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Although gender differences in the renal handling of calcium

have been reported, the overall contribution of androgens to

these differences remains uncertain. We determined here

whether testosterone affects active renal calcium

reabsorption by regulating calcium transport proteins. Male

mice had higher urinary calcium excretion than female mice

and their renal calcium transporters were expressed at a

lower level. We also found that orchidectomized mice

excreted less calcium in their urine than sham-operated

control mice and that the hypocalciuria was normalized after

testosterone replacement. Androgen deficiency increased the

abundance of the renal mRNA and protein of both the

luminal transient receptor potential vanilloid-subtype 5

(TRPV5) and intracellular calbindin-D28K transporters, which

in turn were suppressed by testosterone treatment. There

were no significant differences in serum estrogen,

parathyroid hormone, or 1,25-dihydroxyvitamin D3 levels

between control and orchidectomized mice with or without

testosterone. Moreover, incubation of primary rabbit

connecting tubule and cortical collecting duct cells with a

nonaromatizable androgen, dihydrotestosterone, reduced

transcellular calcium transport. Thus, our study shows that

gender differences in renal calcium handling are, in part,

mediated by the inhibitory actions of androgens on TRPV5-

mediated active renal calcium transport.
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Several studies have reported sex differences in the urinary
Ca2þ excretion, showing a greater urinary Ca2þ loss in male
mice than in female mice.1,2 In addition, estrogens have been
shown to increase the renal reabsorption of Ca2þ , which is in
good agreement with the observed gender differences.3

Presently, it remains unclear whether androgens have an
opposing role to estrogens in modulating renal Ca2þ

reabsorption. The androgen receptor (AR) is expressed in
renal epithelial cells,4 and a growing body of evidence points
to sex differences in various functional characteristics of
mammalian kidneys; for example, a higher glomerular
filtration rate in the male rat kidney (possibly due to higher
renal plasma flow and lower vascular resistance) (reviewed
in5). However, the role of androgens in regulating renal Ca2þ

handling remains poorly characterized.
In the kidney, Ca2þ reenters the blood by passive

paracellular as well as active transcellular reabsorption. The
active Ca2þ reabsorptive component is restricted to the distal
convoluted tubules and the connecting tubules (CNTs).6–9

Here, Ca2þ enters the epithelial cell through the Ca2þ -
selective ion channel transient receptor potential vanilloid-
subtype 5 (TRPV5). Subsequently, Ca2þ is bound to
calbindin-D28K that transports Ca2þ from the apical to the
basolateral side where the Naþ /Ca2þ -exchanger (NCX1) and
the plasma membrane ATPase (PMCA1b) extrude Ca2þ into
the peritubular lumen.6

Active renal Ca2þ reabsorption is critical in determining
the final urinary Ca2þ excretion, and has been shown to be
regulated by calciotropic hormones, including parathyroid
hormone (PTH) and 1,25-dihydroxyvitamin D3

(1,25(OH)2D3).6,10,11 Estrogen has also been shown to affect
active renal Ca2þ transport, although sex hormones are
usually not considered as calciotropic factors.3,6,12

This study aims to determine whether androgens con-
tribute to the gender differences in renal Ca2þ handling by
regulating the expression of Ca2þ transport proteins TRPV5,
calbindin-D28K, NCX1, and PMCA1b. Because changes in
systemic androgen concentrations also affect bone miner-
alization through a long-term process,13 we evaluated the

http://www.kidney-international.org o r i g i n a l a r t i c l e

& 2010 International Society of Nephrology

Received 19 February 2009; revised 3 November 2009; accepted 10

November 2009; published online 20 January 2010
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short-term effects of androgen deficiency in orchidectomized
(ORX) mice and of testosterone resupplementation
(ORXþT), on the expression of the renal Ca2þ transporters.
In addition, to exclude possible effects of androgens on bone
turnover, we applied nonaromatizable dihydrotestosterone
(DHT) to an isolated cell system of primary renal CNT/
cortical collecting duct (CCD) cells.

RESULTS
Gender differences in urinary Ca2þ excretion

To investigate whether sex differences could be noted in renal
and intestinal Ca2þ handling, we determined 24 h urinary
Ca2þ excretion and intestinal absorption in age-matched
male and female mice. Body weight (26.7±0.8 g in male vs.
25.4±1.8 g in female) and diuresis (1.3±0.5 ml/24 h in male
vs. 1.1±0.3 ml/24 h in female) was not significantly different
between sexes. Male mice showed a significant higher 24 h
urinary Ca2þ excretion (4.1±0.3 vs. 3.3±0.2 mmol per day)
and Ca2þ /creatinine (Cr) ratio (0.23±0.03 vs. 0.18±0.02),
in comparison to females (Figure 1a). Male and female
mice consumed similar amounts of food (3.30±0.02 vs.
3.20±0.03 g, respectively) and hence ingested comparable
amounts of Ca2þ (33.0±0.2 vs. 32.4±0.3 mg, respectively).
In addition, intestinal radioactive Ca2þ tracer uptakes were
performed in male and female mice. Intestinal Ca2þ

absorption was determined by an in vivo absorption assay,
measuring serum levels of radioactive 45Ca2þ at several time
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Figure 1 | Mouse sex differences in urinary Ca2þ excretion.
(a) 24 h urine Ca2þ excretion and Ca2þ /Cr ratio were determined in
both female and male mice. Data are presented as means±s.e.m.
Cr, creatinine. *Po0.05 male vs. female mice. n¼ 8 samples per
group. (b) Intestinal 45Ca2þ absorption into serum of male (~) and
female (’) mice after oral gavage. n¼ 5 animals per group.
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Figure 2 | Mouse sex differences in the expression of renal
Ca2þ transporters. (a) Renal mRNA expression of transient receptor
potential vanilloid-subtype 5 (TRPV5) and calbindin-D28K were
determined by real-time quantitative RT-PCR analysis, expressed as the
ratio of hypoxanthine-guanine phosphoribosyl transferase (HPRT) and
depicted as percentage of female mice. (b) Similarly, mRNA expression
of plasma membrane ATPase (PMCA1b) and Naþ /Ca2þ -exchanger
(NCX1) were determined in kidney RNA isolates from male and female
mice. mRNA expression was corrected for endogenous HPRT.
(c) Immunoblots of protein samples (10mg each) from homogenates
of kidney tissues were labeled with antibodies against calbindin-D28K

or b-actin. (d) Expression of calbindin-D28K protein was quantified by
computer-assisted densitometry analysis and presented as the ratio to
b-actin expression levels, in relative percentages compared with
female mice. Data are presented as means±s.e.m. *Po0.05 male vs.
female mice. n¼ 6 samples per group.
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points after oral gavage. The intestinal absorption of Ca2þ

was similar in both males and females (Figure 1b).

Sex differences in renal expression of Ca2þ transporters

The increased urinary Ca2þ excretion and Ca2þ /Cr ratio in
male mice was paralleled by a significant decline in the renal
mRNA expression of TRPV5, calbindin-D28K, NCX1, and
PCMA1b (Figure 2a, b). For calbindin-D28K abundance, this
was confirmed by immunoblotting (Figure 2c). Densito-
metrical analysis of the immunoblots showed significantly
less calbindin-D28K protein expression in male mice than in
female mice (Figure 2d). Similarly, computerized analysis of
immunohistochemical images revealed a significant decrease
in TRPV5 and calbindin-D28K abundance in male mice as
compared to female mice (Figure 3).

Localization of the AR in mouse kidney

Binding of the steroid hormone to the AR may regulate the
expression of renal Ca2þ transporters. To investigate whether
the AR is localized in TRPV5-expressing cells, we performed

immunohistochemical labeling of TRPV5 and the AR using
mouse kidney sections. As depicted in Figure 4, TRPV5 and
the AR are coexpressed in distal convoluted tubule/CNT cells.

Effects of ORX and testosterone treatment on serum and
urine parameters

To specifically address the effects of androgens on renal Ca2þ

handling, we measured urinary Ca2þ excretion in sham-
operated, ORX mice, and in ORXþT. Importantly, the
body weight of mice between sham-operated, ORX, and
ORXþT groups was not different (27.1±0.7, 26.1±0.9, and
26.9±0.9 g, respectively). ORX significantly decreased
urinary excretion of Ca2þ (4.4±0.3 (sham-operated) vs.
2.3±0.2 (ORX) mmol per day) and the Ca2þ /Cr ratio
(0.28±0.05 (sham-operated) vs. 0.16±0.03 (ORX)) (Fig-
ure 5). A change in renal transport was apparent, as the
fractional Ca2þ excretion was significantly reduced (0.94±
0.12 (sham-operated) vs. 0.49±0.04 (ORX)%). Testosterone
supplementation of ORX mice restored renal Ca2þ excretion
(4.3±0.3 mmol per day) and the Ca2þ /Cr ratio (0.25±0.03)
to values comparable with the sham-operated mice. Table 1
summarizes the effects of ORX and testosterone replacement
therapy on systemic Ca2þ handling, calciotropic hormones,
and sex hormones. Serum testosterone levels were effectively
reduced in untreated ORX mice, whereas supplementation
with Sustanon 250 resulted in significantly higher serum
testosterone levels. Importantly, serum PTH, 1,25(OH)2D3,
and estrogen levels were not significantly different in ORX
mice as compared to sham-operated and ORXþT mice.
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Figure 3 | Gender differences in protein expression of Ca2þ

transporters in mouse kidney. (a) Representative images of
immunohistochemical staining of transient receptor potential
vanilloid-subtype 5 (TRPV5) and calbindin-D28K in male and female
kidney cortex. (b) Semiquantification of renal TRPV5 and
calbindin-D28K protein abundance was performed by
computerized analysis of immunohistochemical images. Data
were calculated as integrated optical density (arbitrary units)
and depicted as percentage of female mice. Data are presented
as means±s.e.m. *Po0.05 male vs. female mice. n¼ 8 samples
per group.

DICARTRPV5

Figure 4 | Characterization of androgen receptor (AR)
localization in kidney. Confocal laser microscopy of double-
labeled mouse kidney sections using guinea pig anti-transient
receptor potential vanilloid-subtype 5 (TRPV5) (TRPV5, upper left
panel) and rabbit anti-AR antibodies (AR, upper middle panel).
Differential interference contrast (DIC, upper right panel) and
overlay (lower panel) are also presented.
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Effects of ORX and testosterone treatment on the expression
of renal Ca2þ transporters

To address the molecular mechanism responsible for the
effect of testosterone on renal Ca2þ handling, we examined
the expression of TRPV5, calbindin-D28K, PMCA1b, and
NCX1 using real-time quantitative reverse transcriptase (RT)
PCR, immunoblotting, and immunohistochemistry. ORX
mice showed a 3.2-fold increase in TRPV5 and a 2.0-fold
increase in calbindin-D28K mRNA expression as compared to
sham-operated mice (Figure 6a). Conversely, administration
of testosterone to ORX mice (ORXþT) resulted in a
significant decrease of TRPV5 and calbindin-D28K mRNA
expression (Figure 6a, dashed bars). Similarly, NCX1 was
increased in the ORX group, whereas both PMCA1b and
NCX1 were decreased in the ORXþT group (Figure 6b). As
determined by semiquantitative immunoblotting, protein
abundance of calbindin-D28K was increased in ORX mice
compared to sham-operated mice (Figure 6c, d). In
accordance, calbindin-D28K protein abundance in ORXþT
mice was comparable to the sham-operated controls (Figure
6c, d). In line with the above, semiquantification of protein
expression, the immunohistochemical labeling experiments
revealed a significant upregulation of TRPV5 (2.7-fold) and
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Figure 5 | Differences in urinary Ca2þ excretion of sham-
operated, orchidectomized (ORX) and of testosterone
resupplementation (ORXþ T) mice. 24 h urine Ca2þ excretion
and Ca2þ /Cr ratio were determined in sham-operated (Sham),
ORX, and ORXþ T mice. Data are presented as means±s.e.m. Cr,
creatinine. *Po0.05 male vs. female mice. n¼ 8 per group.

Table 1 | Effect of testosterone on serum Ca2+ and calciotropic
hormones

Sham ORX ORX+T

Ca2+ (mmol/l) 2.8±0.1 2.6±0.1 2.5±0.1
Testosterone (ng/dl) 499±129 59±11a 1005±291a,b

Estrogen (pg/ml) 63±16 36±12 50±10
PTH (pg/ml) 23.9±6.5 20.7±5.5 25.4±7.4
1,25(OH)2D3 (pmol/ml) 156±19 130±11 143±17

Abbreviations: 1,25(OH)2D3, 1,25-dihydroxyvitamin D3; PTH, parathyroid hormone.
Serum concentrations of Ca2+ and calciotropic hormones in sham-operated mice
and ORX mice with or without testosterone replacement (Sustanon 250, 250 mg/kg
per week subcutaneously, 2 weeks).
aPo0.05 vs. sham-operated mice. n=8 samples per parameter.
bPo0.05 vs. ORX mice. n=8 samples per parameter.
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Figure 6 | Effects of ORX and testosterone treatment on renal
mRNA expression of Ca2þ transporters. (a) Renal mRNA
expression of transient receptor potential vanilloid-subtype 5
(TRPV5) and calbindin-D28K in sham-operated, ORX, and
ORXþ T mice were analyzed by quantitative real-time RT-PCR
analysis. (b) Expression of plasma membrane ATPase (PMCA1b) and
Naþ /Ca2þ -exchanger (NCX1) in the kidney of sham-operated, ORX,
and ORXþ T mice. In all cases expression was normalized to
hypoxanthine-guanine phosphoribosyl transferase (HPRT) and
depicted as percentage of sham-operated mice. (c) Immunoblots of
protein samples (10mg each) from homogenates of kidney tissue of
sham-operated, ORX, and ORXþ T mice were labeled with
antibodies against calbindin-D28K or b-actin. (d) Expression of
calbindin-D28K protein was quantified by computer-assisted
densitometry analysis and presented as the ratio to
b-actin expression levels, in relative percentages compared with
sham-operated mice. Data are presented as means±s.e.m. Sham,
sham-operated mice; ORX, orchidectomized mice; ORXþ T,
orchidectomized mice treated with Sustanon 250 subcutaneously
(250 mg/kg per week) for 2 weeks. *Po0.05 vs. sham-operated
mice. Po0.05 vs. ORX mice. n¼ 8 samples per group.
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calbindin-D28K (1.5-fold) signal in ORX mice when
compared to sham-operated mice (Figure 7). Furthermore,
treatment of ORX mice with testosterone led to a significant
decline in TRPV5 and calbindin-D28K signals (Figure 7).

Effect of DHT on transcellular Ca2þ transport in rabbit kidney
CNT and CCD primary cell cultures

The effect of androgen on renal Ca2þ handling in the ORX
mice may be facilitated by the possible interference of other
organs (e.g., bone). Therefore, the effect of androgen on
TRPV5-mediated Ca2þ transport was studied in an isolated
renal cell system. Primary cultures of rabbit CNT/CCD cells
were grown to confluence on permeable supports. The cells
were treated with DHT or vehicle, and the rate of
transepithelial Ca2þ transport was determined. Application
of 10 nmol/l DHT to the polarized confluent cell monolayers
for 24 h significantly inhibited the net apical-to-basolateral
transport of Ca2þ (Po0.02) (Figure 8).

DISCUSSION

This study is to our knowledge the first to delineate the effect
of androgens on renal handling of Ca2þ and TRPV5-
mediated active Ca2þ transport. We find that testosterone
contributes significantly to the sex differences observed in
renal Ca2þ handling. This conclusion is based on the
following observations: First, male mice have a greater
urinary Ca2þ excretion compared to females, a feature
accompanied by a reduced renal expression of Ca2þ

transport proteins. Second, androgen-deficient ORX mice
show a significant decline in the urinary excretion of
Ca2þ , which normalizes after testosterone replacement.
Third, similar data were obtained when evaluating the
Ca2þ /Cr ratio, suggesting that the testosterone-induced
increase of urinary Ca2þ excretion is due to inhibition of
tubular Ca2þ reabsorption. Fourth, the mRNA and protein
abundance of renal Ca2þ transporters was upregulated in
ORX mice, whereas the expression of renal Ca2þ transpor-
ters was suppressed by resupplying these mice with
testosterone. Fifth, the serum 1,25(OH)2D3, PTH, and
estrogen levels did not differ between the sham-operated,
ORX, and ORXþT mice, suggesting that androgens may
affect the transcription of the renal Ca2þ transporters.
Finally, inhibition of transcellular Ca2þ transport after DHT
treatment was observed in rabbit kidney CNT/CCD primary
cell cultures.

Fe(male) sex hormones regulating Ca2þ transport

Our observation that male mice have an increased urinary
Ca2þ excretion than females is in agreement with previous
clinical studies evaluating gender differences in humans.1,2
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Figure 7 | Immunohistochemical staining of renal Ca2þ

transporters in sham-operated, ORX, and ORXþ T mice.
(a) Representative images of immunohistochemical staining of
transient receptor potential vanilloid-subtype 5 (TRPV5) and
calbindin-D28K in kidney cortex of sham-operated, ORX, and
ORXþ T mice. (b) Semiquantification of renal TRPV5 and
calbindin-D28K protein abundance was performed by
computerized analysis of immunohistochemical images. Data
were calculated as integrated optical density (arbitrary units),
depicted as percentage of sham-operated mice, and presented as
means±s.e.m. Sham, sham-operated mice; ORX, orchidectomized
mice, ORXþ T, orchidectomized mice treated with Sustanon 250
subcutaneously (250 mg/kg per week) for 2 weeks. *Po0.05 vs.
sham-operated mice. #Po0.05 vs. ORX mice. n¼ 8 samples per
group.
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ORX induce hypocalciuria in male mice, whereas testoster-
one supplementation normalized their urinary Ca2þ excre-
tion. This was accompanied by a decreased expression of
renal Ca2þ transport proteins such as TRPV5, NCX1,
PMCA1b, and calbindin-D28K. Previous studies evaluating
the effect of estrogen on renal Ca2þ handling showed that
the hormone exerts a direct effect on renal Ca2þ reabsorp-
tion by upregulation of these Ca2þ transport proteins.3 Thus,
both testosterone and estrogen have opposing regulatory
properties in terms of renal expression of Ca2þ transporters.
Similar sex differences have been found for the regulation of
the thiazide-sensitive sodium chloride cotransporter (NCC)
expressed in the distal convoluted tubules. Chen et al.14

showed that the density of NCC (quantified by [3H]meto-
lazone binding) was twofold higher in female than in male
rats. Furthermore, ORX resulted in an increase in metolazone
binding sites in males, whereas ovariectomy decreased the
binding density in females.14

Role of calciotropic hormones in androgen regulation?

In this study serum 1,25(OH)2D3 and PTH did not vary
between sham-operated, ORX, and ORXþT mice, suggesting
that upregulation of TRPV5 in ORX mice is not mediated by
these calciotropic hormones. Conversely, androgens have
been previously suggested to affect Ca2þ homeostasis by
altering the regulation of calciotropic hormones. Some
discrepancy has been reported in the literature; in a study
by Nyomba et al.,15 the serum concentration of 1,25(OH)2D3

was shown to decrease after ORX in male rats, whereas
testosterone replacement therapy restored serum
1,25(OH)2D3 to normal levels. In agreement with our data,
a study by Hope et al.16 reported that ORX performed in
male rats could not be associated with any changes in active
1,25(OH)2D3 levels. Possible explanations for these discre-
pancies are currently unclear and may not exclude a
contribution of 1,25(OH)2D3 to overall Ca2þ handling by
androgens.

Here, we showed that the AR is present in TRPV5-
expressing cells, which is in line with earlier results showing
the presence of the AR in the distal part of the nephron.17 It is
presently unclear whether the activated AR is directly or
indirectly involved in decreasing the expression of the
investigated Ca2þ transporters and hence a higher urinary
Ca2þ excretion. We investigated this directly by expressing a
5 kb fragment (�5000 to þ 1) of the mouse TRPV5
promoter coupled to the luciferase gene in androgen-
responsive human prostate adenocarcinoma (LnCAP) cells
(data not shown). However in these cells, we were not able to
observe any effect of DHT on luciferase activity. Currently, it
remains unclear how large the promoter fragment should be
to adequately drive TRPV5 transcription in response to
androgens. In addition, transcriptional regulators that
could be necessary for the androgen-mediated inhibition
may be absent in this cell system. The exact mechanism
whereby testosterone alters TRPV5 expression remains to be
clarified.

Short- vs. long-term effects of androgens on Ca2þ

homeostasis

In this study, we aimed to evaluate the primary effect of
androgens on renal Ca2þ handling. The inhibitory effect of
testosterone on renal Ca2þ reabsorption seems at variance
with the increased Ca2þ excretion found in elderly men with
androgen deficiency, which is thought to be associated with
male osteoporosis during aging.18–20 However, the short-term
renal effects of androgen deficiency presented here should be
separated from the long-term consequences of andropause in
terms of bone remodeling. This issue was appropriately
addressed in a study of Mauras et al.13 They studied young
men who were made hypogonadal for different time periods
by injection of a gonadotropin-releasing hormone agonist.
The contribution of Ca2þ released from bone to urine losses
was shown to remain unchanged for 4 weeks, but, thereafter,
significantly increased upon 10 weeks after induction of
hypogonadism. In our experiments, we studied the effects of
androgen deficiency in mice within the time frame of 2 weeks
to avoid the possible interference of Ca2þ released from
bone. We could clearly delineate a change in intrarenal Ca2þ

transport. Furthermore, we substantiated our in vivo results
by experiments in isolated rabbit kidney CNT/CCD primary
cell cultures. These cells express endogenous TRPV5 and
calbindin-D28K, and are a consistent model to investigate
active transepithelial Ca2þ transport ex vivo.11 Here, we
found that incubation with the nonaromatizable androgen
DHT (10 nmol/l, which is in line with a physiological
concentration of testosterone) for 24 h resulted in a marked
inhibition of apical-to-basolateral Ca2þ transport. This
finding further supports the inhibitory role of androgen on
the regulation of renal active Ca2þ reabsorption in vivo.

In conclusion, this study provides evidence that androgens
contribute to sex differences observed in renal Ca2þ handling
by inhibiting the expression of renal Ca2þ transport proteins.
Furthermore, this effect is independent of calciotropic
hormones or estrogen.

MATERIALS AND METHODS
Animal experiments
Experiment A: male (n¼ 15) and female (n ¼ 15) C57BL6 mice,
12 weeks of age, were housed in a light and temperature-controlled
room with ad libitum access to deionized drinking water and standard
chow (0.28% (wt/wt) NaCl, 1.00% (wt/wt) Ca, 0.22% (wt/wt) Mg;
LabDiet, Richmond, IN, USA). After acclimatization, mice were housed
in couples in metabolic cages and 24 h urine was collected. Animals
were killed at the end of the experiment. Blood was colleted and the
kidneys dissected out and processed for further analyses.

Experiment B: male C57BL6 mice (n¼ 36), 12 weeks of age, were
housed and fed as described for experiment A. After acclimatization,
the mice were randomly allocated to either a sham or bilateral
ORX operation under (1.5%) halothane anesthesia and divided
into three groups (n¼ 12 in each group): (1) sham-operated mice
serving as control animals, (2) ORX mice treated with vehicle,
and (3) ORX mice treated with Sustanon 250 (ORXþT) subcuta-
neously (250 mg/kg per week; Sustanon 250 is a long-acting mixture
of testosterone ester21) (Organon Laboratories, Cambridge, UK).
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The operation was performed under halothane anesthesia. After
2 weeks, these mice were housed in couples in metabolic cages
and 24 h urine was collected. Thereafter, animals were killed as in
experiment A. The animal ethics boards of the National Defense
Medical Center (Taipei, Taiwan) approved all animal experimental
procedures.

Urine and serum analyses
Urine and serum concentrations of Cr and Ca2þ were determined
using an automated analyzer (AU 5000 chemistry analyzer;
Olympus, Tokyo, Japan). Serum 1,25(OH)2D3 levels were deter-
mined by an [I125]1,25(OH)2D3 RIA assay (DiaSorin, Stillwater,
MN, USA). Serum PTH concentrations were determined by
IMMULITE PTH assay (Siemens Medical Solutions Diagnostics,
Los Angeles, CA, USA). Both serum testosterone and estrogen
concentrations were measured using chemiluminescence immu-
noassays (Siemens Medical Solutions Diagnostics, Tarrytown, NY,
USA).

Determination of intestinal Ca2þ absorption
Male and female wild-type mice (7–8 weeks of age) breed off a
C57Bl/6 strain were used as previously described.22 Radioactive
45Ca2þ was given by oral gavage, after an overnight fast. Intestinal
absorption was determined by repeatedly measuring serum 45Ca2þ

content as described in detail.22 Briefly, the solution used to measure
Ca2þ absorption contained 0.1 mmol/l CaCl2, 125 mmol/l NaCl,
17 mmol/l Tris, 1.8 g/l fructose, and 20 mCi 45CaCl2 per ml. Blood
samples were obtained at 1, 2, 3, 4, and 7 min after oral gavage.
Serum 45Ca2þ content was determined by liquid scintillation
counting. Changes in serum Ca2þ concentration were calculated
from the 45Ca2þ content of the serum samples and the specific
activity of the administrated 45Ca2þ .

Expression of renal Ca2þ transporters
To determine mRNA expression levels, we extracted total RNA from
kidney using Trizol Total RNA Isolation Reagent (Sigma, St Louis,
MO, USA). The obtained total RNA was subjected to DNase
treatment to prevent genomic DNA contamination. Thereafter,
1.5mg of total RNA was reverse transcribed by Moloney-murine
leukemia virus-reverse transcriptase (Promega, Madison, WI, USA),
as previously described.3 The obtained cDNA was used to determine
TRPV5, calbindin-D28K, NCX1, and PMCA1b mRNA levels in
kidney cortex by real-time quantitative RT-PCR (ABI Prism 7700
Sequence Detection System; PE Biosystems, Rotkreuz, Switzerland).
The expression level of the housekeeping gene hypoxanthine-
guanine phosphoribosyl transferase was used as an internal control
to normalize differences in RNA extractions and reverse transcrip-
tion efficiencies. The primers and fluorescent probes used are as
previously described (MdBio, Taipei, Taiwan).3,23

For protein expression quantification, total kidney lysates of the
mice were prepared and analyzed as previously described.24 Briefly,
proteins in kidney lysates were separated using SDS–polyacrylamide
gel electrophoresis and subsequent electrotransferred to polyvinyli-
dene fluoride membranes (Immobilon-P; Millipore, Bedford, MA,
USA). Blots were incubated with rabbit anti-calbindin-D28K (Sigma)
or rabbit b-actin (Sigma) polyclonal antibodies. Subsequently, the
blots were incubated with a goat anti-rabbit peroxidase-labeled
secondary antibody (Sigma). Immunoreactive protein was detected
by the enhanced chemiluminescence method (Pierce, Rockford, IL,
USA). Protein expression of the immunopositive bands was
quantified by the use of pixel density scanning and computed

calculation using the Molecular Analyst software of Bio-Rad
Laboratories (Hercules, CA, USA).

Immunohistochemical labeling of renal Ca2þ transporters
Kidneys were immersion-fixed in 1% (wt/v) periodate-lysine-
paraformaldehyde for 2 h at room temperature, and incubated
overnight at 4 1C in phosphate-buffered saline containing 15% (wt/v)
sucrose. Subsequently, 7 mm sections were cut from liquid nitrogen
frozen kidney tissue samples for immunohistochemistry as pre-
viously described.25 For detection of TRPV5 protein abundance,
kidney sections were stained with a guinea pig anti-TRPV5
antibody, as described,25 and a mouse anti-calbindin-D28K antibody
(Sigma). TRPV5 and calbindin-D28K were visualized by staining
those sections with goat anti-guinea pig and goat anti-mouse Alexa
488-conjugated anti-IgGs (Sigma), respectively. Next, to semiquan-
tify the TRPV5 protein expression, five digital images of each kidney
section were taken with a Zeiss Axioskop microscope (Carl Zeiss,
Thornwood, NY, USA) and the integrated optical density was
measured by computer analysis with the Image-Pro Plus version 3.0
software (Media Cybernetics, Silver Spring, MD, USA).

Double staining using anti-TRPV5 and a rabbit anti-AR
antibody (N-20; Santa Cruz Biotechnology, Santa Cruz, CA, USA)
was performed using the TSATM Plus Fluorescein amplification
system (PerkinElmer, Groningen, the Netherlands) for TRPV5 and a
goat anti-rabbit IgG conjugated to Alexa 594 for visualization
of the AR. Confocal pictures were acquired with an Olympus
FV1000 laser scanning microscope (Center Valley, PA, USA).
Differential interference contrast was superimposed on the fluores-
cence images.

Primary cultures of rabbit CNT/CCD and determination of
transepithelial Ca2þ transport
Rabbit kidney CNT and CCD cells were immunodissected from the
kidney cortex of New Zealand White rabbits (5 weeks of age) using
R2G9 antibodies and set in primary culture on permeable filter
supports (0.33 cm2; Corning-Costar, Cambridge, MA, USA), as
previously described in detail.26 The culture medium was a 1:1
mixture of Dulbecco’s modified Eagle’s medium and Ham’s F12
(Gibco, Paisley, UK) supplemented with 5% (v/v) decomplemented
fetal calf serum, 10 mg/ml ciproxin, 10 ml/ml nonessential amino
acids, 5 mg/ml insulin, 5 mg/ml transferrin, 50 nmol/l hydrocortisone,
70 ng/ml prostaglandin E1, 50 nmol/l Na2SeO3, 5 pmol/l triiodothyr-
onine, and 5 mmol/l indomethacin. Before incubation with DHT, the
transepithelial resistance (R) was measured to assure the integrity of
the cells. In all filters used, the R was greater than 400 O� cm2.

Five days after seeding, cells were incubated for 24 h with
10 nmol/l (5a,17b)-17-hydroxy-androstan-3-one (dihydrotestoster-
one (DHT); Sigma), or vehicle (ethanol absolute), at the apical and
basolateral compartments. Transport assays were performed on
confluent monolayers the following day as previously described.26,27

Briefly, confluent monolayers were washed twice and preincubated
in physiological salt solution (140 mmol/l NaCl, 2 mmol/l KCl,
1 mmol/l K2HPO4, 1 mmol/l MgCl2, 1 mmol/l CaCl2, 5 mmol/l
glucose, 5 mmol/l L-alanine, 5 mmol/l indometacin, and 10 mmol/l
HEPES-Tris (pH 7.4)) for 15 min at 37 1C. The cell monolayers were
subsequently incubated in physiological salt solution for another
90 min to measure transepithelial Ca2þ transport. During the
transport assay 10 nmol/l of DHT was added to both the apical and
basolateral compartments. At the end of the experimental period,
the apical medium was removed and assayed for total Ca2þ

concentrations, using a colorimetric assay kit (Roche, Mannheim,
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Germany). Under these experimental conditions, net apical-to-
basolateral Ca2þ transport is linear for at least 3 h. Transepithelial
Ca2þ transport was determined as nmol/h/cm2.

Statistical analyses
Values are expressed as means±s.e.m. Statistical significance
(Po0.05) between groups was determined by an unpaired Student’s
t-test (for comparisons between two individual groups) or by one-
way analysis of variance (for multiple comparisons). All analyses
were performed using the StatView Statistical Package Software
(Power PC, version 4.51; Berkeley, CA, USA).
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