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H63D HFE is associated with iron dyshomeostasis and oxidative stress; each of which plays an important role in
amyotrophic lateral sclerosis (ALS) pathogenesis. To examine the role of H63DHFE in ALS, we generated a double
transgenicmouse line (SOD1/H67D) carrying theH67DHFE (homologue of humanH63D) and SOD1(G93A)mu-
tations. We found double transgenic mice have shorter survival and accelerated disease progression. We exam-
ined parameters in the lumbar spinal cord of double transgenic mice at 90 days (presymptomatic), 110 days
(symptomatic) and end-stage. Transferrin receptor and L-ferritin expression, both indicators of iron status,
were altered in double transgenic and SOD1 mice starting at 90 days, indicating loss of iron homeostasis in
thesemice. However, double transgenicmice had higher L-ferritin expression than SOD1mice. Double transgenic
mice exhibited increased Iba-1 immunoreactivity and caspase-3 levels, indicating increasedmicroglial activation
whichwould be consistent with the higher L-ferritin levels. Although both SOD1 and double transgenicmice had
increased GFAP expression, themagnitude of the increasewas higher in double transgenicmice at 110 days, sug-
gesting increased gliosis in these mice. Increased hemeoxygenase-1 and decreased nuclear factor E2-related fac-
tor 2 levels in double transgenic mice strongly suggest the accelerated disease process could be associated with
increased oxidative stress. There was no evidence of TAR-DNA-binding protein 43 mislocalization to the cyto-
plasm in double transgenic mice; however, there was evidence suggesting neurofilament disruption, which
has been reported in ALS. Our findings indicate H63D HFEmodifies ALS pathophysiology via pathways involving
oxidative stress, gliosis and disruption of cellular functions.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Amyotrophic lateral sclerosis (ALS), commonly known as Lou
Gehrig's disease, is characterized by degeneration of lower and upper
motor neurons in the brainstem, spinal cord, and the motor cortex.
The worldwide incidence of ALS is 1–2 per 100,000 and the average
age of clinical onset is 55–60 years with an average survival of 3 to
5 years after symptom onset [1,2]. However, the range of survival is
from a few months to more than a decade after onset [3]. Because of
the high variability in age of onset and in survival, ALS is proposed to
be a heterogeneous disease. Themajority of ALS cases (90-95%) are spo-
radic (SALS), whereas 5-10% are inherited (familial ALS, or FALS).
Despite identification of mutations in a number of genes associated
with FALS and SALS [1,2] including superoxide dismutase (SOD; [4]),
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TAR-DNA-binding protein 43 (TDP 43; [5]), fused in sarcoma/translated
in liposarcoma (FUS/TLS; [6]) and chromosome 9 open reading frame
72 (C9ORF72; [7]), the etiology in most patients with ALS remains
inconclusive, and the molecular mechanisms contributing to motor
neuron degeneration in ALS have not been elucidated.

Loss of iron homeostasis and the associated oxidative stress are
significant parts of the disease processes in neurodegenerative diseases
including ALS [8]. Higher iron levels in the central nervous system [9,10]
and elevated serum ferritin have been reported in ALS patients [11–13].
Treatment with iron chelators delayed onset, extended survival and
prevented motor neuron degeneration in ALS mouse models [14,15].
These reports suggest an important role of ironmetabolism in ALS path-
ogenesis. Therefore, we began studies to determine if there were poly-
morphisms associated with iron metabolism that could influence the
ALS phenotype.

One of the genes involved in iron homeostasis is the HFE gene. Two
common HFE polymorphisms are H63D and C282Ywith worldwide
allelic frequencies of 8.1% and 1.9% respectively. The C282Y HFE poly-
morphism is mostly associated with hereditary hemochromatosis
(HH), the most common iron overload genetic disorder in Caucasian
population (1/200). The occurrence of the H63D HFE in HH is lower
than C282Y [16]. However, increasing evidence suggests an association
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of H63D HFE with neurodegenerative diseases including ALS [17]. Five
independent groups in the United States [18], the United Kingdom
[19], Italy [20], theNetherlands [21] and China [22] have reported a pos-
itive association between H63D HFE and ALS. Although three studies
[23–25] reported no association betweenH63DHFE and ALS, in all stud-
ies, there is agreement that H63D HFE is present in as many as 30% of
ALS patients [18–21,23–25]. Moreover, a meta-analysis indicates that
the presence of the H63D HFE variant increases the risk of developing
ALS by 4-fold [26].

The existing paradigm regarding HFE gene variants and brain func-
tion holds that the brain is protected from iron accumulation associated
with the HFE polymorphisms because of the blood-brain-barrier.
Recent MRI studies, however, suggest that people with HFE polymor-
phisms have more brain iron and increased cognitive impairment
with age [27–30]. In an animal model, the presence of H67D HFE
(homologous to H63D in human) disrupts brain iron homeostasis and
is associated with increased oxidative stress in the brain [31] and sig-
nificant disruptions in cholesterol metabolism [32]. The alterations in
iron homeostasis and increased oxidative stress are also seen at the
cellular level [33], along with increased glutamate release [34] and
increased endoplasmic reticulum (ER) stress [35]. Each of above mech-
anisms is considered a contributing factor to ALS pathogenesis [1,36].
Thus, the data strongly argue that H63D HFE is a genetic modifier for
the risk of ALS, andwarrant the development of an animalmodel as pre-
sented herein.

Based on findings from our previous in vitro and in vivo studies, we
hypothesized that H63D HFE increases the risk of ALS by establishing
a permissive milieu that promotes the convergence of disease mecha-
nisms in ALS. To directly test our hypothesis, we generated a double
transgenic mouse line (SOD1/H67D) that carries both H67D HFE
(homologous to H63D in humans) and SOD1(G93A) mutations. We
found that H63D HFE shortens survival and disease duration in double
transgenic mice. Elevated oxidative stress, microglial toxicity and dys-
regulation of iron homeostasis contribute to an accelerated disease in
these mice. Given the data that indicate 1/3 of patients with ALS carry
the H63D gene variant, the double transgenic mouse model could
serve as a critical preclinicalmodel to evaluate how theH63DHFE geno-
type can impact the disease process and treatment strategies for ALS
patients.

2. Materials and methods

2.1. Generation of double transgenic mice (SOD1/H67D)

SOD1(G93A) male mice (strain name: B6SJL-Tg(SOD1-G93A)
1Gur/J; #002726) purchased from Jackson Labs (Bar Harbor, ME)
were crossbred with H67D/H67D (homologue of human H63D) or
wild-type HFE female mice (strain name: B6;129X1-Hfetm1Jrco/J) to
generate a double transgenic mouse line, that carries H67D HFE as
well as SOD1(G93A) mutation. The H67D colony is maintained at
Penn State Hershey Medical Center. Cohorts used for crossbreeding
were chosen from littermates. SOD1(G93A) and wild-type (WT)
mice from the same litters as the double transgenic mice were in-
cluded in all experiments. Both males and females were included in
all experiments.

Animals were maintained under normal housing conditions with ad
libitum access to food and water. All experiments were performed
according to the NIH Guide for the Care and Use of Laboratory Animals
and were approved by the Pennsylvania State University College of
Medicine Institutional Animal Care and Use Committee.

2.2. Genotyping

The H67D HFE genotyping was performed as previously
reported [31]. Briefly, DNA was extracted from tail biopsies using
DNeasy blood and tissue kit (QIAGEN, Valencia, CA). PCR was
performed using following forward and reverse primers: (5′
AGGACTCACTCTCTGGCAGCAGGAGGTAACCA3′) and (5′TTTCTTTT
ACAAAGCTATATCCCCAGGGT3′). Following PCR, DNA was digested
with BspHI restriction enzyme for 2 hours at 37 °C to detect H67D
point mutation. The PCR product was separated by 1.5% agarose
gel electrophoresis. DNA from WT mice digested by BspHI resulted
240 and 260 bp and DNA from wt/H67Dmice resulted 500, 240 and
260 bp. Genotyping for SOD1(G93A) mutation was performed
using primers that specifically amplifying a 236-bp DNA fragment
carrying a G93A mutation. The forward and reverse primers are:
5′CATCAGCCCTAATCCATCTGA-3′ and 5′-CGCGACTAACAATCAAAG
TGA-3′. PCR conditions for SOD1(G93A) genotyping are 95 °C for
3 minutes, 95 °C for 30 s, 60 °C for 30 s, 35 cycles of 72 °C for 45 s
and 72 °C for 2 min.

The SOD1/H67Dmice are heterozygous for H67D HFE and also carry
G93Amutation while SOD1(G93A) mice carry wild-type HFE and G93A
mutation (data not shown).

2.3. Behavior and survival

2.3.1. Rotarod
Starting at 49 days of age, motor performance was tested on a

rotarod apparatus (Columbus Instruments, Columbus, OH) rotating at
15 rpm. The amount of time that the mouse could stay on the rotarod
before the first fall was recorded to determine disease onset. The dura-
tion of the rotarod testwas 180 s, andwas performed twice everyweek.
A mouse was considered to fail the test when it could not stay on the
rotarod for more than one standard error mean (N1 SEM) below the
mean time period it stayed on the rotarod during the presymptomatic
phase. The probability of passing the rotarod test was analyzed by
Kaplan–Meier (n = 19 to 32 per genotype).

2.3.2. Grip strength
Hindlimb and forelimb strength were measured by a grip strength

meter (Columbus Instruments, Columbus, OH) to determine disease
progression. Mice were held by the base of the tail and were allowed
to grasp a horizontal metal bar attached to the grip strength meter
with their forelimbs or hindlimbs. They were gently pulled back hori-
zontally. Mice resist the increasing force by clinging onto the metal
bar until they can no longer resist the force. The force applied to the
bar at themoment themouse released the bar was recorded as its max-
imum force. The test was repeated three times and an average deter-
mined for each animal. The grip test was performed once each week
from 80 days to 127 days of age (n = 5 to 10 per genotype).

2.3.3. Survival and disease duration
End stage of the disease was defined as the inability of the animal to

right itself within 30 s after being placed on its side. Kaplan–Meier
survival analysis was performed to compare survival between experi-
mental groups (n = 22 to 32 per genotype). Disease duration was the
mean time between age of disease onset, determined by rotarod test,
and end stage of the disease (n = 19 to 32 per genotype).

2.4. Measurement of iron

The lumbar region of the spinal cord samples was harvested from
90-day (presymptomatic age) and 110-day-old (symptomatic age)
SOD1 and SOD1/H67D mice. Presymptomatic and symptomatic ages
were chosen based on behavior studies. Lumbar spinal cord samples
from age-matched wild-type (WT) littermates were also harvested.
The tissues were homogenized in RIPA buffer (Sigma, St. Louis, MO)
with protease inhibitor cocktail (1:100; Sigma, St. Louis, MO). Total pro-
tein concentration was determined with Pierce BCA protein assay kit
(Thermo scientific, MA). Iron concentrations (μg Fe/g of protein) were
measured by graphite furnace atomic absorption spectrometry (model
5100AA, Perkin-Elmer, Norwalk, CT) according to standard protocol
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[37]. Iron concentrations were measured in duplicates and averaged for
each animal (n = 7 to 11 per genotype).

2.5. Histology

Ninety-, 110-day-old and end-stage mice were perfused
transcardially with Ringer's solution followed by 4% paraformaldehyde
in 0.1 M phosphate buffer. The spinal column was removed and post-
fixed with 4% paraformaldehyde for 18 hours. The complete spinal
cord was taken out and the lumbar region (L1-L5) was dissected.

2.5.1. Motor neuron loss
Paraffin embedded serial cross-sections (6 μm)were made from the

lumbar region of the spinal cord samples. The sections were then proc-
essed for cresyl violet stain to determine motor neuron loss. Briefly, the
sectionswere deparaffinized and rehydrated through a series of ethanol
and the sectionswere stainedwith 0.5% cresyl violet (in distilled water)
for 7 min. Excess stain was rinsed in distilled water and 70% ethanol.
Sections were dehydrated by immersing in 95% ethanol followed by
100% ethanol. Glacial acetic acid (in 95% ethanol) was included during
the dehydration series to differentiate the stain. Motor neurons in ante-
rior gray matter of the lumbar region of the spinal cord were counted
every 10th section with bright-field microscopy by an investigator
blinded for genotype, using the following criteria: 1) the presence of a
large single nucleolus located within the nucleus and 2) a cell soma
area over 100 μm2. We also counted larger motor neurons with a cell
soma area over 250 μm2 [38]. A total of ten sections were counted and
averaged for each animal (n = 7 to 10 per genotype per age group).

2.5.2. Immunofluorescence staining
Paraffin embedded lumbar spinal cord sections (n = 7 to 10 per

genotype per age group) were deparaffinized and rehydrated through
a series of ethanol. Lumbar spinal cord sections were then processed
with sodium citrate (pH 6.0) for antigen retrieval followed by
20-minute incubation with hydrogen peroxide (3.7% in methanol) at
room temperature to block endogenous peroxidase activity. After
blocking in 2% milk for one hour, sections were incubated with Iba-1
antibody alone (1:1000; Wako, Richmond, VA) or a mixture of SMI-32
(1:1000; Covence, Princeton, NJ) and TDP-43 (1:200; Proteintech,
Chicago, IL) antibodies overnight at 4 °C. Sections were then probed
with fluorescently conjugated anti-host secondary antibodies (Alexa
Flour 488 (1:200) or a mixture of Alexa Flour 488 (1:200) and Alexa
Flour 555 (1:200; Invitrogen, Grand Island, NY)) for one hour in the
dark at room temperature. DAPI (1:1000) was used for nuclear staining.
After washes, slides were mounted and were analyzed with fluores-
cence microscopy.

For L-ferritin and Iba-1 double immunofluorescence staining,
because both L-ferritin and Iba-1 antibodies were made from the same
host, L-ferritin was fluorescently labeled using a DyLight 550 antibody
labeling kit (Thermo fisher scientific,Waltham,MA) prior to the incuba-
tion with spinal cord sections. Sections were first incubated with Iba-1
antibody overnight at 4 °C, whichwas followed by an overnight incuba-
tion with DyLight labeled L-ferritin (1:200). Sections were then probed
with Alexa Flour 488 secondary antibody for one hour in the dark at
room temperature. Spinal cord sections were analyzed with fluores-
cence microscopy.

2.6. Western Blot

The lumbar region of the spinal cord samples was harvested from
presymptomatic age (90-day), symptomatic age (110-day) and end-
stage SOD1/H67D mice (n = 6 to 10 per genotype). Samples from
age-matched SOD1(G93A) and wild-type (WT) littermates were
included in all of the analyses. Lumbar region of spinal cord tissues
were homogenized in RIPA buffer (Sigma, St. Louis, MO) with protease
inhibitor cocktail (1:100; Sigma, St. Louis, MO). Total protein
concentration was determined with Pierce BCA protein assay kit
(Thermoscientific,MA). Total spinal cord homogenates (20 μg total pro-
tein) was separated on 4–20% Criterion polyacrylamide Tris–HCl gel
(Bio-Rad, Hercules, CA) by electrophoresis and transferred overnight
at 4 °C onto nitrocellulose membrane. For GAFP protein analysis, total
protein of 10 μg was loaded. After blocking with 5% nonfat dry milk,
the membranes were incubated with a primary antibody for overnight
at 4 °C followed by an hour incubation with anti-host horseradish
peroxidase-linked secondary antibodies (Amersham Bioscience,
Piscataway, NJ). The signal was visualized with enhanced chemilumi-
nescent (ECL) system (Perkin Elmer, Waltham, MA) and the densito-
metric analysis was performed with Multigauge software (V3.0; Fuji
film system).

Lumbar region of spinal cord samples were analyzed for expressions
of H-ferritin (1:1000; Covence, Princeton, NJ), L-ferritin (1:500; abcam,
Cambridge, MA), transferrin receptor (TfR, 1:500; Zymed Laboratories
Inc., San Francisco, CA), hemeoxygenase-1 (HO-1, 1:500; Enzo Life
Science, Farmingdale, NY), nuclear factor E2-related factor 2 (Nrf2,
1:1000; abcam, Cambridge, MA), total caspase-3 (1:500; Cell Signaling
Technology Inc., Danvers, MA), GFAP (1:10,000; Dako, Carpinteria, CA)
and beta-actin (1:3000; Sigma, St. Louis, MO).

2.7. Statistical analyses

Data were expressed as mean ± standard error. Kaplan–Meier was
used to analyze the survival and probability of passing the rotarod
test. An analysis of variance one-way ANOVA or two-way ANOVA
(GraphPadPrism4; La Jolla, CA) followed byTukeymultiple comparison
or Bonferroni posttest was used to compare between experimental
groups. For Grip strength analysis, repeated measure mixed ANOVA
with Tukey–Kramer posttest was performed using SAS 9.3 (Cary, NC).
A p-value b 0.05 was considered significance for all the experiments.

3. Results

3.1. H67D HFE shortens survival and accelerates disease progression

We determined survival, disease onset and disease progression in
double transgenic (SOD1/H67D) mice and compared with SOD1 mice
(G93A). The double transgenic mice had significantly shorter survival
compared to SOD1 mice (Fig. 1 A). The median survival in double
transgenic and SOD1 mutant mice was 128 days and 132.5 days res-
pectively (p = 0.02). We found a gender effect on both survival and
disease duration. The median survival of female double transgenic
mice (129 days) was significantly shorter than female SOD1 mice
(137 days; p = 0.002; Fig. 1 B). The median survival of males double
transgenic (128 days) was not different from male SOD1 mice
(122 days; p = 0.17; Fig. 1 C).

Disease duration, the time between disease onset and end-stage,
was also shorter in double transgenic mice (21 ± 1.8 days; mean ±
SE) compared to SOD1 mice (26 ± 2.9 days); however, this difference
did not reach statistical significance (p = 0.11; Fig. 2 A). When disease
duration was analyzed by gender, females double transgenic (18 ±
1.4 days) exhibited significantly shorter disease duration than SOD1
mice (27 ± 3.6 days; mean ± SE; p = 0.02; Fig. 2 B) though disease
duration of males double transgenic (23 ± 3.3 days) was not different
from male SOD1 mice (24 ± 4.9 days; p = 0.78; Fig. 2 C).

There was no difference between the SOD1 and double transgenic
mice in age of disease onset as determined by performance on the
rotarod (p = 0.77) (Fig. 3 A). The double transgenic and SOD1 mice
failed the rotarod test starting at 107± 1.9 days and 106± 2.9 days re-
spectively (mean±SE). The heterozygous H67D littermates (wt/H67D)
were included in rotarod analysis as additional controls. Neither the
wild-type (WT) nor the heterozygous H67D littermates (wt/H67D)
failed the rotarod test during the observation period (not shown).



Fig. 1. H63D HFE shortens survival in double transgenic (SOD1/H67D) mice. Kaplan–Meier survival analysis comparing SOD1/H67D mice with SOD1(G93A) mice. Median survival of
SOD1/H67D mice is shorter when compared with SOD1(G93A) mice (A, 128 days vs. 132.5 days, n = 22 to 32 per genotype, p = 0.02). Median survival of females SOD1/H67D mice
is shorter compared to female SOD1(G93A) mice (B, 129 vs. 137 days, n = 13 to 15 per genotype, p = 0.002). Median survival of males SOD1/H67D and males SOD1(G93A) mice is
not different (C, 128 vs. 122 days, n = 9 to 17 per genotype, p = 0.17).
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Significant weakness in forelimbs and hindlimbs was observed in
both double transgenic and SOD1 mice when compared with wild-
type (WT)mice (Fig. 3 B–C). Compared to SOD1mice, double transgenic
mice performed significantly worse on both forelimb and hindlimb grip
strength. Indeed, the double transgenic mice exhibited poorer forelimb
and hindlimb strength than the SOD1 group beginning at the age of dis-
ease onset (106 days) until the end of the test (127 days) suggesting an
accelerated disease progression indouble transgenicmice. Therewasno
gender effect on age of disease onset or progression as measured by
rotarod and grip strength. The heterozygous H67D (wt/H67D) litter-
mates exhibited no behavioral deficits nor muscle weakness or atrophy
Fig. 2. Shorter disease duration in double transgenic (SOD1/H67D)mice. The SOD1/H67Dmice t
25.9 ± 2.8 days, n = 19 to 32, p = 0.11). There is a significantly shorter disease duration in f
26.9 ± 3.6 days, n = 11 to 15 per genotype, *p b 0.05). Disease duration in males SOD1/H67
n = 8 to 17 per genotype, p = 0.78).
in their limbs at any age. Therefore, wt/H67D mice are not included in
further studies.

3.2. Motor neuron loss

Even before disease onset at 90 days of age, a significant loss of
motor neurons was found in lumbar spinal cord of both the double
transgenic and the SOD1 mice (27% loss in double transgenic mice
compared to 21% loss in SOD1 mice), but the 6% greater loss of motor
neurons in the double transgenic mice compared to SOD1 mice was
not statistically significant (Fig. 4 A; p = 0.55). The motor neuron loss
end to have shorter disease duration compared to SOD1(G93A)mice (A, 20.6±1.9 days vs.
emales SOD1/H67D mice compared to females SOD1(G93A) mice (B, 18.1 ± 1.4 days vs.
D is not different from male SOD1(G93A) mice (C, 22.8 ± 3.3 days vs. 24.5 ± 4.9 days,

image of Fig.�2


Fig. 3. Disease progression is accelerated in double transgenic (SOD1/H67D) mice. Kaplan–Meier analysis is used to compare the probability of passing the rotarod test
(A) that defines the age of disease onset. Average age of disease onset is not different between SOD1/H67D and SOD1(G93A) mice (107 ± 1.9 days vs. 106 ± 2.8 days,
n = 19 to 32 mice per genotype, p = 0.77). Grip strength meter was used to assess the strength of forelimbs (B) and hindlimbs (C). Disease groups have decreased forelimb
and hindlimb strength over time compared to WT mice and there is a significant interaction between genotypes and time for both forelimb (n = 5 to 10 per genotype; F(12,
115) = 3.35; p = 0.0003) and hindlimb strength (F(12, 115) = 5.95; p b 0.0001). The SOD1/H67D mice have significantly less forelimb and hindlimb strength over time
compared to SOD1(G93A) (p = 0.003 and p = 0.0008 respectively) and WT mice (p b 0.0001 and p b 0.0001 respectively). The SOD1(G93A) mice have lower forelimb
and hindlimb strength than WT mice (p = 0.0012 and p = 0.0021 respectively) but stronger than SOD1/H67D mice. (**p b 0.01, ***p b 0.001, ****p b 0.0001).
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continued to the 110 day time point, at which both double transgenic
and SOD1 mice had lost about half of the motor neurons compared to
WTmice (Fig. 4 B). There was no difference between double transgenic
and SOD1 mice. Large motor neuron loss (a cell soma area over
250 μm2) was also present before disease onset at 90 days in both
groups andwasworsenedwith age. At 110 days, both double transgen-
ic and SOD1 mice lost almost 3/4 of large motor neurons compared to
WTmice. Largemotor neuron losswasnot different between thedouble
transgenic and SOD1 mice at both 90 days (p = 0.18) and 110 days of
Fig. 4. Motor neuron loss in SOD1(G93A) and SOD1/H67D mice. Lumbar cord sections from 9
neurons (N100 μm2) is observed in SOD1(G93A) and SOD1/H67D mice at both 90-days (A) a
SOD1(G93A) mice. Bars represent mean ± standard error. (*p b 0.05, **p b 0.01, ***p b 0.001
age (p = 0.34; data not shown). No gender difference was observed
between groups.

3.3. Total iron concentrations are not altered in double transgenic (SOD1/
H67D) mice

Total iron concentrations in lumbar spinal cords of 90 days and
110 days old SOD1 and double transgenicmiceweremeasured to deter-
mine the impact of iron on disease progression in these mice. Iron
0- and 110-day-old mice were treated with cresyl violet stain. A significant loss of motor
nd 110-days of age (B) but motor neuron loss in SOD1/H67D mice does not differ from
n = 7 to 10 per genotype).

image of Fig.�3
image of Fig.�4


Fig. 5. Total iron concentrations are not different in spinal cords of double transgenic (SOD1/H67D) mice. Total iron concentrations in lumbar spinal cords of 90- and 110-day-old mice
were measured with atomic absorption spectrometry. Iron levels in the lumbar spinal cords are not significantly different between groups at either time point. Bars represent
mean ± standard error. (n = 7 to 11 per genotype).
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concentrations were also measured in lumbar spinal cords of age-
matched WT mice. Total iron concentrations (μg Fe/g of protein) are
not different between groups at 90 days (presymptomatic age; Fig. 5
A) and 110 days when disease symptom exists (Fig. 5 B).

3.4. Altered iron management proteins expression in double transgenic
(SOD1/H67D) mice

Compared to wild-type (WT) mice, a significant decrease in trans-
ferrin receptor (TfR) expression, a cellular iron uptake protein, was
found in both double transgenic and SOD1mice starting at 90 days (pre-
symptomatic), and remained lower in both groups at 110 days (symp-
tomatic) and end-stage (Fig. 6 A–C). Examination of the expression of
L-ferritin, an iron storage protein particularly enriched in microglia,
revealed a significant increase in the double transgenic mice compared
to WT and the SOD1 mutant mice at both 90 and 110 days (Fig. 6 D–F).
Compared to WT mice, L-ferritin expression was 49% higher in double
transgenic mice at 90 days and remained increased with time to a
maximal increase at end-stage (140% and 252% higher at 110 days
and end-stage respectively). Notably, L-ferritin expression in double
transgenic mice was 86% and 79% higher than SOD1 mice at 90 days
and 110 days but was similar between the two groups at end stage.
The similar levels of L-ferritin at end stage between the two groups
resulted from a dramatic increase in L-ferritin in the SOD1 mice to
those levels seen in the double transgenic. L-ferritin expression in
SOD1 mice was significantly increased compared to WT only at end-
stage (Fig. 6 D–F). H-ferritin expression in both double transgenic and
SOD1 mice was not different from WT mice at any age (Fig. 6 G–I).

3.5. Increased microgliosis in double transgenic (SOD1/H67D) mice

To determine whether microgliosis is present in double transgenic
mice, we performed immunofluorescence staining using an Iba-1 anti-
body. In wild-type mice at all observed ages, Iba-1 positive microglia
in the lumbar spinal cords showed ramified or resting statemorphology
with long branching processes and a smaller cell body. However,
microglia in both SOD1 and double transgenic mice showed activated
morphology with shortening processes with a round enlarged cell
body (Figs. 7 and 8). Interestingly, double transgenic mice have more
number of activated microglia in the lumbar spinal cord compared to
the SOD1 mice particularly at 110-days (Fig. 7 E–F), symptomatic age
although the number of activated microglia in the ventral horn of lum-
bar spinal cords at 90-days (Fig. 7 B–C) and end-stage (Fig. 7 H–I) was
similar between SOD1 and double transgenic mice. Because L-ferritin
is primarily enriched in microglia [51], we performed double immuno-
fluorescence staining to determine whether increased L-ferritin levels
in double transgenic mice are also associated with increased microglial
activation. Double immunofluorescence analyses indicate an increase L-
ferritin staining in double transgenic mice, which is consistent with
findings from immunoblot analyses. Moreover L-ferritin is co-localized
with Iba-1 positive microglia to greater extent in these mice (Fig. 8).

3.6. Increased caspase-3 in double transgenic (SOD1/H67D) mice

Caspase-3 expression in the lumbar spinal cords was not different
between the three groups at 90 days (Fig. 9 A). However, at symptom-
atic age (110 days), caspase-3 expression was significantly increased
in the double transgenic mice compared to WT and SOD1 mice (Fig. 9
B). At end-stage, caspase-3 expression was significantly increased in
both double transgenic and SOD1 mice compared to WT mice.
Caspase-3 expression was not different between double transgenic
and SOD1 mice at end-stage (Fig. 9 C).

3.7. Increased gliosis in double transgenic (SOD1/H67D) mice

A significant increase in total GFAP expressionwas observed in lum-
bar spinal cords of both double transgenic and SOD1mice starting at 90
days, presymptomatic age and remained higher at 110 days and at end-
stage in both groups (Fig. 10 A–C). At symptomatic age (110 days), the
magnitude of an increase in GFAP expression was higher in the double
transgenic mice than SOD1 mice (126% increase vs. 78% increase com-
pared to WT respectively; Fig. 10 B) but the differences between the
double transgenic and the SOD1 mice did not reach statistical signifi-
cance (p = 0.13).

3.8. Increased oxidative stress in double transgenic (SOD1/H67D) mice

Wedetermined expressions of hemeoxygenase-1 (HO-1) andnucle-
ar factor E2-related factor 2 (Nrf2), as markers for oxidative stress in
double transgenic mice. HO-1 expression was significantly increased
in double transgenic mice compared to WT mice starting at 90 days
and increased at each time point reaching maximal increase at end-
stage (Fig. 11 A–C). The expression of HO-1 was greater in the double
transgenic mice at 90 and 110 days compared with SOD1 mice
(Fig. 11 A and B). The HO-1 expression in SOD1 mice was significantly
increased compared toWT only at end-stage (Fig. 11 C) andwas a result
of a 5-fold increase in the levels of HO-1 in the end-stage of the SOD1
mice.

Next, we determined Nrf2 expression in these mice to test the im-
pact of genotype on an antioxidant system. Expression of Nrf2 in double
transgenic and SOD1 mice was not different from WT mice at 90 days;
however, at the symptomatic (110 days) and end-stage time periods
both double transgenic and SOD1 mice had significantly decreased
Nrf2 expression compared to WT mice (Fig. 11 D–F). The Nrf2 expres-
sion in the lumbar spinal cords of double transgenic mice was 20% less
than that in SOD1 mice at symptomatic age (110 days) although this
difference did not reach statistical significance (Fig. 11 E).
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Fig. 6.Altered iron management protein expression in lumbar spinal cords of double transgenic (SOD1/H67D) mice. Lumbar spinal cord homogenates from 90-day, 110-day and
end-stage SOD1/H67D, SOD1(G93A) and wild-type (WT) mice were determined for the expressions of transferrin receptor (TfR), L-ferritin and H-ferritin. A representative
Western Blot gel is shown for each protein and the quantitative of blots is shown as a bar graph. The expression level is normalized to β-actin. Bars represent mean ± standard
error. (*p b 0.05, **p b 0.01, ***p b 0.001; n = 6 to 10 per genotype). A–C. Transferrin receptor (TfR) expression in the lumbar spinal cords of SOD1/H67D and SOD1(G93A) mice
is decreased at all ages compared to WT mice. D–F. L-ferritin expression is increased in the lumbar spinal cords of SOD1/H67D compared to SOD1(G93A) and wild-type mice at
90-days and 110-days. At end-stage, SOD1/H67D as well as SOD1(G93A) mice has significantly higher L-ferritin expression than WT mice. G–I. H-ferritin expression in SOD1/
H67D and SOD1(G93A) mice do not differ from WT mice at all ages.
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Fig. 7. Increased microgliosis in double transgenic (SOD1/H67D) mice. Lumbar spinal cord sections from 90-, 110-day and end-stage mice were stained for Iba-1 to detect microglia. Im-
munofluorescence analyses indicate that activated microglia were present in both SOD1(G93A) and SOD1/H67D mice compared to the wild-type mice at all observed ages. At 110-days,
more activatedmicrogliawere observed in SOD1/H67D compared to SOD1(G93A)mice suggesting an increasedmicrogliosis in SOD1/H67Dmice at the symptomatic stage. The number of
activated microglia in SOD1/H67D and SOD1(G93A) mice are similar at 90-days and end-stage (n = 7 to 10 per genotype per age group).
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3.9. H67D HFE is not associated with altered nuclear localization of TDP-43
in double transgenic (SOD1/H67D) mice

TAR DNA binding protein 43 (TDP-43) has been reported to be
the major pathological protein in ALS that mislocalizes to the cyto-
plasm where it is found as a major component of ubiquitin-positive
neuronal cytoplasmic inclusions in ALS [5,39,40]. Therefore, we
determined whether TDP-43 pathology is present in double trans-
genic mice by double immunofluorescence staining using TDP-43
and SMI-32 antibodies. TDP-43 was found in the nucleus of the
healthy motor neurons in the lumbar spinal cords of WT mice at all
ages investigated (Fig. 12 A, D, G). Consistent with previous studies
[40–42], we found lack of TDP-43 mislocalization to the cytoplasm
of motor neurons in SOD1 mice (Fig. 12 B, E, H). TDP-43 also did
not mislocalize to the cytoplasm in double transgenic mice, and
was found primarily in the nucleus of the remaining SMI-32-
positive motor neurons in the lumbar spinal cords of these mice at
all ages investigated (Fig. 12 C, F, I).

In the course of the analysis for TDP-43, we noted a consistent and
dramatic difference in staining patterns following immunostaining
with SMI-32 that we used for neuronal identification. Despite having
similar SMI-32-positive motor neurons as SOD1, double transgenic
mice have more disorganized neuronal processes in their lumbar spinal
cords particularly at the end-stage of the disease compared to SOD1
mice (Fig. 12 H–I).
4. Discussion

In this study, we demonstrated that the combination of the H67D
HFE gene variant with the SOD1 mutation shortens survival and
accelerates disease progression compared to the SOD1 mutation alone.
The presence of the H67D polymorphism altered iron homeostatic
mechanism in the spinal cord of themice as demonstrated by decreased
TfR and increased L-ferritin expression. Moreover, the H-ferritin levels
were similar in the double transgenic mice compared to WT mice
despite significant neuronal cell loss. H-ferritin is predominantly
expressed in neurons. Thus, the lack of a decrease in H-ferritin suggests
the remaining neurons have increasedH-ferritin suggesting this protein
is offering protective function involving but perhaps not limited to neu-
ronal iron accumulation. The alterations in iron homeostasis in the
double transgenic model may contribute to increased oxidative stress,
which in turn would support the gliosis and increased expression of
caspase-3. Together we conclude that elevated oxidative stress,
increased microglia activation and altered iron homeostasis are under-
lying mechanisms contributing to accelerated disease in double trans-
genic (SOD1/H67D) mice.

There is increasing evidence suggesting an association between
H63DHFE and ALS [18–22]. Even studies in which a significant increase
in H63D HFE was not found in ALS patients compared to the controls
[23–25] the percentage of ALS patients with H63D HFE is consistently
reported at around 30%. However, the impact of the HFE genotype on
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Fig. 8. Double immunofluorescence images for the colocalization of L-ferritin and Iba-1 positive microglia. Increased L-ferritin (A–C) and Iba-1 immunoreactivity (D–F) suggesting in-
creased microgliosis in the lumbar spinal cords of double transgenic (SOD1/H67D) mice compared to WT and SOD1 mice at 110-days. Merged images (G–I) indicate the co-localization
of L-ferritin with Iba-1 positive microglia to greater extent (n = 7 to 10 per genotype).
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disease duration and survival is less established. Our findings of shorter
survival and disease duration in an ALS mouse model with H67D HFE
(SOD1/H67D) are not consistent with findings from ALS cases. In
Fig. 9. Increased caspase-3 expression in lumbar spinal cords of SOD1/H67D. At 90-day, caspa
SOD1/H67D mice have a significant increase in caspase-3 expression compared to WT an
SOD1(G93A) mice is increased compared to WT mice but caspase-3 expression in SOD1/H67
for each protein and the quantitative of blots is shown as a bar graph. The expression level
***p b 0.001; n = 6 to 10 per genotype).
human studies when heterozygous and homozygous for H63D HFE
are pooled, presence of H63DHFE does not affect survival, age of disease
onset, disease duration and site of onset in ALS patients [18–21,24,25].
se-3 expression in lumbar spinal cords is not different between groups (A). At 110-days,
d SOD1(G93A) mice (B). At end-stage, caspase-3 expression in both SOD1/H67D and
D and SOD1(G93A) mice is not different (C). A representative Western Blot gel is shown
is normalized to β-actin. Bars represent mean ± standard error. (*p b 0.05, **p b 0.01,
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Fig. 10. IncreasedGFAP expression in lumbar spinal cords of SOD1/H67D. A significant increase inGFAP expression is observed in lumbar spinal cords of both SOD1/H67Dand SOD1(G93A)
mice starting at 90 days (A) and remains increased at 110 days (B) and end-stage (C). At 110 days, a magnitude of an increase in GFAP expression in double transgenic mice is higher
compared with SOD1(G93A) mice. A representative Western Blot gel is shown for each protein and the quantitative of blots is shown as a bar graph. The expression level is normalized
to β-actin. Bars represent mean ± standard error. (*p b 0.05, **p b 0.01, ***p b 0.001; n = 6 to 10 per genotype).
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We have recently reported that ALS patients with homozygous for
H63D HFE have increased disease duration [43]. However, the double
transgenic mouse model combines mutations in a way not seen in the
human studies that suggests when HFE is combined with a mutation
in ALS the disease duration could be impacted. The difference between
heterozygosity and homozygosity for the H63D variant may also be im-
portant. For example, in H67D knock-in mice homozygosity for H67D
HFE induces adaptivemechanisms against increased oxidative stress al-
though such adaptive responses are absent in heterozygous mice [31].
The lack of adaptive responses against cellular injury in heterozygotes
may increase their vulnerability to cellular stress or toxicity induced
by additional insults during disease conditions such as mutant SOD1-
induced toxicity.

Genetic background can influence disease onset, severity, and
survival in ALS rodent models independent of transgene copy num-
bers [44–46]. The double transgenic mice are on a C57BL6 back-
ground and this genetic background is associated with longer
survival and milder disease phenotype [44–46], which is opposite
fromwhat we observed in double transgenic mice. Therefore, our re-
sults strongly suggest that H63D HFE is a contributing factor in ALS
disease pathogenesis.

Mutations in the HFE protein are most commonly associated with
elevated cellular iron uptake. Transferrin receptor (TfR) expression
was decreased in the lumbar spinal cords of double transgenic mice
from the presymptomatic stage through end-stage. Because TfR is
expressed predominantly on neurons [47–49], the decrease could
reflect the loss of neurons in the SOD1 and double transgenic mice.
However, TfR is a cellular iron uptake protein and its expression is
post-transcriptionally regulated by cellular iron status. Excess iron
downregulates TfR protein synthesis while iron deficiency increases
TfR synthesis [8,50]. Thus, decreased TfR expression in double transgen-
ic mice could also be a response to altered iron homeostasis in the neu-
rons of the double transgenic mice.

Similar to TfR, H-ferritin, an iron storage protein, ismainly expressed
in neurons [51]. Although double transgenicmice have lost about half of
their motor neurons compared to WT mice, total H-ferritin levels are
not significantly different. This suggests H-ferritin expression may be
increased in surviving neurons, reflecting a protective response for
neurons during stress in the double transgenic mice. Moreover,
L-ferritin expression is dramatically increased in the double transgenic
mice even before disease onset. L-ferritin is a long-term iron storage
protein primarily enriched in microglia [51]. Ferritin synthesis is post-
transcriptionally regulated by iron status [50]. Therefore, higher
L-ferritin levels in double transgenic mice than in SOD1 mice further
suggests altered iron homeostasis in the spinal cord of these mice.

In addition to iron dyshomeostasis, pro-inflammatory cytokines
associated with activated microglia can increase L-ferritin expression
in these cells [52]. Because neuroinflammation is a pathological hall-
mark in ALS and increased inflammatory cytokines together with
microgliosis are present in ALS [53,54], the increase in L-ferritin sug-
gests that additional influences, such asmicroglial toxicity or inflamma-
tion, may contribute to accelerated disease in double transgenic mice.
Indeed, immunofluorescence analyses demonstrating increase Iba-1
immunoreactivity as well as a strong co-localization of L-ferritin with
Iba-1 positivemicroglia further indicate that increasedmicrogliosis con-
tributes to accelerated disease in double transgenic mice.

Additional evidence suggesting the role of microgliosis in accelerat-
ed disease in double transgenic mice is an increase in caspase-3 expres-
sion without additional motor neuron loss compared to SOD1 mice.
Although caspase-3 activation is well accepted as a downstream event
in the apoptotic pathway, a non-apoptotic role of caspase-3 in regulat-
ing microglial activation and neurotoxicity has been reported. Activat-
ing microglia with immunogens such as lipopolysaccharide increases
expressions of caspase-3,-7 and -8 without microglial cell death. By
inhibiting caspases, microglial activation is blocked and its associated
neuronal toxicity is reduced [55]. Although we cannot exclude the pos-
sibility of increased caspase-3 and apoptosis in microglia, our data sug-
gest that increased caspase-3 in double transgenic mice is associated
with increased microglial activation, which is consistent with increased
L-ferritin levels and Iba-1 immunoreactivity in these mice. Given that
damage in microglia mainly affects disease progression, whereas
motor neurons toxicity affects disease onset [56,57], the observations
of accelerated disease progression together with increased L-ferritin,
Iba-1 immunoreactivity and caspase-3 expression strongly implicates
microglial activation as a mechanism underlying accelerated disease
progression in the double transgenic mice.

An additional change in glia in double transgenic mice is astrogliosis
indicated by increased GFAP expression. Astrogliosis is a known patho-
logical hallmark of ALS. Similar tomicroglia, damage in astrocytesmain-
ly affects disease progression without influencing disease onset in ALS
[57]. In ALS animal models astrogliosis appears before disease onset
[57]. Consistently, in our study, increased GFAP expression was present
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Fig. 11. Increased oxidative stress in lumbar spinal cords of double transgenic (SOD1/H67D) mice. Lumbar spinal cord homogenates from 90-day, 110-day and end-stage SOD1/H67D,
SOD1(G93A) and wild-type (WT) mice were determined for the expressions of hemeoxygenase-1 (HO-1) and nuclear factor E2-related factor 2 (Nrf2), as markers of oxidative stress.
A representative Western Blot gel is shown for each protein and the quantitative of blots is shown as a bar graph. The expression level is normalized to β-actin. Bars represent
mean ± standard error. (*p b 0.05, **p b 0.01, ***p b 0.001; n = 6 to 10 per genotype). A–C. Increased hemeoxygenase-1 (HO-1) expression is found in lumbar spinal cords of SOD1/
H67D compared to WT mice at 90 days (A), 110 days (B) and end-stage (C). HO-1 expression in SOD1(G93A) mice is increased only at end-stage when compared to WT mice. D–F.
The Nrf2 expression is not different between groups at 90 days (D). Nrf2 expression is decreased in SOD1/H67D and SOD1(G93A) mice at 110 days (E) and at end-stage (F). At
110 days, Nrf2 expression is decreased by 20% in SOD1/H67D compared to SOD1(G93A) mice; whereas, Nrf2 expression in both group is not different at end-stage.
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in double transgenic and SOD1mice before disease onset, and then pro-
gressively increased; however, the magnitude of the increase in GFAP
was higher in double transgenic mice, particularly at the symptomatic
stage. Activated astrocytes canmediatemotor neuron toxicity by secret-
ing soluble factors toxic to motor neurons [58] and by enhancing
microglial inflammatory responses [57]. Therefore, elevated astrogliosis
in the double transgenic mice may contribute to increased neuronal
toxicity and microglial inflammatory responses, further contributing
to an accelerated disease.

Moreover, alterations in iron homeostasis and inflammatory envi-
ronments are associated with oxidative stress, a significant part of the
disease processes in ALS. We previously demonstrated that H63D HFE
creates an environment for oxidative stress [31,59]. In this study, oxida-
tive stress, indicated by increased HO-1 and decreased Nrf2, is present
in both double transgenic and SOD1 mice. However, the magnitude of
the changes, particularly at the symptomatic stage, is greater in double
transgenic mice than in SOD1 mice. The decrease in Nrf2, which regu-
lates cellular antioxidant responses [60] in double transgenic mice
compared to SOD1 mice, is particularly noteworthy as potentially part
of ALS pathogenesis. Previous studies have reported decreased Nrf2
expression in postmortem brain and spinal cord tissues from sporadic
ALS patients [61] and in SOD1(G93A) motor neurons [62]. Decreased
Nrf2 also increases motor neuron sensitivity to nerve growth factor in-
duced apoptosis [62]. Upregulating antioxidant genes byNrf2 activators
slow disease progression in an ALS mouse model [63]. These reports
together with our findings suggest that the decreased Nrf2 levels in
double transgenic mice compared to SOD1 mice may be a driver of the
accelerated disease in the double transgenic mice, possibly by reducing
levels of glutathione (GSH), an important anti-oxidant protein down-
stream from Nrf2 [60,64]. Indeed, decreased GSH in the ALS mouse
model accelerates disease and shortens survival due to increased oxida-
tive stress [65], findings similar to those we observed in double trans-
genic mice in this study.

An additional pathogenic change in ALS is mislocalization of TDP-43,
which is normally a nuclear protein, to the cytoplasm where it is found
as a component of ubiquitin-positive neuronal inclusions [5,39,40,42].
Also, recent studies have reported TDP-43 as one of themajor patholog-
ical proteins in ALS [5,39]. Because mislocalization of TDP-43 to the
cytoplasm correlates with rapid clinical course in ALS [66] and double
transgenic mice in this study have a more rapid disease profile, we
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Fig. 12. H67D HFE does not disrupt nuclear localization of TDP-43 in double transgenic (SOD1/H67D) mice. Representative immunofluorescence images of lumbar spinal cords
from 90-, 110-day and end-stage mice stained with TDP-43 (green), SMI-32 (red) and DAPI (blue). There are less SMI-32 positive motor neurons (red) in the lumbar spinal cords
of SOD1(G93A) and SOD1/H67Dmice compared to the wild-type mice at all observed ages. Similar to findings in the wild-type mice (A, D, G), TDP-43 remains localized primarily
to the nucleus of surviving motor neurons in both SOD1(G93A) (B, E, H) and SOD1/H67Dmice (C, F, I) at all ages (n= 4 to 6 per genotype per age group). It is noted in the course
of the evaluation for TDP-43 that there was a dramatic difference in the appearance of the SMI-32 immunostaining pattern in the double transgenic mice compared to the wild-
type or SOD1 mutant mice. The staining pattern in the wild-type is very regular whereas there is limited staining of filaments in the SOD1 mice, consistent with the significant
cell death observed. In the double transgenic mice, there is more neurofilament staining in processes (despite similar amount of cell death to the SOD1 mice) particularly at the
110 day and end-stage time periods (E–I).
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performed double immunofluorescence staining to clarify whether
mislocalization of TDP-43 is present in double transgenic mice. TDP-
43 was found primarily in the nucleus of the remaining motor neurons
even at disease end-stage in double transgenic mice. The lack of TDP-43
mislocalization in the double transgenic mice is similar to that reported
in the SOD1 mutation alone [40–42] and consistent with our observa-
tions in this study. The lack of mislocalization of TDP-43 to the cyto-
plasm implicates that the pathological TDP-43 is unlikely to contribute
as a mechanism underlying accelerated disease in double transgenic
mice but also demonstrates that accelerated disease can occur in the ab-
sence of TDP-43 cytological changes.

Although TDP-43 immunostainingpattern is similar between double
transgenic and SOD1 mice, we found a different SMI-32 immunostain-
ing pattern between the two groups, particularly at end-stage of the
disease. SMI-32 is a marker for non-phosophorylated heavy-chain neu-
rofilament protein (NFH). Abnormal accumulation of neurofilament
proteins in the cell body and proximal axons of motor neurons, and
defective axonal transport are consistent pathological hallmarks of ALS
[67,68]. A mutation in NFH gene is found in sporadic ALS cases [69].
Higher levels of phosphorylated NFH are found in cerebrospinal fluid
(CSF) [70–72] and plasma samples of ALS patients [73]. Moreover, CSF
and plasma phosphorylated NFH levels are correlated with disease pro-
gression in ALS patients [70,72,73]. Another neurofilament subunit,
light-chain neurofilament, levels are also elevated in the CSF of ALS
patients [71,74,75]. Although detailed analyses of neurofilament pathol-
ogy in double transgenic mice is beyond the scope of this study, more
SMI-32-positive disorganized neuronal processes observed in the spinal
cords of these mice may suggest altered phosphorylation of neurofila-
ment proteins and impaired axonal transport in double transgenicmice.

In summary, we determined the impact of H63D HFE on ALS patho-
genesis by generating a double transgenic mouse line (SOD1/H67D).
There are two important findings in this study. First, H67D shortens sur-
vival and accelerates disease progression in double transgenicmice. Im-
portantly, double transgenic mice have accelerated disease progression
in the absence of environmental stressors or challenges thatmay impact
ALS onset such as inflammation, diet or toxic exposure. Secondly, the
addition of the H67D HFE gene variant to the SOD1 mouse model of
ALS alters iron metabolism, increases oxidative stress and microglial
toxicity, and is associated with neurofilament disruption, which are un-
derlying mechanisms associated with shorter survival and accelerated
disease progression. The disruption of cellular functions in double trans-
genic mice is more extensive than that inmicewith SOD1(G93A) alone.
Because H63DHFE is present in asmany as 30% of ALS patients, the dou-
ble transgenic mousemodel could serve as a preclinical model to assess
the impact of a common genetic variant on disease progression and
treatment strategies.
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