A. R. Meenakshi and S. Krishnamoorthy
Department of Mathematics
Annamalai University
26, North Second Cross
Mariyappa Nagar
Annamalai Nagar-608 002, Tamil Nadu, South India

Submitted by Richard A. Brualdí

Abstract

The concept of k-EP matrix is introduced. Relations between k-EP and EP matrices are discussed. Necessary and sufficient conditions are determined for a matrix to be $k-\mathrm{EP}_{r}$. © 1998 Elsevier Science Inc.

1. INTRODUCTION

Let $C_{n \times n}$ be the space of $n \times n$ complex matrices of order n. Let C_{n} be the space of complex n-tuples. For $A \varepsilon C_{n \times n}$, let $A^{T}, A^{*}, A^{\dagger}, R(A), N(A)$, and (A) denote the transpose, conjugate transpose, Moore-Penrose inverse, range space, null space, and rank of A respectively. We denote a solution X of the equation $A X A=A$ by A^{-}. Throughout let k be a fixed product of disjoint transpositions in $S_{n}=\{1,2, \ldots, n\}$, and K be the associated permutation matrix. A matrix $A=\left(a_{i j}\right) \varepsilon C_{n \times n}$ is k-hermitian if $a_{i j}=\bar{a}_{k(j), k(i)}$ for $i, j=1$ to n. A theory for k-hermitian matrices is developed in [3]. In this paper, we introduce the concept of k-EP matrices as a generalization of k-hermitian and EP matrices and extend many of the basic results on k-hermitian [3] and EP matrices [1, 4, 6, 7]. A matrix $A \varepsilon C_{n \times n}$ is EP if $N(A)=N\left(A^{*}\right)$. Relations between $k-E P$ and EP matrices are discussed.
2. k-EP Matrices

In this section we present equivalent characterizations of a k-EP matrix. Necessary and sufficient conditions are determined for a matrix to be $k-\mathrm{EP}_{r}$ (k-EP and of rank r). As an application, it is shown that the class of all k-EP matrices having the same range space forms a group under multiplication. For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \varepsilon C_{n}$, let us define the function $\ell(x)=\left(x_{k(1)}\right.$, $\left.x_{k(2)}, \ldots, x_{k(n)}\right)^{T} \varepsilon C_{n}$. Since k is involutory, it can be verified that the associated permutation matrix K satisfy the following properties:

$$
\begin{align*}
K= & K^{T}=K^{-1} \quad \text { and } \quad R(x)=K x \tag{P.1}\\
(K A)^{\dagger}= & A^{\dagger} K \text { and }(A K)^{\dagger}=K A^{\dagger} \text { for } A \varepsilon C_{n \times n} \\
& (\text { by }[2, \mathrm{p} .182]) \tag{P.2}
\end{align*}
$$

Definition 2.1. A matrix $A \varepsilon C_{n \times n}$ is said to be k-EP if it satisfies the condition $A x=0 \Leftrightarrow A^{*} \notin(x)=0$ or equivalently $N(A)=N\left(A^{*} K\right)$. Moreover, A is said to be k-EP $_{r}$ if A is k-EP and of rank r.

In particular, when $k(i)=i$ for each $i, j=1$ to n, then the associated permutation matrix K reduces to the identity matrix and Definition 2.1 reduces to $N(A)=N\left(A^{*}\right)$, which implies that A is an EP matrix [7]. If A is nonsingular, then A is k-EP for all transpositions k in S_{n}.

Remark 2.2. We note that a k-hermitian matrix A is k-EP. For, if A is k-hermitian, then by [3, Result 2.1], $A=K A^{*} K$. Hence $N(A)=N\left(K A^{*} K\right)$ $=N\left(A^{*} K\right)$, which implies A is k-EP. However, the converse need not be true.

Example 2.3. Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] .
$$

For a transposition $k=$ (12), the associated permutation matrix

$$
K=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Then

$$
K A^{*} K-\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]+A
$$

Therefore, A is not k-hermitian. Since A is a nonsingular matrix, A is a k-EP matrix. Thus, the set of k-EP matrices contains the set of k-hermitian matrices.

Theorem 2.4. For $A \varepsilon C_{n \times n}$ the following are equivalent:
(1) A is $k-E P$.
(2) $K A$ is EP.
(3) AK is EP.
(4) A^{\dagger} is k-EP.
(5) $N(A)=N\left(A^{\dagger} K\right)$.
(6) $N\left(A^{*}\right)=N(A K)$.
(7) $R(A)=R\left(K A^{*}\right)$.
(8) $R\left(A^{*}\right)=R(K A)$.
(9) $K A^{\dagger} A=A A^{\dagger} K$.
(10) $A^{\dagger} A K=K A A^{\dagger}$.
(11) $A=K A^{*} K H$ for a nonsingular $n \times n$ matrix H.
(12) $A=H K A^{*} K$ for a nonsingular $n \times n$ matrix H.
(13) $A^{*}=H K A K$ for a nonsingular $n \times n$ matrix H.
(14) $A^{*}=K A K H$ for a nonsingular $n \times n$ matrix H.
(15) $C_{n}=R(A) \oplus N(A K)$.
(16) $C_{n}=R(K A) \oplus N(A)$.

Proof. The proof for the equivalence of (1), (2), and (3) runs as follows:

$$
\begin{aligned}
A \text { is } k-\mathrm{EP} & \Leftrightarrow N(A)=N\left(A^{*} K\right) & & \text { (by Definition 2.1) } \\
& \Leftrightarrow N(K A)=N(K A)^{*} & & \text { [by (P.1)] } \\
& \Leftrightarrow K A \text { is EP } & & \text { (by definition of EP matrix) } \\
& \Leftrightarrow K(K A) K^{*} \text { is EP } & & \text { (by [1, Lemma 3]) } \\
& \Leftrightarrow A K \text { is EP } & & {[\text { by (P.1)]. }}
\end{aligned}
$$

Thus (1) \Leftrightarrow (2) \Leftrightarrow (3) hold.
(2) $\Leftrightarrow(4)$:

$$
\begin{aligned}
K A \text { is EP } & \Leftrightarrow(K A)^{\dagger} \text { is EP } & & (\text { by }[2, \text { p. 163]) } \\
& \Leftrightarrow A^{\dagger} K \text { is EP } & & {[\text { by (P.2)] }} \\
& \Leftrightarrow A^{\dagger} \text { is } k \text {-EP } & & {[\text { [by equivalence of }(1) \text { and (3) }} \\
& & & \text { applied to } \left.A^{\dagger}\right] .
\end{aligned}
$$

Thus equivalence of (2) and (4) is proved.
(1) \Leftrightarrow (5):

$$
\begin{aligned}
A \text { is } k \text {-EP } & \Leftrightarrow N(A)=N\left(A^{*} K\right) & & \text { (by Definition 2.1) } \\
& \Leftrightarrow N(A)=N(K A)^{*} & & {[\text { by (P.1)] }} \\
& \Leftrightarrow N(A)=N\left(A^{\dagger} K\right) & & {[\text { by (P.2) }] }
\end{aligned}
$$

Thus equivalence of (1) and (5) is proved.
Now we shall prove the equivalence of (1), (6), and (7) using $\rho(A)=$ $\rho\left(A^{*}\right)=\rho\left(A^{*} K\right)=\rho(A K)$ in the following way:

$$
\begin{array}{rlrl}
A \text { is } k \text {-EP } & \Leftrightarrow N(A)=N\left(A^{*} K\right) & \\
& \Leftrightarrow N(A) \subseteq N\left(A^{*} K\right) & \\
& \Leftrightarrow A^{*} K=A^{*} K A^{-} A & & (\text { by [2, p. } 21]) \\
& \Leftrightarrow A^{*}=A^{*} K A^{-} A K & & {[\text { by (P.1)] }} \\
& \Leftrightarrow A^{*}=A^{*} K^{-1} A^{-} A K & \\
& \Leftrightarrow A^{*}=A^{*}(A K)^{-} A K & {[\text { by (P.2)] }} \\
& \Leftrightarrow N(A K) \subseteq N\left(A^{*}\right) & (b y[2, \mathrm{p} .21]) \\
& \Leftrightarrow N\left(A^{*}\right)=N(A K) & \\
& \Leftrightarrow R(A)=R(A K)^{*} & \\
& \Leftrightarrow R(A)=R(K A)^{*} & {[b y(\mathrm{P} .1)] .}
\end{array}
$$

Thus (1) $\Leftrightarrow(6) \Leftrightarrow(7)$ hold.
$(1) \Leftrightarrow(8):$

$$
\begin{aligned}
A \text { is } k \text {-EP } & \Leftrightarrow \quad N(A)=N\left(A^{*} K\right) \\
& \Leftrightarrow \quad N(A)=N(K A)^{*} \\
& \Leftrightarrow \quad R\left(A^{*}\right)=R(K A) .
\end{aligned}
$$

Thus equivalence of (1) and (8) is proved.
(3) $\Leftrightarrow(9)$:

$$
\begin{array}{rlr}
A K \text { is EP } & \Leftrightarrow(A K)(A K)^{\dagger}=(A K)^{\dagger}(A K) & (\text { by }[2, \mathrm{p} .166]) \\
& \Leftrightarrow(A K)\left(K A^{\dagger}\right)=\left(K A^{\dagger}\right)(A K) & {[\text { by }(\mathrm{P} .2)]} \\
& \Leftrightarrow A A^{\dagger}=K A^{\dagger} A K & {[\text { by }(\mathrm{P} .1)]} \\
& \Leftrightarrow A A^{\dagger} K=K A^{\dagger} A
\end{array}
$$

Thus equivalence of (3) and (9) is proved.
$(9) \Leftrightarrow(10)$: Since, by the property (P.1), $K^{2}=I$, this equivalence follows by pre- and postmultiplying $K A^{\dagger} A=A A^{\dagger} K$ by K.
(2) \Leftrightarrow (11):

$$
K A \text { is } \mathrm{EP} \quad \Leftrightarrow \quad(K A)^{*}=(K A) H_{1}
$$

for a nonsingular $n \times n$ matrix H_{1} (by [2, p. 166])

$$
\begin{aligned}
& \Leftrightarrow \quad A^{*} K=K A H_{1} \\
& \Leftrightarrow \quad K A^{*} K=A H_{1} \\
& \Leftrightarrow \quad A=K A^{*} K H,
\end{aligned}
$$

where $H=H_{1}^{-1}$ is a nonsingular $n \times n$ matrix. Thus equivalence of (2) and (11) is proved.
(3) \Leftrightarrow (12):

$$
A K \text { is EP } \quad \Leftrightarrow \quad(A K)^{*}=H_{1}(A K)
$$

for a nonsingular $n \times n$ matrix H_{1} (by [2, p. 166])

$$
\begin{aligned}
& \Leftrightarrow \quad K A^{*}=H_{1} A K \\
& \Leftrightarrow \quad K A^{*} K=H_{1} A \\
& \Leftrightarrow \quad A=H_{1}^{-1} K A^{*} K \\
& \Leftrightarrow \quad A=H K A^{*} K
\end{aligned}
$$

where $H=H_{1}^{-1}$ is a nonsingular $n \times n$ matrix. Thus equivalence of (3) and (12) is proved.

The equivalences (11) \Leftrightarrow (13) and (12) \Leftrightarrow (14) follow immediately by taking conjugate transpose and using $K=K^{*}$.
(13) $\Leftrightarrow(16):$

$$
\begin{aligned}
A^{*} & =H K A K \text { for a nonsingular } n \times n \text { matrix } H \\
& \Leftrightarrow \quad A^{*} A=H(K A)(K A) \\
& \Leftrightarrow \quad A^{*} A=H(K A)^{2} \\
& \Leftrightarrow \quad \rho\left(A^{*} A\right)=\rho\left(H(K A)^{2}\right) \\
& \Leftrightarrow \quad \rho\left(A^{*} A\right)=\rho\left((K A)^{2}\right) .
\end{aligned}
$$

Over the complex field, $A^{*} A$ and A have the same rank. Therefore,

$$
\begin{aligned}
\rho\left((K A)^{2}\right)=\rho\left(A^{*} A\right)=\rho(A)=\rho(K A) & \Leftrightarrow R(K A) \cap N(K A)=\{0\} \\
& \Leftrightarrow R(K A) \cap N(A)=\{0\} \\
& \Leftrightarrow C_{n}=R(K A) \oplus N(A)
\end{aligned}
$$

Thus (13) \Leftrightarrow (16) holds.
$(14) \Leftrightarrow(15)$: This can be proved along the same lines and using $\rho\left(A A^{*}\right)$ $=\rho(A)$. Hence the proof is omitted.
(16) \Rightarrow (1): If $C_{n}=R(K A) \oplus N(A)$, then $R(K A) \cap N(A)=\{0\}$. For $x \in N(A), \quad x \notin R(K A) \Leftrightarrow x \in R(K A)^{\perp}=N(K A)^{*}=N\left(A^{*} K\right)$. Hence $N(A) \subseteq N\left(A^{*} K\right)$ and $\rho(A)=\rho\left(A^{*} K\right) \Rightarrow N(A)=N\left(A^{*} K\right) \Rightarrow A$ is k-EP. Thus (1) holds. Similarly, we can prove (15) $\Rightarrow(1)$.

Remark 2.5. In particular, when A is k-hermitian, Theorem 2.4 reduces to [3, Result 2.1]. We note that, without requiring A to be normal (refer to [3, Result 2.8]), A is k-hermitian $\Leftrightarrow A=K A^{*} K \Leftrightarrow A^{\dagger}=\left(K A^{*} K\right)^{\dagger}$ $=K\left(A^{\dagger}\right)^{*} K \Leftrightarrow A^{\dagger}$ is k-hermitian.

When $k(i)=i$ for each $i, j=1$ to n, then Theorem 2.4 reduces to [1 , Theorem 1], [6, Theorem 1], and [4, Theorem 1].

It is well known that a complex normal matrix is EP. However, a normal matrix need not be k-EP [refer to Example 2.6(iii)].

Example 2.6. For $k=(12)$,
(i) $\quad A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is EP as well as k-EP.
(ii) $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ is k-EP but not EP.
(iii) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is hermitian, normal, and EP, but not k-EP and

This motivates the following result:

Theorem 2.7. Let $A \in C_{n \times n}$. Then any two of the following conditions imply the other one:
(1) A is $E P$.
(2) A is $k-E P$.
(3) $R(A)=R(K A)$.

Proof. First we prove that whenever (1) holds, then (2) and (3) are equivalent. Suppose (1) holds; then by [1, Theorem 1], A EP implies $R(A)=R\left(A^{*}\right)$. Now by Theorem $2.4, A$ is k-EP $\Leftrightarrow R\left(A^{*}\right)=R(K A)$. Therefore, A is k-EP $\Leftrightarrow R(A)=R(K A)$. This completes the proof of [(1) and (2)] \Rightarrow (3) and $[(1)$ and (3)] \Rightarrow (2).

Now let us prove [(2) and (3)] $\Rightarrow(1)$: Since A is $k-E P$, by Theorem 2.4, $K A$ is EP. Hence, $R(K A)=R(K A)^{*}$. By using (3), we have $R(A)=$ $R(K A)=R(K A)^{*}=R\left(A^{*} K\right)=R\left(A^{*}\right)$. Again by [l, Theorem 1], A is EP. Thus (1) holds.

Corollary 2.8. If $A \in C_{n \times n}$ is normal and $A A^{*}$ is $k-E P$, then A is $k-E P$.

Proof. Since A is normal, [A is EP and $A A^{*}$ is $\left.k-E P\right] \Leftrightarrow R\left(A A^{*}\right)=$ $R\left(K A A^{*}\right) \Rightarrow R(A)=R(K A)$. That A is k-EP then follows from Theorem 2.7.

Corollary 2.9. Let $E=E^{*}=E^{2} \in C_{n \times n}$ be a hermitian idempotent that commutes with K, the permutation matrix associated with a fixed product of disjoint transpositions k is S_{n}. Then $H_{k}(E)=\{A: A$ is $k-E P$ and $R(A)=R(E)\}$ forms a maximal subgroup of $C_{n \times n}$ containing E as identity.

Proof. Since $E K=K E$, by (P.1) and (P.2) we have $E=K E K$ and $E E^{\dagger}=E^{2}=E=(K E)(E K)=(K E)(K E)^{\dagger}$; hence $R(E)=R(K E)$. Since E is hermitian it is automatically $E P$, and by Theorem $2.7, E$ is k-EP. Thus $E \in H_{k}(E)$. For $A \in H_{k}(E)$, [A is k-EP and $R(A)-R(E)=R(K E) \Rightarrow$ $\left[A A^{\dagger}=E E^{\dagger}=E \quad\right.$ and $A A^{\dagger}=E=(K E)(K E)^{\dagger}=K E E^{\dagger} K^{\dagger}=K A A^{\dagger} K^{\dagger}=$ $\left.(K A)(K A)^{\dagger}\right]$. Therefore $R(A)=R(K A)$. Hence by Theorem 2.7, A is EP. Thus $H_{k}(E)=H(E)=\{A: A$ is EP and $R(A)=R(E)$. By [5, Theorem 2.1], $H_{k}(E)$ forms a maximal subgroup of $C_{n \times n}$ containing E as identity.

Remark 2.10. For $0 \neq E \neq I_{n}$, by [5, Corollary 2.3], $H_{k}(E)$ is a nonabelian group if and only if $n>2$.

For $A \in C_{n \times n}$, there exist unique k-hermitian matrices P and Q such that $A=P+i Q$, where $P=\frac{1}{2}\left(A+K A^{*} K\right)$ and $Q=(1 / 2 i)\left(A-K A^{*} K\right)$ (refer to [3, Result 2.11]).

In the following theorem, an equivalent condition for a matrix A to be k-EP is obtained in terms of P, the k-hermitian part of A.

Theorem 2.11. For $A \in C_{n \times n}, A$ is $k-E P \Leftrightarrow N(A) \subset N(P)$, where P is the k-hermitian part of A.

Proof. If A is k-EP, then by Theorem 2.4, $K A$ is EP. Since K is nonsingular, we have $N(A)=N(K A)=N(K A)^{*}=N\left(A^{*} K\right)=N\left(K A^{*} K\right)$. Then for $x \in N(A)$, both $A x=0$ and $K A^{*} K x=0$, which implies that $P x=\frac{1}{2}$ $\left(A+K A^{*} K\right) x=0$. Thus, $N(A) \subseteq N(P)$. Conversely, let $N(A) \subseteq N(P)$; then $A x=0$ implies $P x=0$ and hence $Q x=0$. Therefore, $N(A) \subseteq N(Q)$.

Thus, $N(A) \subseteq N(P) \cap N(Q)$. Since both P and Q are k-hermitian, by [3, Result 2.1], $P=K P^{*} K$ and $Q=K Q^{*} K$. Hence $N(P)=N\left(K P^{*} K\right)=$ $N\left(P^{*} K\right)$ and $N(Q)=N\left(K Q^{*} K\right)=N\left(Q^{*} K\right)$. Now $N(A) \subseteq N(P) \cap N(Q)$ $=N\left(P^{*} K\right) \cap N\left(Q^{*} K\right) \subseteq N\left(P^{*}-i Q^{*}\right) K$. Therefore, $N(A) \subseteq N\left(A^{*} K\right)$ and $\rho(A)=\rho\left(A^{*} K\right)$. Hence, $N(A)=N\left(A^{*} K\right)$. Therefore, A is k-EP. Hence the theorem.

Toward characterizing a matrix being $k-\mathrm{EP}_{r}$, we first prove two lemmas.

Lemma 2.12. Let

$$
B=\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right],
$$

where D is an $r \times r$ nonsingular matrix. Then the following are equivalent:
(1) B is $k-E P_{r}$.
(2) $R(K B)=R(B)$.
(3) $B B^{*}$ is $k-E P_{r}$.
(4) $K=\left[\begin{array}{cc}K_{1} & 0 \\ 0 & K_{2}\end{array}\right]$, where K_{1} and K_{2} are permutation matrices of order r and $n-r$ respectively.
(5) $k=k_{1} k_{2}$, where k_{1} is the product of disjoint transpositions on $S_{n}=\{1,2, \ldots, n\}$ leaving $(r+1, r+2, \ldots, n)$ fixed, and k_{2} is the product of disjoint transpositions leaving $(1,2, \ldots, r)$ fixed.

Proof. Since B is EP_{r}, the equivalence of (1) and (2) follows from Theorem 2.7.
(2) \Leftrightarrow (3) follows from Theorem 2.4.
$(2) \Leftrightarrow(4)$: Let us partition

$$
\boldsymbol{K}=\left[\begin{array}{ll}
\boldsymbol{K}_{1} & \boldsymbol{K}_{3} \\
\boldsymbol{K}_{3}^{T} & \boldsymbol{K}_{2}
\end{array}\right]
$$

where K_{1} is $r \times r$. Then

$$
\begin{aligned}
R(K B)=R(B) & \Leftrightarrow(K B)(K B)^{\dagger}=B B^{\dagger} \\
& \Leftrightarrow K B B^{\dagger} K=B B^{\dagger} \\
& \Leftrightarrow K B B^{\dagger}=B B^{\dagger} K \\
& \Leftrightarrow K\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] K \\
& \Leftrightarrow\left[\begin{array}{cc}
K_{1} & 0 \\
K_{3}^{T} & 0
\end{array}\right]=\left[\begin{array}{cc}
K_{1} & K_{3} \\
0 & 0
\end{array}\right] \\
& \Leftrightarrow\left[\begin{array}{cc}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right]=K
\end{aligned}
$$

Thus, equivalence of (2) and (4) holds. The equivalence of (4) and (5) is clear from the definition of k.

Remark 2.13. In Lemma 2.12, the condition that D is nonsingular cannot be relaxed, as illustrated by the following example:

$$
B=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

is not EP. For

$$
K=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad K B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

is EP. Hence B is $k-\mathrm{EP}_{1}$. But

$$
K \neq\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Lemma 2.14. A matrix $A \in C_{n \times n}$ if $k-E P_{r}$ if and only if there exist a unitary matrix U and an $r \times r$ nonsingular matrix F such that

$$
A=K U\left[\begin{array}{ll}
F & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

Proof. Let us assume that A is $k-\mathrm{EP}_{r}$. Then by Theorem 2.4, $\mathrm{C}_{n}=$ $R(K A) \oplus N(A)$. Choose an orthonormal basis $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of $R(K A)=$ $R\left(A^{*}\right)$, and extend it to a basis $\left\{x_{1}, x_{2}, \ldots, x_{r}, x_{r+1}, \ldots, x_{n}\right\}$ of C_{n} where $\left\{x_{r+1}, \ldots, x_{n}\right\}$ is an orthonormal basis of $N(A)$.

If (u, v) denotes the usual inner product on C_{n} and $1 \leq i \leq r<j \leq n$ it follows that $x_{i} \in R(K A)=R\left(A^{*}\right) \Rightarrow x_{i} A^{*} y$. Therefore, $\left(x_{i}, x_{j}\right)=\left(A^{*} y, x_{j}\right)$ $=\left(y, A x_{j}\right)=0$ [since $\left.x_{j} \in N(A)\right]$. Hence, $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is an orthonormal basis of C_{n}. If we consider $K A$ as the matrix of a linear transformation relative to any orthonormal basis of C_{n}, then

$$
U^{*} K A U=\left[\begin{array}{ll}
F & 0 \\
0 & 0
\end{array}\right],
$$

where F is $r \times r$ nonsingular matrix, whence

$$
A=K U\left[\begin{array}{ll}
F & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

Conversely, if

$$
A=K U\left[\begin{array}{cc}
F & 0 \\
0 & 0
\end{array}\right] U^{*}, \quad U^{*} K A U=\left[\begin{array}{cc}
F & 0 \\
0 & 0
\end{array}\right] .
$$

But $N(K A)=N(K A)^{*}$, which implies $K A$ is EP_{r}, and by Theorem 2.4, A is $k-\mathrm{EP}_{r}$.

Theorem 2.15. Let $A \in C_{n \times n}$. Then A is $k-E P_{r}$ with $k=k_{1} k_{2}$ (where k_{1} and k_{2} are as in Lemma 2.12) if and only if A is unitarily k-similar to a diagonal block $k-E P_{r}$ matrix

$$
B=\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right]
$$

where D is an $r \times r$ nonsingular matrix.

Proof. Since A is $k-\mathrm{EP}_{r}$ by Lemma 2.14, there exist a unitary matrix U and a $r \times r$ nonsingular matrix F such that

$$
A=(K U K) K\left[\begin{array}{ll}
F & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

Since $k=k_{1} k_{2}$, the associated permutation matrix is

$$
K=\left[\begin{array}{cc}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right]
$$

Hence,

$$
A=K U K\left[\begin{array}{cc}
K_{1} F & 0 \\
0 & 0
\end{array}\right] \quad U^{*}=K U K\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right] U^{*}, \quad \text { where } \quad D=K_{1} F
$$

Thus, A is unitarily k-similar to a diagonal block matrix

$$
B=\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right]
$$

where D is $r \times r$ nonsingular. Now, that B is $k-\mathrm{EP}_{r}$ follows from Lemma 2. 12.

Conversely, if

$$
B=\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right]
$$

with $D r \times r$ nonsingular is $k-\mathrm{EP}_{r}$, then again by using Lemma 2.12,

$$
k=k_{1} k_{2} \quad \text { and } \quad K=\left[\begin{array}{cc}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right]
$$

Since A is unitarily k-similar to

$$
B=\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right]
$$

there exists a unitary matrix U such that

$$
A=K U K\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

Since B is $k-\mathrm{EP}_{r}$ by Theorem 2.4,

$$
K B=K\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right]=U^{*} K A U
$$

is EP_{r}. By [1, Lemma 2], $K A$ is EP_{r}. Now, that A is k - EP follows from Theorem 2.4 and $\rho(A)=r$. Hence A is $k-\mathrm{EP}_{r}$. The proof is complete.

The following [4, Theorem 1] can be deduced from Theorem 2.15 as a particular case for $k(i)=i$ for each $i, j=1$ to n.

Corollary 2.16. Let $A \in C_{n \times n}$. Then A is an $E P_{r}$ matrix if and only if there are a unitary matrix U and a nonsingular $r \times r$ matrix D such that

$$
A=U\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right] U^{*} .
$$

To conclude, we note that the k-spectral property [3, p. 21] holds for k-EP matrices.

Theorem 2.17. If A is k - $E P$, then (λ, x) is a (k-eigenvalue, k-eigenvector) pair for A if and only if $(1 / \lambda, \boldsymbol{k}(x))$ is a (k-eigenvalue, k-eigenvector) pair for A^{\dagger}.

Proof.

(λ, x) is a (k-eigenvalue, k-eigenvector) pair for A

$$
\begin{array}{lll}
\Leftrightarrow & A x=\lambda K x & (b y[3, p .22]) \\
\Leftrightarrow & K A x=\lambda x & {[b y(P .1)]} \\
\Leftrightarrow & (K A)^{\dagger} x=\frac{1}{\lambda} x & (b y[2, p .161]) \\
\Leftrightarrow & A^{\dagger} K x=\frac{1}{\lambda} x & {[b y(P .2)]} \\
\Leftrightarrow & A^{\dagger} \not Z(x)=\frac{1}{\lambda} K(\not B(x)) & \\
\Leftrightarrow & \left(\frac{1}{\lambda}, \not Z(x)\right) \text { is a }(k \text {-eigenvalue, } k \text {-eigenvector }) \text { pair for } A^{\dagger} .
\end{array}
$$

The authors wish to thank the referee for valuable suggestions.

REFERENCES

1 T. S. Baskett and I. J. Katz, Theorems on products of EP_{r} matrices. Linear Algebra Appl. 2:87-103 (1969).
2 A. Ben Israel and T. N. E. Greville, Generalized Inverses, Theory and Applications, Wiley, New York, 1974.
3 R. D. Hill and S. R. Waters, On k-real and k-Hermitian matrices. Linear Algebra Appl. 169:17-29 (1992).
4 I. J. Katz and M. H. Pearl, On EP ${ }_{r}$ and normal EP_{r} matrices. J. Res. Nat. Bur. Standards 70:47-77 (1966).
5 A. R. Meenakshi, On EP_{r} matrices with entries from an arbitrary field. Linear and Multilinear Algebra 9:159-164 (1980).
6 M. H. Pearl, On normal and EP_{r} matrices, Michigan Math. J. 6:1 5 (1959).
7 H. Schwerdtfeger, Introduction to Linear Algebra and the Theory of Matrices, Nordhoff, Groningen, 1962.

Received 8 April 1996; revised 12 December 1996; accepted 29 January 1997

