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In the last decade Toll-like receptor (TLR) research has led to new insights in the pathogenesis of
many rheumatic diseases. In autoimmune diseases like systemic lupus erythematosus, rheumatoid
arthritis and systemic sclerosis TLR signaling is likely to be involved in tolerance breakthrough and
chronic inflammation via combined Fc gamma receptors and TLR recognition of immune com-
plexes. Furthermore, inflammatory diseases like psoriatic arthritis and gout also show more and
more evidence for TLR involvement. In this review we will discuss the involvement of TLR signaling
in several rheumatic diseases and stress their similarities and differences based on recent findings.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Introduction

In daily clinical practice a rheumatologist oversees a wide spec-
trum of diseases, being (auto) inflammatory like gout and psoriatic
arthritis (PsA) or more autoimmune like rheumatoid arthritis (RA),
systemic lupus erythematosus (SLE) and systemic sclerosis (SSc).
Although these diseases differ considerably in their clinical symp-
toms, overlapping features identified over the past few years sug-
gest a shared background of inflammatory cascades. Notable
examples are the involvement of the intracellular signaling mole-
cule myeloid differentiation primary response protein 88
(MyD88), the activation of the type 1 interferon (IFN) pathway
and the presence of (endogenous) Toll-like receptor (TLR) ligands.
These aberrant immune pathways generate severe inflammation of
joints, skin and visceral organs. This severe inflammation may be
mainly autoimmune related like in RA, SLE and probably in SSc.
An autoimmune disease develops as soon as tolerance for self is
cal Societies. Published by Elsevier
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lost and the adaptive immune response is aberrantly directed to
host tissue. In most diseases there is a strong association with
autoantibodies, but up till now intensive research has failed to ex-
plain the direct implication of these autoantibodies in the develop-
ment of autoimmune diseases such as RA and SSc. Next to
autoimmune diseases, with their clear involvement of the adaptive
immune system and presence of autoantibodies, another impor-
tant group of diseases involving innate immunity are the auto-
inflammatory diseases. These are characterized by the absence of
a clear involvement of the adaptive immune system and paucity
in autoantibodies [1]. Gout is a well-established auto-inflamma-
tory disease induced by the presence of urate crystals activating
the innate immune system. Other diseases like PsA and Crohn’s
disease are also characterized by a clear involvement of the innate
immune system and a lack of autoantibodies. The adaptive im-
mune system, however, does seem to play a role in these diseases
placing them in between auto-immune and auto-inflammatory
diseases. Because of the absence of autoantibodies and autoreac-
tive T cells these diseases appear to be more auto-inflammatory
in character. It seems to be the unique combination of a genetically
susceptible host and specific environmental triggers which enable
these immunopathological events to develop.

The immune system is equipped with multiple pattern recogni-
tion receptors that recognize a wide range of pathogens and
endogenous ligands the human body can be confronted with. The
main pattern recognition receptors are TLRs, C-type lectins,
B.V. Open access under CC BY-NC-ND license.
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NOD-like receptors (NLRs), RIG-1-like receptors (RLRs) and cyto-
solic DNA sensors. Most pathogens express several TLR ligands
and numerous host-derived TLR ligands are generated in inflamed
or degenerated tissue. The activation of multiple TLRs leads to the
abundant release of pro-inflammatory cytokines creating a volatile
situation. In genetically predisposed individuals this may eventu-
ally lead to a breach in tolerance, culminating in autoimmune dis-
ease [2]. In this context, the study of the control of TLR responses is
of high relevance in diseases such as RA, SLE and SSc. However, in
other rheumatic conditions that are not necessarily considered
autoimmune such as PsA and gout, TLRs also play a more impor-
tant role than previously thought.

2. Toll-like receptors

TLRs are pattern-recognition receptors capable of potently acti-
vating many different cells. TLRs are highly expressed on most im-
mune cells, but also on other cells including fibroblasts,
chondrocytes, keratinocytes and endothelial cells. TLRs recognize
both endogenous molecules, released upon cell activation/damage
(damage-associated molecular patterns; DAMPs), and a wide range
of conserved constituents from pathogens (pathogen-associated
molecular patterns; PAMPs). At present, 10 TLR subtypes have
been identified in humans, each having its specific ligands, cellular
localization and expression profiles. TLR2 (as heterodimer in com-
bination with TLR1 or TLR6) and TLR4 are extracellular receptors
that are designed to recognize lipid-based structures both from
gram-positive and gram-negative bacteria including lipopeptides
and lipopolysaccharides (LPS), respectively. For TLR5, also ex-
pressed extracellular, the identified ligand is flagellin, a component
of flagellated bacteria. For TLR10, which is believed to originate
from the TLR1/TLR6 precursor, no ligand has been described thus
far. TLR3, TLR7, TLR8 and TLR9 are generally addressed as intracel-
lular receptors located in endosomal compartments and are in-
volved in the recognition of nucleic acids derived from viruses,
bacteria and the host. TLR3 is activated by double stranded RNA
(dsRNA) and TLR7 and TLR8 by single stranded (ssRNA). Double
stranded RNA (dsRNA) activates TLR3 and single stranded RNA
(ssRNA) activates TLR7 and TLR8. DNA and more specifically unme-
thylated CpG DNA is recognized by TLR9 (a more extended over-
view is presented in [3]). Downstream TLR signaling involves a
family of five adaptor proteins known as MyD88, MAL/TIRAP, TRIF,
TRAM and SARM. All TLRs except TLR3 signal via MyD88, either di-
rectly or via MAL/TIRAP in the case of TLR2 and 4. TLR3 signals via
TRIF, which can also be used by TLR4 via binding of the TRAM
adaptor protein to TRIF. The fifth member of the adaptor protein
family is SARM, which is an inhibitor of TRIF-dependent transcrip-
tion factor activation. Through these adaptor proteins protein ki-
nases are activated, such as the mitogen activated protein
kinases (p38, ERK1/2, JNK), ultimately leading to activation of tran-
scription factors among which activator protein-1 (AP-1), nuclear
factor jB (NF-jB) and members of the interferon regulatory factor
(IRF) family are the most thoroughly investigated nowadays (re-
viewed in [4,5]). These transcription factors induce the expression
of various inflammatory cytokines including TNFa, (pro)IL-1b and
IL-6, type I IFNs, and chemokines. The TLR system is highly specific
in that distinct cellular responses are observed depending on the
activated TLR with important effects on ensuing inflammatory
and adaptive immune responses. Much of this specificity is likely
to result from the use of various co-molecules and down-stream
adaptor pathways by the various TLRs. For example CD14 and
MD-2 function as co-receptors for LPS, fine-tuning cell-type spe-
cific effects of TLR4 and influencing the threshold for TLR4 signal-
ing. In the last few years it has also become clear that TLRs not only
induce cell activation, but can also modulate inflammatory
responses. While simultaneous stimulation of some TLRs results
in synergistic induction of cytokine production, TLR2 has been
demonstrated to inhibit cytokine production induced by TLR4 or
TLR7/8 in dendritic cells (DC) with clear effects on T cell responses
induced [6,7]. The regulatory role of TLR2 also extends to regula-
tory T cells, which proliferate upon contact with TLR2 (in mice).
This results in a temporal reduction of suppressive function that
recovers after removal of the TLR2 ligand [8]. Human regulatory
T cells are also modulated by TLR2, although this has resulted in
more suppressive regulatory T cells in the absence of proliferation
[9].

3. Systemic lupus erythematosus

SLE is a prototypic systemic autoimmune disease in which vir-
tually every organ of the human body can be involved, often
including the skin, kidneys, joints and the central nervous system.
Autoantibodies in SLE are generally directed against dsDNA or pro-
teins bound to DNA or RNA, such as the Sm proteins (a protein
complex that binds small nuclear RNAs). Levels of anti-dsDNA anti-
bodies reflect disease activity in SLE, especially the lupus nephritis
activity [10], suggesting an important role for these autoantibodies
in the disease pathogenesis. Although the pathogenesis of SLE still
remains unclear, the defective apoptotic clearance seen in many
SLE patients could help us explain the excessive release of host
DNA and RNA, which in combination with autoantibodies could
lead to continuing immune cell activation via TLRs [11].

Normally, apoptotic cells are rapidly cleared by phagocytic cells
and they have an immunosuppressive effect on macrophages/DCs,
preventing autoimmunity. However, in approximately 40% of the
SLE patients the clearance of apoptotic cells is impaired, resulting
in the release of nucleosomes tightly bound to high-mobility group
box 1 protein (HMGB1, a DNA binding protein). While nucleo-
somes normally have low immunogenicity, binding of HMGB1 dur-
ing late apoptotic processes promotes immune cell activation. In
non-autoimmune mice, HMGB1-containing nucleosomes from
apoptotic cells have been shown to induce anti-dsDNA and anti-
histone antibodies in a TLR2 dependent manner (reviewed in
[11]). The release of HMGB1–nucleosome complexes from late
apoptotic cells could therefore also play an important role in the
induction of autoantibody production via TLRs in SLE patients. In
addition, it was shown that monocytes cultured in the presence
of SLE serum develop into functional DCs that efficiently present
autoantigens from apoptotic cells to autologous T cells [12]. It ap-
peared that the high level of IFNa present in SLE serum was
responsible for this derailed response to apoptotic cells. Increased
levels of IFNa have been correlated with disease severity and
PBMCs from SLE patients clearly show an increased level of type
I IFN regulated genes [13,14]. This IFN profile might be induced
by the presence of DNA or RNA containing immune complexes.
DNA/RNA released from apoptotic/necrotic cells is normally unable
to trigger the nucleic acid recognizing TLRs (TLR3, 7, 8 and 9), be-
cause their expression is limited to the endosomal compartment.
However, in the presence of autoantibodies against DNA or DNA/
RNA binding proteins, DNA and RNA will become incorporated into
immune complexes. These immune complexes can be recognized
by Fc gamma receptors (FccRs) present on APCs, inducing the up-
take of the immune complexes and transport of RNA and DNA to
the endosomal compartment, in turn triggering the intra-cellular
TLR7, 8 or 9. This leads to the production of pro-inflammatory
cytokines, such as type I IFNs, the upregulation of IFN regulated
genes, the maturation of DCs and the presentation of self peptides
to autoreactive T cells. Subsequently these autoreactive T cells can
help B cells in the production of autoantibodies [15]. These im-
mune complexes can also directly bind to B cells via the B cell
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receptor and promote further autoantibody production [16]. It has
been shown that immune complexes containing dsDNA or pro-
tein–RNA complexes are taken up by plasmacytoid dendritic cell
(pDCs) via FccRIIa, are translocated to the endosome and then
stimulate TLR9 or TLR7, resulting in a massive release of IFNa
[17,18]. Monocytes, myeloid DCs and macrophages also express
high levels of FccRs and respond well to TLR7/8 ligands. Upon
stimulation with TLR7/8 ligands myeloid DCs secrete high levels
of IL-12p70 and induce the proliferation of IFNc producing Th1
cells, which can be even further enhanced by the presence of IFNa
or IFNc [19,20]. The combined stimulation of pDCs and mDCs by
nucleic-acid containing immune complexes could induce a vicious
circle, inducing Th1 cell differentiation and the release of IFNc,
which itself can also prime myeloid cells for the internalization
of immune complexes, IL-12p70 release and the presentation of
self peptides to autoreactive T cells enabling them to help B cells
with the production of autoantibodies.

The essential role played by intracellular TLRs in the pathogen-
esis of SLE is also supported by studies demonstrating that lupus-
prone mice lacking TLR7 do not produce anti-Sm antibodies and
have ameliorated clinical disease, while over expression acceler-
ates autoimmunity [21,22]. The role of TLR9 is less clear from ani-
mal models of SLE, as it has opposite functions in different mouse
models (reviewed in [23]). Both animal studies and human data
show an important role for mainly the intracellular TLRs for im-
mune cell activation in SLE by recognition of DNA or RNA contain-
ing immune complexes.

4. Rheumatoid arthritis

RA mostly affects the synovial joints and if left untreated, culmi-
nates in cartilage destruction and bone erosion. Autoantibodies are
found in most RA patients, with rheumatoid factor (directed
against the Fc portion of IgG molecules) and anti-citrullinated pro-
tein/peptide antibodies (ACPA) being the most prevalent and also
having great diagnostic value. In the last decade, numerous re-
search groups have joined forces in an endeavor to decipher the
role of TLRs in the pathogenesis of RA. This has led to several land-
mark observations, for instance the abundance of TLR2, 3, 4, 5, 7
and 9 expression in RA synovium compared to osteoarthritis pa-
tients or healthy controls and the identification of TLR2 stimulation
as a strong inducer of chemokine production by synovial fibro-
blasts [24–28]. The latter is likely to contribute to the accumula-
tion of immune cells in an arthritic joint. In addition,
macrophages and DCs from RA patients also show augmented
inflammatory responses to TLR ligands [25].

The question that still remains in RA is what triggers these TLRs
on both immune and non-immune cells present in an arthritic
joint? It is hypothesized that an initial microbial trigger or minor
trauma can induce tissue damage, leading to the release of endog-
enous TLR ligands, thus creating a vicious circle of inflammation.
Several microbes that have been implicated in the pathogenesis
of RA are mycobacteria, mycoplasma, Escherichia coli, Proteus mira-
bilis, Epstein-Barr virus and human parvovirus B19 (reviewed in
[29]), although up till now conclusive evidence for any of these is
still lacking. Recognition of these bacteria/viruses via TLRs could
lead to initial immune activation, which could culminate in chronic
inflammation, and could also be involved in triggering disease
flares. Recently there is also a renewed interest in oral bacteria,
including porphyromonas gingivalis, which might be involved in
the pathogenesis of RA [30].

Tissue damage and cell stress during synovial inflammation can
lead to the production of heat shock proteins (HSPs), altered fibro-
nectin, low molecular weight hyaluronan fragments, RNA release
from necrotic cells and increased expression of matrix glycoprotein
tenascin-C [31–36]. These are endogenous danger signals that in
turn can activate synovial fibroblasts and DCs/macrophages via
TLR2, 3 or 4 and thereby stimulate chronic inflammation. HMGB1
is also found in increased levels in RA synovial fluid. Although in
SLE the HMGB1 is tightly bound to nucleosomes when released
during late apoptosis, it can also be released by necrotic cells and
activated immune cells. HMGB1 on its own cannot stimulate cells,
but it can form complexes with for example DNA, LPS and IL-1b
and thereby enhance their pro-inflammatory potential (reviewed
in [37]). Massive cell necrosis can also release intracellular citrulli-
nated proteins and activated citrullinating peptidlyl arginine deim-
inases (PAD). These PAD enzymes can for example citrullinate
fibrinogen and a-enolase, present in large amounts in the RA syn-
ovium. When these citrullinated proteins are not degraded prop-
erly, APCs may recognize them as non-self and present them to T
cells, which in turn can trigger autoreactive B cells to produce
ACPA. Recently it has been shown by Sokolove et al. that citrullina-
tion, besides creating a target of autoantibodies in RA can also be
involved in TLR signaling. It has been demonstrated that citrullina-
tion of fibrinogen increases the TLR4 stimulating capacity of fibrin-
ogen. The presence of autoantibodies to citrullinated fibrinogen,
which are specific for RA patients, resulted in even further en-
hanced cell activation by interaction with both TLR4 and FccRs
simultaneously [38].

Although most endogenous ligands present in RA activate cells
via TLR2 or TLR4, data also points towards a role for TLR8 signaling
in RA. Inhibition of TLR4 but also TLR8 was able to inhibit the spon-
taneous production of TNFa by RA synovial membrane cultures
[39,40], suggesting the presence of an unknown ssRNA containing
component in the RA synovium. Similar to SLE, autoantibodies
aimed at RNA binding proteins may be logical candidates. The
RNA binding protein hnRNP-A2 (also known as the RA33 autoanti-
gen) could be a likely candidate in RA; it is highly present in an ar-
thritic joint, autoantibodies have been found in RA and it has been
shown to stimulate immune cells via MyD88 [41,42].

Animal models of arthritis support an important role of TLRs in
arthritis development (reviewed in [43]). In addition, they also
show that TLRs might not only play a role in disease aggravation,
but also in control of tolerance. Different TLR knockouts in the
IL-1 receptor antagonist knockout model showed opposite effects.
While TLR4�/� were protected from severe arthritis, TLR2�/�

showed more severe arthritis [40]. The TLR2�/� mice showed a re-
duced suppressive function of the regulatory T cells and an in-
crease in IFNc production by T effector cells. Specific blockade of
TLR4 was also able to suppress the severity of experimental arthri-
tis [44].

Altogether, we can conclude that TLRs play an intrinsic role in
the inflammation seen in RA, although further research is needed
to delineate the exact triggers which are crucial to the disease
development. Next to TLR triggering itself also the intracellular
pathways of TLR signaling are an interesting target for therapy in
RA. The first clinical trials have been performed and some more
are ongoing at the moment. The near future will tell us if these
can be implemented in the therapy of RA.

5. Systemic Sclerosis

In SSc vascular alterations and immunological disturbances are
followed by fibrosis of the skin and internal organs, which causes
severe disabilities and eventually death. Although the aforemen-
tioned pathways are clearly involved, the precise sequel of events
is still a matter of intensive research. However, mounting evidence
nowadays suggests the role of the immune system in the onset and/
or perpetuation of this condition. For example, histopathological
studies of unaffected SSc dermis showed rarefaction of capillaries
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and the infiltration of mononuclear cells present even before overt
fibrosis [45,46]. These cellular infiltrates consist of myeloid APCs
and CD4+ T-cells. Second, myeloid DC and monocyte-derived DCs
from SSc patients, show a potentiated TLR response especially in
the early phase of the disease [47,48]. The increased production of
IL-6, TNFa and the anti-inflammatory cytokine IL-10 is specifically
found in response to TLR2, TLR3 and TLR4 ligands in DCs, suggesting
a role for specific TLRs. The observations that circulating endoge-
nous TLR4 agonists are present in SSc patients [25], combined with
the high circulating levels of inflammatory mediators often secreted
by TLR stimulated DC/macrophages (TNFa, IL-6 and IL-12p70)
[47,49] further substantiates the potential role of TLRs in this condi-
tion. Moreover, recent findings have highlighted the potential role
of TLRs in inflammatory responses of the skin that quite closely
resemble SSc-like disease [49]. More precisely, the TLR3 ligand
PolyI:C induced IFN and TGFb response genes in dermal fibroblast
from SSc patients in vitro. Interestingly, although the SSc specific
antibodies (anti-topoisomerase and anti-centromere) are present
in a substantial part of the patients, the direct involvement in the
disease process is lacking. The mechanism through which these
antinuclear antibodies are induced is unknown but a process similar
to through apoptotic cells like in SLE is a possibility as one report
showed an increase of HMGB1 in SSc patients [50]. Concerning
the functional consequences of SSc specific antibodies, the recent
report from Kim et al. [51] indicating interferogenic activity by
anti-topoisomerase I ICs might shed new light on the possible role
of autoantibodies in this condition. Interestingly, more and more
evidence directs towards the implication of type I IFN in SSc. At first,
a role of type I IFN is supported by data on IFN type I signature both
in circulating cells as well as SSc skin (reviewed in [52]). This is fur-
ther supported by a report describing the rapid onset of SSc symp-
toms in patients treated with intense IFNa therapy [53]. In view
of this, pDCs are interesting due to their potential of producing high
levels of type I IFNs. Kim et al. showed that interfering with FccRIIa
or RNAse treatment suppresses the IFNa production upon stimula-
tion with anti-topoisomerase I antibodies [51]. This implicates that
like anti-Sm antibodies in SLE, anti-topoisomerase I antibodies are
taken up by pDCs via FccRIIa and subsequently activate TLR7 induc-
ing the production of IFNa. In this study, anti-centromere antibod-
ies did not induce the production of IFNa. Next to this, Eloranta et al.
demonstrated that sera from both limSSc and difSSc patients con-
tained interferogenic antibodies by activating specifically pDCs
[54]. This correlated with the presence of anti-RNP antibodies. In
line with these two studies, a recent report showed an association
between anti-topoisomerase positivity and the expression of IFN in-
duced genes [55]. Altogether, these observations support the notion
that SSc specific antibodies are likely to be implicated in the disease
process that might be directed via TLR mediated stimulation.
However, this point of view remains to be investigated and warrants
further research.

6. Psoriasis and psoriatic arthritis

PsA is an inflammatory disease of the skin, joints and entheses.
Approximately 15–25% of psoriasis patients develop arthritis, the
incidence of which rises with disease severity [56]. Although the
events leading to the development of psoriasis and PsA are unclear
the underlying chronic inflammatory immune response is thought
to be triggered by unknown environmental factors on a polygenic
background with increased susceptibility.

The role played by TLRs in psoriatic disease has been far less
extensively studied than in RA and SLE. However, recent findings
implicate that innate immunity might play a pivotal role in psori-
atic disease. Genetic studies demonstrated associations between
inhibitors of TLR and NOD2 signaling (TNFAIP3 (A20), TNIP1) and
psoriasis [57]. In addition, it was shown that mutations and poly-
morphisms in keratinocyte-expressed genes involved in physical
barrier function or innate immunity are risk factors for developing
psoriasis [58,59]. Immunohistochemistry demonstrated the
expression of TLR2, 3 and 4 in keratinocytes and psoriatic skin
showed a strong over-expression of TLR2 in the epidermis. Further-
more, dermal DCs were demonstrated to express TLR2 and TLR4
but not TLR9, while epidermal DC (Langerhans cells) expressed
TLR4 but not TLR2 or TLR9.

Activation via TLRs of infiltrating pDCs has been proposed to be
an important pathogenic event in psoriasis/psoriatic disease. The
aggravation and spreading of a psoriatic plaque was described
upon the topical treatment with the TLR7 agonist imiquimod. This
exacerbation was accompanied by a massive type I IFN production
by infiltrating pDCs [60]. Especially pre-psoriatic skin was demon-
strated to contain high numbers of pDCs and its chemotactic factor
chemerin. Skin from chronic plaques showed low chemerin
expression and few pDC in the dermis [61]. The role played by
the activation of intracellular TLRs is also apparent from the use
of chloroquine, hydroxychloroquine and quinacrine in the treat-
ment of psoriatic disease for over 50 years [62]. These drugs, which
were originally used as antimalarials, have an inhibitory effect on
the signaling of the endocytic TLRs 3, 7, 8 and 9. A question that re-
mained was how the shielded endocytic TLRs are activated in pso-
riatic disease. Recently it was demonstrated that the antimicrobial
peptide LL37 (cathelicidin), which is highly expressed in psoriatic
skin, converts inert self-DNA and self-RNA released by dying cells
into a potent trigger of type 1 IFN production by pDCs, by binding
the DNA/RNA to form complexes that are delivered to endocytic
compartments in pDCs and myeloid DCs. In pDC, self-DNA-LL37
and self-RNA-LL37 complexes activate TLR9 and TLR7, respectively,
and trigger the secretion of IFNa without inducing maturation or
the production of IL-6 and TNFa. In addition, in contrast to self-
DNA-LL37 complexes, self-RNA-LL37 complexes activate myeloid
DCs via TLR8 which leads to the maturation of the DCs and the pro-
duction of TNFa and IL-6. Self-RNA-LL37 complexes were demon-
strated in psoriatic skin lesions and were associated with mature
myeloid DCs in vivo [63,64].

Other endogenous TLR ligands that have been described in pso-
riatic disease are the heat shock proteins 27, 60 and 70 which were
present in psoriatic skin but not in healthy skin [65]. In addition,
exogenous TLR ligands might also play an important role. Recently,
in Crohn’s disease a primary innate immunodeficiency with ham-
pered TLR responses by macrophages led to an impaired innate im-
mune response and bacterial clearance possibly underlying chronic
inflammation [66]. Since psoriatic disease and Crohn’s disease
share considerable features, both are associated with HLA-B27 pos-
itivity, (sub)clinical eye and gut inflammation and the formation of
tortuous vessels at inflammation sites [56], an immunodeficiency
by macrophages/DCs might be an underlying factor in psoriatic
disease as well. Microbial products are profoundly present in pso-
riatic skin lesions and along the skin basement membrane of unaf-
fected skin from psoriasis patients, while no microbial products are
found in skin from non-psoriatic individuals [67]. PsA patients
have higher antibody levels against various bacteria and bacterial
constituents than psoriasis patients without articular involvement,
RA patients or healthy controls (reviewed in [68]). Synovial tissue
and enthesis organs are avascular, but tissue microdamage is com-
mon and appears to be associated with repair responses with ves-
sel ingrowth. This makes the joint and enthesis organ a site where
(components of) bacteria may preferentially localize. In the context
of susceptibility-increasing genetic factors, this might lead to the
characteristic inflammatory responses of PsA. Altogether, these
findings appear indicative of at least a perpetuating role for bacte-
ria and thus for TLR activation in psoriatic disease, especially PsA.
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7. Gout

Gout is the most common inflammatory arthritis with increas-
ing incidence over the past decades. The recurrent attacks of
inflammation are thought to be caused by intra-articular monoso-
dium urate (MSU) crystal deposition. This can happen whenever
there are fluctuations in the urate levels and the synovial fluid be-
comes supersaturated with urate. In contrast to this there seems to
be a continuous deposition of MSU in the joint or in tophi even
though the attacks are sporadic. Moreover, only a part of people
with hyperuricemia and deposits of MSU in the joints develop
gout.

The stimulating capacity of MSU crystals to achieve monocytes/
macrophages to produce IL-1b was already recognized 20 years
ago, but to date controversy remains about the precise mecha-
nisms through which urate crystals drive inflammation [69]. The
first articles showed that MSU crystals are potentially recognized
by immune cells through TLR 2 (and probably TLR4) [70,71] and
FccRIIIB [72], subsequently leading to NF-jB activation and down-
stream signaling culminating in the production of pro-
inflammatory cytokines such as IL-6, TNFa, IL-1b and IL-8. Recent
studies have led to significant advances in the understanding of
the basic biology of crystal-mediated inflammation. In line with
the clinical picture, the combination of MSU crystals and fatty acids
[73] or LPS [74] is actually causing the attacks of inflammation. In
this sequence the signaling from the fatty acid through TLR2 or LPS
through TLR4 is important to fully induce IL-1b production. These
recent findings change the proposed mechanism in gout dramati-
cally. Even though uric acid has been identified as a danger signal
that triggers a cytosolic sensor called the inflammasome, a signal-
ing platform which is required for the activation of IL-1b, these
recent findings show that uric acid as a danger signal is not
enough. This could well be the first hit to activate the inflamma-
some but a second hit (like LPS, a fatty acid or maybe even cold)
is needed to fully activate IL-1b and start the inflammation. The
critical role of IL-1b in the initiation of acute inflammation in gout
is reviewed in [75]. In light of the recent findings the presence of
Fig. 1. The involvement of TLRs in SLE, RA, SSc, PsA and gout. The TLRs involved are depic
they bind to: TLR2 (green), TLR4 (blue), TLR7 or TLR8 (red) and TLR9 (purple). TLR7 or TL
shown in black because they can bind to multiple TLRs. RNA/DNA can be transported into
membrane (SLE, RA and SSc) or as a complex with LL37 which also facilitates endosoma
S100A8 proteins in gout synovial fluid [76] gains importance as
this endogenous TLR4 ligand can create a self-perpetuating loop
inducing prolonged (sub)clinical inflammation.

So far, gout is considered a local immune mediated disease.
However, the clearly increased risk for cardiovascular diseases
would suggest otherwise. Recent data from our group showed that
multiple inflammatory molecules, among which TLR binding pro-
teins, are highly expressed even in periods between gouty arthritis
attacks (unpublished data). This observation together with the
findings described above, is likely to spark the research into the
role of the innate immune system in this condition that is also
likely to broaden our therapeutic armamentarium for this
condition.

8. Conclusions and future perspectives

In this overview we demonstrated that the vulnerable host
could become a victim of its own innate immune system. In multi-
ple rheumatic diseases it is shown that cells involved in the disease
process have an increased expression of certain TLRs or an in-
creased responsiveness to TLR ligands. This, together with the
excessive presence of inflammatory molecules or complexes that
can bind to TLRs, stresses the importance of TLR signaling in the
pathogenesis of these diseases. In autoimmune diseases like RA,
SLE and SSc the adaptive and innate immune system are both in-
volved, whereas in a disease like gout the inflammation is mainly
caused by aberrant activation of the innate immune system. In
PsA both the innate and the adaptive immune system seem to play
an important role although autoantibodies are mostly absent. This
would classify PsA more in between autoimmune diseases and
autoinflammatory diseases like gout. As knowledge on the contri-
bution of specific parts of the immune system is still evolving, clas-
sification of these inflammatory diseases will stay a matter of
ongoing debate.

During steady state conditions, host nucleic acids will not trig-
ger TLR activation because they are physically separated from the
endosomal compartment containing TLR3, 7, 8 and 9. However,
ted in a general APC. The colors of the ligands correspond with the colors of the TLRs
R8 are shown together as they both bind single-stranded RNA. Bacteria/viruses are
the endosome in immune complexes, via binding to Fc gamma receptors on the cell
l entry (PsA).



K.C.M. Santegoets et al. / FEBS Letters 585 (2011) 3660–3666 3665
both in autoimmune and inflammatory rheumatic conditions those
regulatory mechanisms may be aberrant, leading to the breakdown
of this barrier facilitating RNA/DNA transport into the endosomal
compartment, possibly culminating in TLR7, 8 or 9 binding and
downstream signaling. For instance, in SLE the presence of autoan-
tibodies directed towards DNA or RNA containing protein com-
plexes facilitates transport to the endosomes via FccRs.
Autoantibody induced uptake of DNA or RNA and subsequent trig-
gering of intracellular TLRs is also suggested to be involved in RA
and SSc. In psoriasis/PsA, this transport function is fulfilled by
the antimicrobial peptide LL37, which can bind to DNA and RNA
and facilitate endosomal entry of LL37-DNA or LL37-RNA com-
plexes. Breakdown of this barrier function thus seems to be a
recurrent defect in multiple rheumatic conditions (Fig. 1). Cell-
stress and tissue damage can also result in the presence of other
endogenous ligands, including multiple heat-shock proteins, which
trigger immune cells mainly via TLR2 and TLR4 (Fig. 1). In all the
diseases described here it is not a single TLR or a single cell type
which is responsible for the development or perpetuation of the
disease, but it is a complex network of interacting immune and tis-
sue cells which are in an inflammatory state, at least partially med-
iated via TLRs.

Future efforts to battle autoimmune/autoinflammatory condi-
tions via restoring TLR mediated response should either target
the TLR itself or the effector cell activated by TLR mediated signal-
ing. The latter is nicely exemplified by harnessing tolerogenic DCs
in the treatment of arthritis. Tolerogenic DCs are able to re-balance
the immune system that has gone awry. Experimental models of
arthritis have shown the promise of this theory. Currently, this
new means of therapeutic approach is clinically being evaluated
in at least two centers (Prof. Thomas, University of Queensland,
Australia and Prof. Isaacs, Newcastle University, United Kingdom).
The direct inhibition of TLRs or their downstream cascades is
somewhat further away from clinics but will certainly enter pre-
clinical evaluation not too long from now. However, the primary
question here would be; what price will we pay for the inhibition
of TLR pathways? In other words, would such therapies dampen
our immune system in such a way that infectious diseases will gain
terrain? Such questions were posed in the rheumatology commu-
nity during the introduction of TNFa neutralizing antibodies, and
after that the other biological agents administered to treat many
of the conditions discussed here. Surprisingly, side effects, both
short-term and long-term are acceptable. Altogether, the rheuma-
tology community seems ready to take the next step; testing ther-
apeutic agents which interfere with TLR signaling pathways and
only time will tell how high the toll for bugs is in the treatment
of rheumatic conditions.
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