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The demand for validated analytical methods for botanicals has

grown in response to the increasing consumer market for

botanical supplements. Government initiatives to increase the

availability of validated analytical methods and botanical

reference material have led to the publication of numerous

validation studies in scientific journals. Single laboratory

validation and collaborative validation studies are structured to

confirm a method’s ruggedness and fit for purpose. The

performance characteristics and statistical protocols followed

throughout a validation study vary with the source of guidelines.

Analytical techniques and priority methods are influenced by

the need for fast-screening techniques, the limited availability

of reference material, market value, and the prevalence of

contaminants in botanical supplements.
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Introduction
A growing consumer market for botanical supplements

has surpassed the availability of reliable analytical

methods to verify botanical identify, purity and strength.

The lack of publicly available validated methods makes it

difficult to assess product quality, both composition and

stability, and has stymied scientific research on these

products. This for validated methods is further driven

by laws that require publicly available methods to enforce

legal action against dietary supplements [1].
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Initiatives have been taken in response to the need for

validated analytical methods for botanical supplements.

These involve collaborations between government,

industry and private scientific organizations where scien-

tists and industry members have been working to develop

and validate standard analytical methods for dietary

supplements [1]. Despite the U.S. Food and Drug

Administration’s (FDA) Current Good Manufacturing

Practices (CGMP) for dietary supplements, the industry

still suffers from botanical misidentification, product con-

tamination and adulteration. The National Institutes of

Health’s (NIH) initiative to validate methods for priority

dietary supplements drove AOAC International to adapt

the traditional Official Methods process to include single

laboratory validation (SLV). The scope of this review

includes initiatives, guidance and current practice in the

validation of analytical methods for botanicals.

Validation
Validation is an applied approach to verifying that a

method is suitable and rugged enough to function as a

quality control tool. AOAC International defines a vali-

dated method as a method that is fit for its intended

purpose. The purpose may include quantifying a specific

analyte in a product, confirming whether a product meets

its specifications or regulations, identifying the presence

of a nutrient or contaminant in a product, or identifying a

product ingredient. Methods can be validated in a single

laboratory or through a collaborative study in multiple

laboratories (AOAC guidelines for single laboratory vali-

dation of chemical methods for dietary supplements and

botanicals; URL: http://www.aoac.org/vmeth/SLV_Gui-

delines_Dietary%20Supplements.pdf).

Single laboratory validation
A Single Laboratory Validation (SLV) is the first step

towards becoming an official method of analysis (OMA)

through AOAC International. Once the method has

passed a SLV, it is ready for a collaborative study between

multiple laboratories. If the collaborative study is success-

ful then the method may be considered for an OMA.

An analytical method should be fully developed and

optimized before single laboratory validation. The pur-

pose of the validation is to confirm performance

parameters determined during development and should

provide information on how it will perform under routine

use. An unstable method may require re-validation [2]. If

validation results do not meet the performance standards

then the method may require further development and
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optimization. When possible, a validation should also be

conducted as a collaborative study by multiple labora-

tories, on different instruments, reagents, and standards.

Collaborative study
The purpose of a collaborative study is to determine the

reproducibility of performance characteristics when fol-

lowed by different laboratories. Under AOAC Inter-

national guidelines, this requires a minimum of 10

independent laboratories producing valid data for 12

replicates of each material. All samples are blinded and

randomized [1]. Some methods are validated indepen-

dently through small-scale inter-laboratory studies [3].

This can provide information on method ruggedness

but will not lead to an OMA. A 20 laboratory collaborative

study was recently conducted on the analysis of the

mycotoxin ochratoxin A in licorice products. The method

was considered successful based on meeting the LOD set

out in EU legislation [4�].

Reference material
Chemical analysis requires reference points. Analyti-

cal methods for botanicals typically require reference

materials with measurable  physical properties that are

used for comparison to the test materials. Chemical

standards are a common form of reference material

that can be purchased from chemical suppliers; how-

ever, if no reference material exists then a compound

with similar properties can be used. As part of

method development, reference materials should be

assessed for identity, purity, stability, and storage

conditions [1]. Botanical identification methods

(BIM) require that the availability and identity of

panel materials be verified [5��]. Some reference

standards can be isolated in-house, as was done with

baicalein-7-O-glucoside for the analysis of Semen orox-
yli. Authors checked its purity by UV and NMR

spectroscopy [6�].

Botanical reference materials, or voucher specimens,

are preserved specimens that can be used to authenti-

cate sample identification and can be sourced from

herbariums [7,8]. When botanical material is collected

from wild sources, a voucher specimen should be ver-

ified and saved for future reference [9]. Germplasm

banks are another potential source of verified plant

material [10�].

Performance characteristics
The performance characteristics  of an analytical method

include applicability (scope), selectivity, calibration,

accuracy, repeatability precision, measurement uncer-

tainty, variability, limit of detection (LOD), and limit of

quantification (LOQ). They indicate the degree to

which replicate measurements approach the ‘true’

values of a method’s parameters. Other characteristics

that should be measured during the method develop-
www.sciencedirect.com 
ment and optimization stage include analyte stability,

matrix effects, sensitivity, and ruggedness or robustness

[1,9].

According to AOAC International, a chemical calibration

curve should have six or more calibration points that span

the relevant range. This practice was followed using six

calibration levels ranging in concentration of 10–215 mg/

kg for validating a method for quantifying deoxynivale-

nol-3-glucoside in processed cereal products [12]. An

assessment was done to confirm the stability of cichoric

acid during its extraction and analysis from Echinacea.

This involved an exhaustive extraction procedure, storage

at room temperature for six days, and 30 consecutive

HPLC injections [13�].

Ruggedness is the degree to which a method’s results

can be reproduced under different conditions. The

Youden Ruggedness Trial is a statistical tool used to

identify how significantly each factor contributes to a

method’s variability. It involves  small, deliberate

changes to the procedure and then an assessment of

the results [1]. The Youden Ruggedness Trial was used

to examine the effect of seven parameters of an extrac-

tion method for cranberry anthocyanins. High and low

parameters were examined for sample mass, sonication

time, percent acid in extraction solvent, shaking time,

sonication temperature, injection time, and centrifu-

gation time [14��].

Statistical tools
Current practices are now shifting over to design of

experiment (DOE) for evaluating ruggedness. DOE is

considered a time-efficient and cost-efficient technique

used to simultaneously identify the effects of multiple

factors on results.

Chemometrics is gaining significance as a data analysis

tool and can be used for method development by identi-

fying the effects of analytical conditions in factorial

experiments. This tool was used in combination with

DOE for the analysis of alkaloids in poppy straw. A 24

full factorial design was accomplished through 19 GC/

FID/MS method optimization experiments. Using DOE,

the authors were able to identify the most effective

parameters for rapid screening [15��]. Some authors forgo

statistical methods for evaluating ruggedness and instead

vary parameters individually to see which significantly

affect results [16,17,19]. This can be a time consuming

approach.

The Horwitz ratio (HorRat) is a statistical performance

parameter that indicates the acceptability of method

precision. It is a common criterion for validation of

analytical methods under AOAC International protocols

and has an acceptable value range of 0.3–1.3 for SLV data

and 0.5-2.0 for collaborative study data (Definitions and
Current Opinion in Biotechnology 2014, 25:124–128
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calculations of HorRat values from intralaboratory data;

URL: http://www.aoac.org/dietsupp6/Dietary-Supple-

ment-web-site/HORRAT_SLV.pdf). HorRat was a use-

ful indicator of good overall method performance of a

validated method for the analysis for Catechin and Epi-

catechin in cocoa [19].

Leading organizations and government
bodies
The ODS is a key government leader in the development

and validation of analytical methods and reference

materials for botanicals and dietary supplements. Goals

of the ODS’s Analytical Methods/Reference Materials

Dietary Supplements Program (AMRM) are to build

infrastructure for validation, support the development

of validated methods, reference material, and calibration

standards, and make validated methods and reference

materials available to the community (Analytical

methods/reference materials (AMRM) dietary supple-

ments program description; URL: http://ods.od.nih.gov/

Research/AMRMProgramDescription.aspx).

AOAC International is a not-for profit organization stan-

dards body that develops program foundation and tech-

nical aspects of analytical methods. They coordinate

scientific studies, evaluate results, give official sanction

to applicable methods, and disseminate the methods or

performance data to the public (Help the dietary supple-

ment community create a reliable compendium of colla-

borative studied methods; URL: http://www.aoac.org/

dietsupp6/Dietary-Supplement-web-site/DSHomePa-

ge2.html). The AOAC’s Presidential Task Force on

Dietary Supplements identifies priority ingredients and

selects methods for validation. They rank ingredients

based on funding, market share of the ingredient, avail-

ability of methods to validate, related clinical trials, and

ingredient safety concerns. AOAC’s expert review panel

(ERP) assists in this process by peer-reviewing the quality

of existing methods and supporting data. The ERP

recently reviewed methods for antioxidant activity of

botanicals. They were evaluated against AOAC Interna-

tional’s standard method performance requirements

(SMPRs) and an ORAC method was approved as First

Action Official Method [20].

Other organizations that provide SLV guidance include

International Conference on Harmonization (ICH) and

Brazil’s Agencia Nacional de Vigilancia sanitaria

(ANVISA) [21,22].

Priority methods and botanicals
The ODS publishes a list of ODS-supported validated

methods and botanical ingredients. Methods that are

currently under development and awaiting validation

include those for black cohosh, general botanicals, gly-

cosides, pesticides, and valerian (Analytical Methods for

Dietary Supplements; URL: http://ods.od.nih.gov/
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Research/AMRMAnalyticalMethods.aspx#umethods).

AOAC’s ERP prioritizes methods and analytes of interest

for validation. In 2009 the ERP selected pyridoxine as the

main analyte of interest after reviewing over 50 vitamin

B6 methods [23��].

Ginseng is one of the top selling dietary supplements on

the market and has been assessed in various clinical trials.

This led to the execution of SLV and interlaboratory

studies of an accurate and reliable method to identify and

quantify ginsenosides in different ginseng species

[24��,25�]. This method is now on tract to becoming an

OMA by AOAC Int. OMAs can be extended to the

analysis of new matrices, but should be validated to

confirm applicability. Authors extended AOAC’s Official

Method 991.31 for the determination of Aflatoxins in

corn, raw peanuts, and peanut butter to analysis of afla-

toxins in botanical roots [26�].

Pesticide analysis is an important aspect of identifying

contaminants and adulterants in botanicals. Although

matrix effects pose challenges, the high presence of

pesticides in botanicals has led to validation studies

[27,28,29�]. The growing consumer interest in gluten-

free foods has also driven the need to validate analytical

test methods for gluten [30�].

Standardization of plant material is a critical aspect of

botanical supplement quality. As a first step towards

standardizing oenothein B in plants from the Oenother-

aceae family, authors developed and validated a HPLC–
DAD-MS method for its quantification [31]. In response

to the FDA’s request that supplement manufacturers

adopt new technologies for measuring process attributes,

authors validated a NIR method for quantification of

chlorogenic acid in Lonicera japonica [32]. Interest in

the bioavailability of botanical compounds has led to

the validation of analytical methods on biological

matrices, such as plasma [33]. In preparation for a Phase

I clinical trial, a UHPLC/MS/MS method was validated

for the quantification of prenylflavonoids in human

serum. The method provides an accurate and precise

way to measure clinical samples and support product

efficacy [39��].

Analytical techniques
Fast screening techniques and simple sample preparation

are growing priorities intended to make methods more

convenient and cost-effective [34�]. Authors combined

this need with the interest in alkaloid analysis to develop

and validate a rapid-screening method for simultaneous

alkaloid analysis in poppy straw [35]. An HPTLC-densi-

tometric method was developed and validated to meet

the need for a high throughput procedure for routine

quantification of primulasaponins [36�]. Derivatization

procedures, which can increase sample preparation or
www.sciencedirect.com
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run times, are being replaced by faster techniques when

possible [37�].

Another motivation for increasing the efficiency of ana-

lytical methods is to conserve plant material. A 6-min

UHPLC–QTOF-MS method was developed and vali-

dated for high-throughput analysis of huperzine A in a

species of club moss. The authors validated the micro-

scale extraction protocol and short analytical method with

the goal of conserving plant resources [38�].

Conclusion
This review shows that the increasing consumer use of

botanical supplements has led to initiatives and support for

validating analytical methods to verify their identity, purity

and strength. Through government, academic and industry

initiatives, validated analytical methods and reliable refer-

ence material are becoming more prevalent and available

to the public. Fast screening techniques and efficient use of

limited study material are priorities in method design and

optimization. Commercial value as well as the prevalence

of pesticides and allergens in botanicals is leading the

direction of validated analytical methods.
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