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We give a method for enumerating sequences over a finite alphabet with respect to certain
maximal configurations. The required generating functions are obtained as solutions of systems
of linear equations. The method utilizes a combinatorial decomposition of sequences into
maximal sub-configurations.

1. Introduction

A large class of enumeration problems concerns the enumeration of sequences
over an alphabet W, ={1,..., n} subject to conditions specifying the number of

(C1) increasing subsequences of length p,

(C2) non-increasing subsequences of length 4,

(C3) an increasing subsequence of length p, followed immediately by a non-
increasing subsequence of length q,

(C4) maxima,

(C5) rises,

(C6) non-rises.

A rise is an element of the set 7" ={(i,j)e N2|i<j}, and & non-rise is an
element of 7 ={(i,j)eNZ|i=j}. A maximum is an element o; of o=
g, - - - g, € N? such that either o,_, <0, =0,,,, Or 0;_; <0; where i = l. A subsequ-
ence a; -+ a, of o is taken throughout to be a sequence such that o,.,; = «; for
i=1,2,...,s where s+t=<I The enumeration of alternating permutations (per-
mutations o, - - - o, of N, such that c=0,<03;=0,<-- ), considered by André
[2, 3] and later by others, is an example of a problem in this class. André obtained
the number, c,, of such permutations as

[x"] (sec x +tan x)

n!

where [x"]f[x] denotes the coefficierit of x" in the formal power series f(x) in the
indeterminate x.
This class of problems contains an uuderlying bipartition [i ={I,, IL,} of N}
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and the structures to be recognized (increasing subsequences, for example) are
constructed from the blocks of this partition. In the subsequent analysis, theorems
apply to an arbitrary bipartition, although it is convenient to recall the specific
case II'"={=\", ="} for concrete applications and examples. Conditions C1 to
C6, which are stated in terms of I1'", have analogous restatements in terms of the
arbitrary bipartition I1I.

It seems likely that any general methods for enumerating sequences will be of
value more generally in combinatorial enumeration since sequences may be used
as devices for encoding more complex cc:nbinatorial structures. The encoding of
planar maps (Cori and Richard [6]) and self-avoiding walks on infinite square
grids are examples of the use of sequences for such purposes. Contributions to the
area of sequence enumeration have been made by Cartier and Foata [S], Foata
and Schiitzenberger [7], Stanley [15], Gessel [8], Jackson and Goulden [11],
Reilly [14] and others. The m=thods employed in this paper are similar to those
employed in Jackson and Goulden [11].

The class of problems described above seems to be a reasonable area in which
to scarch for evidence for a general theory of sequence erumeration because of
the abundance of published results on specific cases. Where such problems have
been addressed in the past, they have usually been treated by the ‘‘classical
method™, perhaps the most familiar of all enumerative methods. The method
rests, in principle, on the discovery of a convenient decomposition of the set ¢f
sequences to be enumerated. This is then used to develop a recurrence equation
for the required quantity. The classical method employs a variety of inversion
formulac and special results on combinat_rial numbers (Euler numbers, Genocchi
numbers. and Motzkin numbers for example). The disadvantages of such an
approach are well-known and apparent to any one who has used it. In the first
place it is not always an easy matter to find a decomposition, and the special case
analysis which this entails is often prohibitive. In the second place, even when a
recurrence equation has been constructed, it is seldom possible to perceive a
direct route to the solution. It requires considerable dexterity, and the familiarity
which this implies, to recognize the appropriate inversion formula to apply. and to
recall specific properties of combinatorial numbers for manipulative purposes.
Finally, slight variatioas of a given problem often unset the analysis so much that
there is little hope of deriving a solution of the variant from the original.

The purpose of this paper is twofold. First we present a single theorem, based
on a straightforward decomposition of the sequence monoid, which is sufficient
for enumerating sequences subject to the conditions C1-C6. The theorem unifies
many of the existing results. Second, we use a formalism which has thz two
important properties of being algebraicaliy convenient while remaining com-
binatorially motivated. The methods are such that the required generating func-
ilons are constructed directly from the generating functions for subproblems
which are easier to derive. Explicit coefficients may be computed by constructing
recurrence equations. The method may thereiore be regarded, superficially at
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least, as the classical method operated in reverse. We construct the generating
functions by combinatorial means and use recurrence equations for purely compu-
tational purposes: the classical method derivss recurrence equations by com-
binatorial means, and these are then used to obtain the generating functions.

The main counting proposition for sequences is given in Section 2, together
with a means for specializing the results for sequences to permutations. 3equences
with a fixed pattein are considered in Section 3, and the main counting theorem
is given in Section 4. This theorem develops the required generating function as
the solution of a system of simultaneous linear equations. Specialisations of the
main theorem for less refined decompositions are also given in Section 4. The
general method is extended in Section 5 to enumerate sequences over another
alphabet. These new sequences may be represented by rectangular matrices.
called r-arrays. Examples of this extension are given in Section 6. We have
selected examples which already have been treated by binomial posets. We have
not attempted to iist all of its applications of the results presented here. However,
the examples which are given are representative of a broad spectrum of applica-
tions. Other developments of the theory together with examples have been given
by Jackson and Goulden [11, 12].

2. Preliminaries

Leto=0, - o,€N, where N, =N}~ ¢. Then o has lengtl A(o) = L. If & has j
occurrences of j, for j=1,2,..., n then 7(o)=(iy, ..., i,) is the type of o. Since a
permutation has tvpe (i,1,...,1), results for permutations may be deduced
immediately from the corresponding ones for sequences. Let Il ={m, m,} be a
partition of N2 and let o =0,0, "' o€ N¥ be such that (o,0,,,)em,. for
i=1,2,...,1—1.Then o is called a m,-path of (vertex) length I, or equivalently, a
ar,-path of edge length | — 1. m,-paths are defined similarly. A (7, m,)-structure of
type (p, q) is a sequence of length p+q+ 1 consisting of a m-path of edge length p
followed by a m,-path of edge length g. For example, the sequence 123511 is a
(", w")-structure of type (3,2), where 7" is the set of rises in N7 and 7" is
the set of non-rises in N2. A 7,-path, m,-path or a (m,, m,)-structure is termed
maximal if it is not contained properly in another ,-path, m,-path or (m,, m)-
structure, respectively. A ,-path is a (,, m,)-structure of type (p, 0) for some p,
and a m,-path is a (w,, m,)-structure of type (0, q) for some q. Accordingly we
term m-path and m,-paths degenerate (m,, m,)-structures. Any sequence may be
decomposed uniquely into an ordered set (s, S,, .. ., 5,) of (7, m,)-structures in
which only s, and s, are degenerate, and r=2. Of course s, and s, may be empty.

Let x,,..., x, be commutative indeterminates and let X = diag (x,,.... x,) be
ithe diagonal matrix with elements x,,..., x,. Let ®=XJ. where J is the nxn
matrix of all 1's, and e=[§;],., denote the n X n identity matrix. Let a=X$(m,)
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and b= X¥$(m,) where $(m,) is an n X n matrix such that

1 if (i, j)e m,
[f(‘"k)]ij:{ )

0 otherwise

for k =1,2. If C=[c;),., and D=[d,],«, then C® denotes the expression

Il <.

I=ies
1=sj=1

If e=(cy,...,c,)T then[C:c], denotes the s x t matrix formed from C by replac-
ing column k of C with c. If f(x) is a formal power series in x;, ..., X, then [x]
denotes the coefficient of x% - - - x in f(x).

et o=0, -0 €N, and k(a)=(j,-..,Ji-1) Where (0, 0;,,)em for i=
1....,1-1. We call m;w, -- - m, , the partition sequence of o.

Proposition 2.1. Let M, = $(m,) and M, = $(m,), and o € N;. Then

x" if k=«(0),

(XM, Ly XML DXM, o= .
0  otherwise.

Proof. Straightforward. [J

Proposition 2.2. Let g, where i,j=1, u and v be con:mutative indeterminates.
Then the number of sequences in N% of type i, with an initial maximal ,-path of
edge length p and a terminal maximal m-path of edge length q, and m;; maximal
(m,. m;)-structures of type (i, j) for i,j=1is

[x'g"u’v"1P(x, u, v, g)
where
! A
&(x, u, v, g) = trace (e— ub)™’ 1€~ Y gi,-a'b'} (e—va)'®
Lji=1

and g is the matrix whose (i, j)-element is g ;, i, j=1.
Proof. Let 7, and 7, be non-commutative undeterminates. Then

-1
(1—172)"{1— Y 17‘,175} 1-m)'= Y

i.j=1 se{m,.m}*

where {m,, m,}* is the set of all sequences on the st of symbols 7; and ,.
From Proposition 2.1 we have

Y x™'=trace XM, XM,, - - - XM, XJ
de N,
Aay=1
PICAEN 3
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where k= (k,, ..., k;—,) and J is the matrix of all 1’s.
It follows (see Lemma 3.8), Jackson and Goulden [11]) that

Z x™@ = trace (e-b)"l{e— Z aib"}_l(e—a)—lw-
oceNt hi=1

We may now mark the maximal (7, m,)-structures, ;-paths and ;-paths as
follows. Let u', v’ mark the initial maximal 7;-path of edge length i and terminal
maximal 7;-path of edge length i. Let g; mark the maximal (1, 7,)-structures of
type (i, j). Inserting these into the expression for ¥, .- x*‘”’ we have

-1
trace (e_ub)—l{e__ Z giiaibi} (e_ ua)—1w= Z x-r(o-)uv(cr)vu-(c)gm(o)
Lj=1 ageNn
where v(o) is the edge length of the initial maximal m,-path, w(o) is the edge
length of the terminal maximal r,-path and m(o) =[m;;(o)] where m;;(o) is the
number of maximal (7r,, m,)-structures of type (i, j) in o. The result follows. [

In the next section we obtain an explicit expression for @(x, u, v, g) in terms of
the m,-path enumerators. The following result gives the 7r,-path enumerators in
terms of the incidence matrix $(m;) of m,, and a method for reducing to
permutations. The results are taken from Jackson and Goulden [11], but are
included here for completerness.

Proposition 2.3. The number of w,-paths of type i and vertex length k+1 is
[x 1¥i .1 (71, X) where yo(m,,X)=1 and v, (m,,X)=tracea“w, k=0.

Proof. Put g; =0, i, j=1 and u =0 in Propositicn 2.2, and the result follows. O
For brevity we will denote v, (m,, X) by ¥, (), except in situations where it
becomes important to specify the actual indeterminates.
For the most frequently encountered bipartition, namely TV ={z{", %"}, the
path enumerators have a particularly simple form. This is given in the next

proposition.

Proposition 2.4.

n k
Yy (mxk = [l 1+xx) and Y y(wixk = [Ta-xx)"
i=1 i:1

k=0 k=0
Proof. Immediate. O

The next lemma facilitates the specialisation from sequences to permnutations
for problems involving the special bipartition IT'".
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Lemma 2.5. Let ¢(v,, v,....) be a power series in y,, v,, ... where y, =y (7

‘Then
[x]o(yy, ‘Yz,...)=[§—"]¢(x—'; x )

Procf.

[x1b(yir ¥2r - - ) =[x10(¥1s V2. oo o ¥ 0,0,.. )=, a[x]yi -y

i

where i = (i, is,....i,). But
[x]yy - yo=nt (11 212 pti)”!

where i, +2i,+3i;+- - -+ni, =n. Thus

(lon. 32, )= | 5] ) aZ) (;_j) SN Cat

and the result follows. [

i
n

(1)
1 -

We note that the enumeration of sequences in /¥ when the conditions Cl1,
C2,....C6 of Section 1 are applied may be obtained by setting g;, u, v to the
appropriate values or to the appropriate power series. Accordingly the class of
enumeration problems described in Section 1 may be regarded as those which

eatail the enumeration of sequences with respect to (r,, o1;)-structures.

3. Sequences with a fixed pattern

We consider first the enumeration of sequences in N¥ with a fixed partition

scquence. The result is used in later sections.

Lemma 3.%. Let I1={m,, w,} be an arbitrary bipartition of N'2 and let p,, .

-

I.Letp,+---+p,=s,j=1,2,...,k and s,=3. Then the number of sequences in

MN% with partition sequence

1 -1 - -
w‘;l 77217?‘ 1,-2 “ e 77‘;& 1 ‘wzw';k

1
and type i is
[x']det Q
where Q=[q;}; ., and
Ys-s o =0
4,=41 if j+1=i,

0 otherwise.
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Proof. Let
&=Hip,...,p)=tracea® 'b...a% 'ba* 'w, k=j=1.
From Proposition 2.1 the desired generating function is &,. Now
& =tracea’ '(w—a)a" 'b- - - bat e
= YpHi+1(Pj1s -« s P = Hioapj + Pisrs Prozs - - -5 P)

whence, by iterating this, we have
k . .
£= Yos b1 forj=1,2,...,k
i=j
where

&a=1.

Let §=(&, &, .-, &))", €=(£1,0,..., 0) and Q' =[q}lcx Where g};=(=1)"'q,
1=<i, j=<k. Then £ satisfies the system of linear equations

Qé¢=¢.

Thus by Cramer’s Rule, we have

1=¢ =de"t[Q’:c]k - €
ket det Q det Q'

where ¢, =det Q' =det Q, and the result follows. [J]

We remark that this lemma is equivalent tc
trace (@™ 'b - - - b 'ba"'w) =y, _, ||

where s,=0, py+---+p;=s; for j=1,2,...,k and v, =0 if i<0.

4. The main thzorem

In this section we consider the evaluaticn of trace (e—ub) 'Q '(e—va) 'w
where Q=-Y,,., g;a'b/, and gy, = —1. By setting g,; =0 for j=1 and g;, =0 for
i>1 we may deduce an expression for ®(x, u, v, g) defined in Proposition 2.2.

Lemma 4.1. Let I1={m, m} be an arbitrary bipartitior of N.. Let Q=
~Y.;=c 8;a'b' and R=(e—va)Q(e—ub) where goo=-1 and {g;|i,j=0} are
commutative indeterminates. Let § =tracebR™'w and &= (&, &, ...)". Then &
satisfies the system of linear equations

Aé¢=c
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where A=[a,] and
(1) a, =trace a’F 'F o+ {(j, k)(=1)y,_,(m) and
1 ifk=sj,
K ={
£ k) 0 otherwise.

2 e¢=(cpcy,...)" and ¢ =trace a'F 'o.

(3) F=F(u v.g) =—(e+uae—va) Y, g(-1ya'*

i,j=0

F.=F(u,v,8)=—(e—va)e+va) ), (-1)""'a"*""g .,
i=0
I=1

+ue—-va) ), g.a, k=0
=0
Moreover. if F,=0 for |=N, then & = (&), &,...,év-y)" satisfies the system of
linear equations
B¢ =d

where B =[a,)n.n ardd=(cp. ¢yy....cn ).

Proof. Now

=—(e— va){ Y goa+ ) g,,a‘b’}+(e-— va)u ), ga'b
¢ #0 i=0 1j=0
i

But b =(-1)a'+Y} ', (-1)*a“wb’ * '. Substituting for b’ in R we have after
routine manipulation

R=F+ ) Fwb*
k =)

Thus for j=0

tracca'F ' =tracea’F 'RR 'w=tracea’F '{F+Y, ., FLwb*}R 'w,

whence ¢, =tracca’R 'w+ E:"” d(j, )¢, where d(j, 1) = trace a'F ' Fw. But

j |
2= ) (-1 * 'wh* +(~1)V.
k=0
Thus tracc 'R '@ =Y}, (=1)*&y, , where vy, =v,_«(m), y,= i. Substituting
this into the expreision for ¢; we have

1 a
¢ =2 (=D, &+ Y d(i.DhE for j=0
k O

1~0
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So § satisfies the system: of linear equations A€ =c.
If F,=0 for |= N, then A takes the form

for some matrices C, D. B is N XN and 0 is a zero matrix. Thus &' satisfies
B¢'=d', which completes the proof. [

The following theorem yields the generating function for the enumeration of
sequences with respect to (7, 7,)-structures as the solution of a system of linear
equations.

Theorem 4.2. (Main theorem: maximal (7, 7,)-structures). Let Il ={m,, 7,} be an
arbitrary bipartition of N2. Then the number of sequences in N, with an initial
maximal ,-path of edge length p, my instances of maximal (m,, 7,)-structures of
type (i, j) for i, j= 1, a terminal maximal m-path of edge length 4, and type i is

[uvix'g™]d(x, u, v, g)
where d(x, u, v, g) = &, and € = (&, &,, .. )" satisfies the system of linear equations
A¢=c
in which
(i) [A], =trace a'F 'Fe+{(j, k)(—=1)*y, (7)) and
1 ifk=j
¢ kr= {() :)flhemfise.

i) e=(cpep,...)" and ¢=traccal’ 'o.

(iii) F=(e+un)(e—-va){e— Y g,,a”’(—l)’}.

YES!

Fy=—(e— va)[ue+(e+ ua) Y, g,k(—l)""a"”‘“'} :

k=1

E=(e~vn){uZ g.a' —(e+un) ) gl,,+k!~l)"“a““"}. >0

i=1 ik=1

Moreover, if F;=0 for =N, then £ =(&,...,&x-1)" satisfies the system of linear
equations

Bt =d
whete B=[a,ln.n and d =(cy, ..., cn1)"

Proof. Set g,,=—1, go=0 for i=1 and g,,; =0 for j=1, and the thecorem
follows from Lemma 4.1 and Proposition 2.2, [J
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As a preliminary example of the use of this theorem we enumerate all
sequences in N,. Accordingly, set u=v=g;=1 for i,j=1. It follows im-
mediately that F=e, F,=—e and F;=9 for |=1. Thus the system of linear
equations is 1x 1 and has the form

o€ = Cy

where  ago=yo+trace F'Fo=1-tracew=1-y, and c,=trace F'o=
trace w = vy,. Thus & =v,(1-v,)"' so the generating function for all sequences in
N¥is 1+&=(1—y) '={1-(x,+- - +x,)}' as required. From Lemma 2.5, the
number of permutations in N, is [x"/n!)(1—x)"' = n!, as required.

Theorem 4.2 may be specialised in a number of ways. For example, by setting
5, = 8h, we may obtain the enumeration of sequences with respect to maximal
7y-paths of length i=1 marked by g and maximai m,-paths of length j=1
marked by h. The next corollary deals with the enumeration of sequences with
respect to maximal 7-paths aijone.

Corollary 4.3 (Maximal ,-paths). Let G(x)=1+g,x+ g,x*>+- - - where g, marks
maximal m,-paths of vertex length i. Then the number of sequences in N with m,
maximal m,-paths of vertex length i for i=1,2,..., and with type i is

g™ T hyim)

U

where G '(x)= Z hx'. g={gy, 8 -..) and i=(i, iy, ...).
i -0
Proof. In Theorem 4.2 set u=g, and g, =g, ,g}'". In addition replace v’ by g, ,

in the power series expansion of &,, given by Theorem 4.1, in v. The result
follows. [J

Corollary 4.3 has been given by Jackson and Aleliunas [10] and a related result
is given by Gessel [8]. Clearly, Theorem 4.2 may be used to derive the generating
function for the enumecration of sequences in N} with respect to rises and
noa-rises given by Carlitz [4]. A more gercral expression is given by Jackson [9].

A more complex example is given by the following coroliary.

Corollary 4.4. The number of permutaiions in N, for the case I1=11'", with no
maximal (. m,)-structures of type (2,2) is [x"/n']n, where (1+x*—x%) "=
Y, wax' and 7w, is shown in Fig. 1.

Proof. In Theorem 4.2 set

0 ifi=2andj=2,
gl;=

1 otherwise
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and u=v=1. Thus, from Theorem 4.2 we have immediately F(a)=(e+a*—a°),
F.(a)=-(e+a' - a*), F,(a)=2%e—a%, F)(a)=—(e—a)a? and F(a)=0 for /=3,
Thus the system is 3x 3. Now

trace o'F 'Fyw=— Z @i{Yisjrr1F Visjea— Yisjrehs
i=0

trace ‘iF-lFlm:—' z ai{75+i+3—Yi+i+5}v
i=0

tracea’F 'Fw=- Z A Yivjr3™ YViejeabs
i=0

tracea’F '0= ), @¥i./s1-
i=0

Let II1 = II'V, The result follows from Lemma 2.5. O

§. r-Arrays

We now extend the main theorem to the erumeration of r-arrays and permuta-
tion r-arrays over N,. Let ¢.=(0y,...,0)€N, for j=1,2,...,1 Then o=
[er,]..1 is called an r-array over N, with columns ¢, c5, ..., ¢. Equivalently we
may regard an r-array as a segience over the alphabet A7, If each row of o is a
permutation on A, then ¢ is called a permutation r-array.

Let W=, --- o, be a fixed word in {m,, m,}* and let A, ={8,, §,} be the
partition induced by W on the set of all ordered pairs of columns of length r as
follows. Let ¢=(0y,...,0,)eN|, and ¢'=(0},...,0)) € N’. Then (¢, c')€ s, iff
(o, ad)em, fori=1,...,r. Otherwise (¢, ¢’)€§,. Accordingly maximal §,-paths,
maximal 8,-paths and maximal (8,, 8,)-structures in r-arrays are defined. We
refer to Ay as the induced partition, where the word W is understood from the
context. An r-array o=(c,,...,¢) has partition sequence (8,,...,8, ) iff
(c.c.t€dy, for i=1,2,...,1-1. The type of o is (my,..., ) Where p, =
(k,y.....k,,) is the type of 6,,0,-- - o, for i=1,2,...,r

For example, let W= {(x{")?. Then

21 3 4 7 8
0=[l 2 58 9 8]
4 4 5 9 il 8

is a 3-array with a maximal §,-path,

1 3 4 7
25 % 9}

4 5 9 11
of edge I ngth 3.
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Our purpose is to enumerate r-arrays with respect to the numbers of §,-paths,
8,-paths, (8,, 8,)-structures, and type. We may specify the type of each row of an
r-array and accordingly results for permutation r-arrays emerge as special cases.
The following lemma extends all of the previous results on sequences to r-arrays.

Lemma 5.1. Let IT ={m,, m,} be an arbitrary bipartition of N? and let Ay, ={8,, 8.}
be the partition induced by W= m,, - - - m, € {m,, mo}*. If the number of sequences in
N5 with an initial maximal m,-path of edge length p, m; maximal (m,, m,)-
structures of type (i, j) for i, j=1, a terminal maximal m,-path of edge length q, and
with type i is

[uPvix'g™d(y(m, X))

where
Y(ﬂlv x) = {‘YO("h X?, Yl(ﬂls x)o .. '}a

then the number of r-arrays cn N, with an initial maximal 8,-path of edge length p,
m;; maximal (8,, 8,)-structures of type (i, j) for i, j=1, a terminal maximal ,-path
of edge length q, and with tvpe (p'V, ..., u"") is

[uPvigmyt™ - - - y2“1b(v(8))

where
Y(8) ={vo(81), ¥1(8,), ¥2(8)) ...} and (8= l-[ ‘Yk(‘n',,,s YY)
i=1
in which

Y. =Yitre-sYw) and YV =diag(yii, ..., Yin)-

Proof. Let a, =Y"$(m,) and «,=Y"J, for i=1,2,...,r, and let S=
2,® Qs 0=0,8 Qw, T=02-8. Now, from Proposition 2.2, with
these new incidence matrices, the required generating function is gi~=n im-
mediately by

-1

trace (e—u'l')”‘{e— Yy S“I"'} (e—vS)™'Q.
ij=1

But this is equal to ¢(y(8,)) where v, (8,) = trace $¢7'Q. Simplifying v,(8,) we

have
v (8,) = trace $* 7 'Q2

=trace (8, ® - ®a,) (0,8 - Bw,)
trace (8} '0,)® - - - D (a; '®,))

r r
[] trace at e, = l_l1 Vi, Y)
i=1 i=

and the proof is complete. [J
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A corresponding lemma for permutation r-arrays involving the bipartition IT‘"
may now be given.

Lemma 5.2. Lei Ay =1{8,,8,} be the partition induced by 1 arbitrary word of

length r in {%\", w2’} If the number of sequences in N with an initial maximal

wy'-path of edge length p. m; maximal (w\", w}")— structures of type (i.j) for

i.j=1, a terminal maximal ©'"-path of edge length q, and with type i is
(u"vig"X b (), X)

where
vy, X) ={y,(m;, X), v,(7;, X), .. .}

then the number of permutation r-arrays on N, with an initial maximal &,-path of
edge length p, m, maximal (8,, 8,)-structures of type (i, j) for i, j=1 and a terminal
maximal 8,-path of edge length q is

[roe i

(n')r
where
YR
‘b—(b(l'(l!)"(Z!)""')
Proof. Lct

o(y(8)= Y alk,.... k)b .-y
k..... k, =0

where (k,, ..., k,) is the type of an r-array. But, from Lemma 7.1, ¢(y(5,) =

{¥0(81), ¥1(8)). ...} where ¥,(8) = v (7", YV) - - - v (74", Y"). But each row of

a permutation r-array is a permutation. Thus, from Lemma 2.4, we replace

Y (7 YY) and by symmetry, vy, (7%, Y?) with z¥/k!, where z,,...,z are

indeterminates. Thus

n n 2 2
Z' Z' ZI o o o Zr z‘ . s 8 Zr

bn*'.._= (19 [ ’ )
,,E_.:., n! n' ¢ (Y 2N

where b, is the number of required permutation r arrays on N,. Let z,=y,
z;=---=z,=1. Then
2

y b z"=¢(1 Y . Y )

Sty ay ey

and th - result follows. [J
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6. Applications
We now give some examples of the theory which has been developed so far.

Corollary 6.1. The number of permutation r-arrays on N, with no 8,-paths of
vertex length p, where {8, 8,} is the partition induced by (w'"), is

[(:')] {";’ (( kx;:' ‘mfffw)y )

Proof. The enumerator for maximal 7;-paths of vertex length less than p is

G(x)=1+x+-+x""'=(1=-xP)(1-x)"",

SO

G-l — i (xkp _xkp+l)-
k=0

Thus, from Corollary 4.3, the number of sequences in A, with no m,-paths of
vertex length p, and having type i is

X NG "oy =[x'] ¥ (Yp— Yips)} '
k=0
where vy ={y(m,), v:(,),...}. The result follows directly from Lemma 5.2. [J

The result of Abramson and Promislow [1] may be obtained by considering
partitions induced by (7{")* and by considering the enumeration of sequences
with respect to rises and non-rises.

The next example concerns permutation r-arrays with a periodic pattern.

Corollary 6.2. Let {5,, 8,} be the partition induced by an arbitrary word of length r
in {m\", W'Y, Let f,,(n) be the number of permutation r-arrays on N, con.isting
only of maximal (8,, 8,)-structures of type (k—1,1), and a terminal maximal

&,-path of edge length | for some |<k 1. Then

(i) ka,en)(—l)“"—“’“—xi—=(i,xi )(';& o )_l’

k=0 (nt) i=1 \f!)r i:l (ki!)r
xn x x,’ ) x xk] .-~|
.. = -1 1 - 1)/k] — -1y .
i L amgr=(Lgrer L am o)

Proof. Let &, be the generating function for the number of sequences on W,
consisting only of maximal (7, 7,)-structures of type (k—1,1) and a terminal
maximal 7r,-path of edge length | for some <k -1, and a specified number of
(,, m,)-structures. Let A be an indeterminate marking (,, m,)-structures of type
(k—1,1). In Theorem 4.2, let g._, , = A, where % is fixed, and let all other g; be
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zerc. Then

F,=—(e—va)Aa“"', F=0 forj=1, F=(e—va)le+Aa").
Then &, satisfies ayy€, = ¢, where

a,,= 1 +trace (e+Aa*) A" 'o

whence

€K

&= (Z "/i(m)(")\)m'”/“)(:0 ‘ij(ﬂ'x)(—)t)i)—l-

Thus from Lemma 5.2 we have

(i _fi_(—A)li—n/kl)(i x! (—)\)i)= Z fkr(n)l\l(n—l)/kj _’i‘_
i=0

4= (7Y (kj)! k=0 nt’

since A marks the number of (§,, 8,)-structures. Setting A to —1 and 1 we obtain
(i) and (ii) respectively. O

Corollary 6.2(i) is a special case of Corollary 3.3 of Stanley [15] while Corollary
6.2(ii) is a special case of Corollary 3.5 of Stanley [15]. Stanley’s results are more
general since they contain an enumeration with respect to inversions as well, and
they also serve as an example of the use of binomial posets.

Corollary 6.3. Let {8,, 8,} be the partition induced by an arbitrary word of leagth r
in {m\"", w5"}*. Then the number of permutation r-arrays on N, with partition

sequence

85 18,80 '8, - - 5,80 18,85
151
S‘ "‘S,-_|

S’=p1+...+p’_ forj=l,2,...,k and S():O-

is

where

Proof. From Lemma 3.1 and Lemma 5.2, the number of each permutation
r-arrays is [x*/(k')" Jn where

o e
T s —s, v

_ /k—-siA,)' (k—s,.)!' x> U
(5;"‘si-1 (k—S,‘_l)!'xs'ﬁlh

_x (k'si—r)'“ I
ke I\s -, since 5, =k

and th2 result follows. O
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For r =1, this is a well-known result of MacMahon [13] and is a special case of
a result of Stanley [15].
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