.00
655 Avenue of the Americas, New York, NY 10010 PII S0024-3795(97)00066-9


https://core.ac.uk/display/82757202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

220 A. R. MEENAKSHI AND S. KRISHNAMOORTHY

2. k-EP Matrices

In this section we present equivalent characterizations of a k-EP matrix.
Necessary and sufficient conditions are determined for a matrix to be k-EP,
(k-EP and of rank r). As an application, it is shown that the class of all k-EP
matrices having the same range space forms a group under multiplication.
For x = (x},x,,...,%,)€C,, let us define the function £(x) = (x;,
Xi@y - - -» Xk(n)) €C,- Since k is involutory, it can be verified that the associ-
ated permutation matrix K satisfy the following properties:

K=K"=K' and #(x) = Kx, (P.1)
(KA)' = A'K and (AK)" = KAT for AeC,,,
(by [2, p. 182]) (P.2)
DEFINITION 2.1. A matrix AeC,,,, is said to be k-EP if it satisfies the

condition Ax = 0 < A*£(x) = 0 or equivalently N(A) = N(A*K). More-
over, A is said to be k-EP, if A is k-EP and of rank r.

In particular, when k(i) =i for each i, j = 1 to n, then the associated
permutation matrix K reduces to the identity matrix and Definition 2.1
reduces to N(A) = N(A*), which implies that A is an EP matrix [7]. If A is
nonsingular, then A is k-EP for all transpositions k in S,,.

REMARK 2.2. We note that a k-hermitian matrix A is k-EP. For, if A is
k-hermitian, then by [3, Result 2.1], A = KA*K. Hence N(A) = N(KA*K)

= N(A*K), which implies A is k-EP. However, the converse need not be
true.

EXAMPLE 2.3. Let
111
A_[l O].

For a transposition k = (12), the associated permutation matrix
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Then

0 1

*K =
KA*K []1

|+a

Therefore, A is not k-hermitian. Since A is a nonsingular matrix, A is a
k-EP matrix. Thus, the set of k-EP matrices contains the set of k-hermitian
matrices.

THEOREM 2.4. For AeC, ., the following are equivalent:

(1) Ais k-EP.

(2) KA is EP.

(3) AK s EP.

(4) A" is k-EP.

(5) N(A) = N(A'K).

(6) N(A*) = N(AK).

(7) R(A) = R(KA™).

(8) R(A*) = R(KA).

(9) KATA = AA'K.
(10) ATAK = KAA'.
(11) A = KA*KH for a nonsingular n X n matrix H.
(12) A = HKA*K for a nonsingular n X n matrix H.
(13) A* = HKAK for a nonsingular n X n matrix H.
(14) A* = KAKH for a nonsingular n X n matrix H.
(15) C, = R(A) & N(AK).
(16) C, = R(KA) ® N(A).

Proof. The proof for the equivalence of (1), (2), and (3) runs as follows:

Ais k-EP < N(A) = N(A*K) (by Definition 2.1)
< N(KA) = N(KA)* [by (P.1)]
< KAis EP (by definition of EP matrix)
< K(KA)K*is EP (by [1, Lemma 3]
& AK is EP [by (P.1)].

Thus (1) < (2) < (3) hold.
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(2) = (9:

KAisEP « (KA isEP  (by[2 p.163]D
< A'K is EP [by (P.2)]
< A'is k-EP [by equivalence of (1) and (3)
applied to AT].

Thus equivalence of (2) and (4) is proved.
(1) = 5):

Ais k-EP < N(A)=N(A*K) (by Definition 2.1)
o N(A) = N(KA)*  [by (P.1)]
= N(A) =N(AK) [by(P2)].

Thus equivalence of (1) and (5) is proved.
Now we shall prove the equivalence of (1), (6), and (7) using p(A) =
p(A*) = p(A*K) = p(AK) in the following way:

Ais -EP < N(A)=N(A*K)
= N(A)CN(A*K)
e A*K=A*KA™A (by [2, p- 21])
< A*=A*KA AK [by (P.1)]
= A*=A*K'ATAK
e A*=A*(AK) AK [by(P.2)]
e N(AK)CN(A*)  (by[2,p-21])
= N(A*)=N(AK)
= R(A)=R(AK)*
< R(A)=R(KA)* [by (P.1)].

Thus (1) < (6) < (7) hold.
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(1) <= (8):
Aisk-EP < N(A) = N(A*K)

o N(A) = N(KA)*
e R(A*) = R(KA).

Thus equivalence of (1) and (8) is proved.
3) = (9):

AK is EP < (AK)(AK)'=(AK)'(AK)  (by[2, p. 166])
< (AK) (KA")=(KA") (AK)  [by (P.2)]
< AA"= KA'AK [by (P.1)]
= AA'K=KA'A.

Thus equivalence of (3) and (9) is proved.
(9) = (10): Since, by the property (P.1), K* = I, this equivalence follows
by pre- and postmultiplying KA'A = AA'K by K.
(2) « (11):
KAisEP « (KA)*=(KA)H,
for a nonsingular n X n matrix H, (by [2, p. 166]
e A*K=KAH,
< KA*K= AH,

< A= KA*KH,

where H = H{' is a nonsingular n X n matrix. Thus equivalence of (2) and
(11) is proved.
(3) = (12):

AKisEP & (AK)* = H,(AK)
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for a nonsingular n X n matrix H, (by [2, p. 166])

o KA*=H,AK

o KA*K=H,A

< A=H;'KA*K

< A= HKA*K,
where H = H[! is a nonsingular n X n matrix. Thus equivalence of (3) and

(12) is proved.
The equivalences (11) < (13) and (12) « (14) follow immediately by

taking conjugate transpose and using K = K*.
(13) « (16):

A* = HKAK for a nonsingular n X n matrix H
o A*A=H(KA) (KA)
= A*A=H(KA)?
= p(A*A)=p(H(KA)")
= p(A*A)=p((KA)®).

Over the complex field, A*A and A have the same rank. Therefore,

p((KA)*) = p(A*A) = p(A) = p(KA) = R(KA) N N(KA)={0}
e R(KA) N N(A) = {0}
o C,=R(KA) ® N(4).

Thus (13) « (16) holds.

(14) < (15): This can be proved along the same lines and using p( AA*)
= p(A). Hence the proof is omitted.

@16) = (1): If C, = R(KA) ® N(A), then R(KA) N N(A) = {0}. For
x € N(A), x & R(KA) & x € R(KA)!t = N(KA)* = N(A*K). Hence
N(A) € N(A*K) and p(A) = p(A*K) = N(A) = N(A*K) = A is k-EP.
Thus (1) holds. Similarly, we can prove (15) = (1). [ ]
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REMARK 2.5. In particular, when A is k-hermitian, Theorem 2.4 re-
duces to [3, Result 2.1]. We note that, without requiring A to be normal
(refer to [3, Result 2.8]), A is k-hermitian < A = KA*K < A" = (KA*K)'
= K(AN)*K < A" is k-hermitian.

When k(i) = i for each i, j = 1 to n, then Theorem 2.4 reduces to [1,
Theorem 1], [6, Theorem 1], and [4, Theorem 1].

It is well known that a complex normal matrix is EP. However, a normal
matrix need not be k-EP [refer to Example 2.6(iii)].

ExXaMPLE 2.6. For k = (1 2),

i A= } } is EP as well as k-EP.

) A= (1) 8W is k-EP but not EP.

[1 o] is hermitian, normal, and EP, but not k-EP and
(iif) ~ 1o ol hence not k-hermitian.

This motivates the following result:

THEOREM 2.7. Let A€ C
imply the other one:

(1) Ais EP.
(2) A is k-EP.
(3) R(A) = R(KA).

Then any two of the following conditions

nXn*

Proof. First we prove that whenever (1) holds, then (2) and (3) are
equivalent. Suppose (1) holds; then by [1, Theorem 1], A EP implies
R(A) = R(A*). Now by Theorem 24, A is k-EP < R(A*) = R(KA).
Therefore, A is k-EP < R(A) = R(KA). This completes the proof of [(1)
and (2)] = (3) and [(1) and (3)] = (2).

Now let us prove [(2) and (3)] = (1): Since A is k-EP, by Theorem
2.4, KA is EP. Hence, R(KA) = R(KA)*. By using (3), we have R(A) =
R(KA) = R(KA)* = R(A*K) = R(A*). Again by [1, Theorem 1], A is EP.
Thus (1) holds. ]
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CoRrOLLARY 28. If A € C,,, is normal and AA* is k-EP, then A is

k-EP.

n

Proof. Since A is normal, [A is EP and AA* is k-EP] < R(AA*) =
R(KAA*) = R(A) = R(KA). That A is k-EP then follows from Theo-
rem 2.7. u

COROLLARY 2.9. Let E = E* = E? € C,,., be a hermitian idempotent
that commutes with K, the permutation matrix associated with a fixed
product of disjoint transpositions k is S,. Then H(E) = {A: A is k-EP and
R(A) = R(E)} forms a maximal subgroup of C, ., containing E as identity.

Proof. Since EK = KE, by (P.1) and (P.2) we have E = KEK and
EE' = E? = E = (KEXEK) = (KEXKE)"; hence R(E) = R(KE). Since E
is hermitian it is automatically EP, and by Theorem 2.7, E is k-EP. Thus
E € Hk(E). For A € Hk(E), [Ais k-EP and R(A) = R(E) = R(KE) =
[AA" = EE' = E and AA' = E = (KEXKE)' = KEE'K' = KAA'K' =
(KAXKA)']. Therefore R(A) = R(KA). Hence by Theorem 2.7, A is EP.
Thus H,(E) = H(E) = {A: A is EP and R(A) = R(E)}. By [5, Theorem
2.1], H(E) forms a maximal subgroup of C, ., containing E as identity. B

REMARK 2.10. For 0 # E # I, by [5, Corollary 2.3), H,(E) is a non-
abelian group if and only if n > 2.

For A € C,,,, there exist unique k-hermitian matrices P and Q such
that A = P +iQ, where P = (A + KA*K) and Q = (1/2iX(A — KA*K)
(refer to [3, Result 2.11]).

In the following theorem, an equivalent condition for a matrix A to be
k-EP is obtained in terms of P, the k-hermitian part of A.

THEOREM 2.11. For A€ C,,,, Ais k-EP < N(A) C N(P), where P
is the k-hermitian part of A.

Proof. If A is k-EP, then by Theorem 2.4, KA is EP. Since K is
nonsingular, we have N(A) = N(KA) = N(KA)* = N(A*K) = N(KA*K).
Then for x € N(A), both Ax = 0 and KA*Kx = 0, which implies that Px =
(A + KA*K)x = 0. Thus, N(A) € N(P). Conversely, let N(A) € N(P);
then Ax = 0 implies Px = 0 and hence Qx = 0. Therefore, N(A) € N(Q).
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Thus, N(A) € N(P) N N(Q). Since both P and Q are k-hermitian, by [3,
Result 2.1], P = KP*K and Q = KQ*K. Hence N(P) = N(KP*K) =
N(P*K) and N(Q) = N(KQ*K) = N(Q*K). Now N(A) € N(P) N N(Q)
= N(P*K) N N(Q*K) € N(P* — iQ*)K. Therefore, N(A) € N(A*K) and
p(A) = p(A*K). Hence, N(A) = N(A*K). Therefore, A is k-EP. Hence
the theorem. n

Toward characterizing a matrix being k-EP,, we first prove two lemmas.

LEMMA 2.12. Let

_|ID 0
B‘{o 0]’

where D is an r X r nonsingular matrix. Then the following are equivalent:

(1) B is k-EP..
(2) R(KB) = R(B).
(3) BB* is k-EP..
K, 0
0 K,
order r and n — r respectively.

(5) k = k,k,, where k, is the product of disjoint transpositions on
S, ={1,2,...,n} leaving (r + 1,r + 2,..., n) fixed, and k, is the product
of disjoint transpositions leaving (1,2,..., 1) fixed.

4 K= , where K, and K, are permutation matrices of

Proof. Since B is EP,, the equivalence of (1) and (2) follows from
Theorem 2.7.

(2) < (3) follows from Theorem 2.4.

(2) < (4): Let us partition

E

K= KIT K,
K; K,
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where K, is r X r. Then
R(KB) = R(B) <« (KB)(KB)' = BB!

KBB'K = BB'
KBB' = BB'K

@KLO:I,O]K
0 0 0 0

KIO_K1K3
KI o 0 0

K, 0
0 K,

¢

¢

Thus, equivalence of (2) and (4) holds. The equivalence of (4) and (5) is clear
from the definition of k. [ ]

REMARK 2.13. In Lemma 2.12, the condition that D is nonsingular
cannot be relaxed, as illustrated by the following example:

[t g

is not EP. For

LEMMA 2.14. A matrix A € C,,, if k-EP, if and only if there exist a
unitary matrix U and an r X r nonsingular matrix F such that

_ F 0],4
A—KU[O O]U.
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Proof. Let us assume that A is k-EP,. Then by Theorem 2.4, C, =
R(KA) ® N(A). Choose an orthonormal basis {x,, x,,..., x,} of R(KA) =
R(A*), and extend it to a basis {x,, xg,.-., X,, X, 1,..., x,} of C, where
{x,,1,..., x,} is an orthonormal basis of N(A).

If (u, v) denotes the usual inner product on C, and 1 <i <r <j <n it
follows that x, € R(KA) = R(A*) = x; A*y. Therefore, (x,, x,) = (A*y, x,)
= (y, ij) = 0 [since x; € N(A)]. Hence, {x,, x5, ..., x,} is an orthonormal
basis of C,. If we consider KA as the matrix of a linear transformation
relative to any orthonormal basis of C,, then

* _|F O
U*KAU = [0 0],

where F is r X r nonsingular matrix, whence

— F 0]y«
A KU[O O]U'

Conversely, if

F 0

A=KU[O 0

]U* U*KAU=[F 0].

0 0

But N(KA) = N(KA)*, which implies KA is EP,, and by Theorem 2.4, A is
k-EP.. [ |

THEOREM 2.15. Let A € C, . Then A is k-EP, with k = k k, (where
k, and k, are as in Lemma 2.12) if and only if A is unitarily k-similar to a
diagonal block k-EP, matrix
_|D 0
2= |5 o]

where D is an r X r nonsingular matrix.

Proof. Since A is k-EP, by Lemma 2.14, there exist a unitary matrix U
and a r X r nonsingular matrix F such that

A=(1<U1<)K[‘07 g]U*.
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Since k = k,k,, the associated permutation matrix is

K, 0
10 K|
Hence,
a=kuk|KF O e =KUK[D Oly*,  where D =K,F.
0 0 0 0

Thus, A is unitarily k-similar to a diagonal block matrix
_|D 0
5[5 3]
where D is r X r nonsingular. Now, that B is k-EP, follows from Lem-

ma 2.12.
Conversely, if

[z

with D r X r nonsingular is k-EP,, then again by using Lemma 2.12,

K, 0

k=kik, and K=\ 0

Since A is unitarily k-similar to
_|D 0
=[5 o]
there exists a unitary matrix U such that

J Y
A——KUK[O O]U.

Since B is k-EP, by Theorem 2.4,

D 0

KB=K[O 0

] = U*KAU
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is EP.. By [1, Lemma 2], KA is EP.. Now, that A is k-EP follows from
Theorem 2.4 and p(A) = r. Hence A is k-EP,. The proof is complete. B

The following [4, Theorem 1] can be deduced from Theorem 2.15 as a
particular case for k(i) = i for each i, j = 1 to n.

COROLLARY 2.16.  Let A € C,,. Then A is an EP, matrix if and only if
there are a unitary matrix U and a nonsingular r X r matrix D such that

—uylP Oy~
A=u[? oo

To conclude, we note that the k-spectral property [3, p. 21] holds for
k-EP matrices.

THEOREM 2.17.  If A is k-EP, then (A, x) is a (k-eigenvalue, k-eigenvec-
tor) pair for A if and only if (1/A, £(x)) is a (k-eigenvalue, k-eigenvector)
pair for AT.

Proof.

(A, x) is a (k-eigenvalue, k-eigenvector) pair for A

&  Ax=AKx (by [3, p.22])
o  KAx=Ax [by (P. l)]
1
o (KA)Tx=Xx (by [2. p. 161])
1
© ATKx=Xx [by (P.2)]

1
< ATZ(x)=XK(/{(x))

1
< (X LA ( x)) is a (k-eigenvalue, k-eigenvector) pair for A™. ®

The authors wish to thank the referee for valuable suggestions.
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