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SUMMARY

Triple-negative breast cancer is a heterogeneous
disease characterized by poor clinical outcomes
and a shortage of targeted treatment options. To
discover molecular features of triple-negative breast
cancer, we performed quantitative proteomics anal-
ysis of twenty human-derived breast cell lines and
four primary breast tumors to a depth of more than
12,000 distinct proteins. We used this data to identify
breast cancer subtypes at the protein level and
demonstrate the precise quantification of biomar-
kers, signaling proteins, and biological pathways by
mass spectrometry. We integrated proteomics data
with exome sequence resources to identify genomic
aberrations that affect protein expression. We per-
formed a high-throughput drug screen to identify
protein markers of drug sensitivity and understand
the mechanisms of drug resistance. The genome
and proteome provide complementary information
that, when combined, yield a powerful engine for
therapeutic discovery. This resource is available to
the cancer research community to catalyze further
analysis and investigation.

INTRODUCTION

A key challenge for medicine in the 21st century is to harness

the predictive power of molecular data to eradicate cancer

(Arteaga and Baselga, 2012; Vidal et al., 2012; Weinstein

et al., 1997). Like other cancers, breast cancer is caused

by a series of inherited and/or acquired genetic aberrations

that eventually lead to uncontrolled cell proliferation and

metastasis. The diverse genetic drivers of breast cancer

have been characterized in exquisite detail (Banerji et al.,

2012; Curtis et al., 2012; Perou et al., 2000; Prat and Perou,

2011; Cancer Genome Atlas Network, 2012; Vogelstein et al.,

2013). However, characterization of the proteome has lagged

behind.
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At the functional level, relevant genomic aberrations affect

cellular functions by altering the activity and abundance of pro-

teins. These effects are context specific and very much depend

on the unique catalog of proteins expressed by different cell

types. For example, a mutation in the BRAF kinase might have

different functional outcomes in skin cancer than in liver or breast

cancer. In addition to driving cellular functions, proteins are the

most actionable and drug-treatable cellular components. There-

fore, protein measurements are important to understand breast

cancer and delineate breast cancer therapies.

In fact, protein measurements are being used today to classify

breast cancer types according to their receptor status, in which

the presence or absence of three cellular receptors (estrogen re-

ceptor ESR1, progesterone receptor PGR, and human epidermal

growth factor receptor-2 ERBB2) is assessed via immunohisto-

chemistry. Despite the reduced number of molecular features

measured, this classification is the most useful today for chemo-

therapy selection. Irrespective of genomic aberrations, more

than 80% of breast cancers express one or more of these recep-

tors (Howlader et al., 2014) and are treatable by hormone depri-

vation and/or ERBB2 inhibition (Untch et al., 2014). Targeted

therapies are not currently available for tumors that do not ex-

press these receptors, which are collectively referred to as tri-

ple-negative breast cancer (TNBC). TNBC is an important and

unmet clinical problem. It tends to be more aggressive, is corre-

lated with worse prognosis than receptor-positive subtypes (Hu-

dis and Gianni, 2011), and is more common among young and

African American women (Howlader et al., 2014). Identifying sub-

types within the TNBC type, and proteins within those subtypes

that can serve as therapeutic targets, will be extremely valuable.

Among protein measurements, reverse-phase protein arrays

(RPPA) have been one of the most widely adopted tools for

integrated genomics and drug sensitivity analysis, but a key lim-

itation of RPPA technology is its lack of proteome coverage,

generally less than 200 analytes (Tibes et al., 2006). As such,

mRNA expression has been used as a proxy for protein levels,

despite mediocre quantitative concordance (Gygi et al., 1999;

Maier et al., 2009). Both mRNA and protein expression using

RPPA outperform genomic data as predictors of drug sensitivity

and clinical outcomes (Costello et al., 2014; Yuan et al., 2014).

These results highlight the potential of systematic protein
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expression analyses for breast cancer research in general and

drug discovery in particular.

It is an excellent time to further investigate the TNBCproteome

using more comprehensive techniques. Mass spectrometry in

the form of ‘‘shotgun proteomics’’ is highly quantitative, and

has reached the speed and sensitivity to measure proteomes

at a depth comparable to gene expression studies (Kim et al.,

2014; Wilhelm et al., 2014). In fact, proteomics is already making

an impact in breast cancer research (Geiger et al., 2012a; Mog-

haddas Gholami et al., 2013; Kennedy et al., 2014), but yet, to

show its full potential, proteomics needs to be integrated with

other types of big data.

Here we present an integrative approach using quantitative

mass spectrometry to characterize TNBC proteomes both as

readouts of genetic abnormality and as predictors of drug sensi-

tivity. The goals of this work were to refine our understanding of

breast cancer biology as an integrated proteogenomic land-

scape and to identify molecular diagnostic markers to improve

drug selection in TNBC.

RESULTS

The TNBC Proteome
We assembled a panel of 20 human breast cell lines and four

clinical tumors to analyze the proteomic landscape of TNBC (Fig-

ure 1A). These included 16 triple-negative cell lines covering

mesenchymal-, luminal-, and basal-like subtypes, as well as

three receptor-positive and one non-tumorigenic cell line to

serve as a basis for comparison (Lehmann et al., 2011; Neve

et al., 2006). Primary tumor tissues were derived from patients

with metastatic TNBC (stages II to III). Cell lines were cultured

and analyzed in duplicate to assess the precision of protein

quantification. Proteins were digested in parallel with either

lysyl-endopeptidase (LysC) or trypsin and separated at the

peptide level into five fractions to enhance proteome coverage

(Figure 1B). We used liquid chromatography-tandem mass

spectrometry (LC-MS/MS) on a hybrid quadrupole-orbitrap

mass spectrometer to acquire quantitative profiles of the pep-

tides present in each fraction.

In total, more than 450 peptide fractions were analyzed,

yielding approximately 20 million high-resolution mass spectra.

Across the entire dataset, we identified 289,819 non-redundant

peptide sequences mapping to at least 12,775 distinct proteins

encoded by 11,466 genes (protein false discovery rate [FDR] <

1%). To facilitate comparison of specific protein isoforms, we

additionally retained in our data truncated protein isoforms hav-

ing high sequence coverage, bringing the total proteins analyzed

to 15,524. The median protein had 15 peptide matches, four iso-

form-specific peptide matches, and shared peptides with only

one other protein in the dataset (Figures S1A–S1C). Median pro-

tein sequence coverage was 52%.

The number of proteins identified was consistent across cell

lines, tissues, and replicates. On average, 80% of proteins

were identified in both replicates. At least 9,000 proteins were

found in each cell line (Figure 1C), which agrees well with other

recent deep proteome experiments (Beck et al., 2011; Geiger

et al., 2012b; Moghaddas Gholami et al., 2013; Nagaraj et al.,

2011). These proteins represent 56% of the 20,537 genes anno-
tated in Uniprot/Swiss-Prot and at least 75% of genes included

in the catalog of somatic mutations in cancer (COSMIC) (Fig-

ure 1D). As expected, we achieved near complete coverage of

gene ontology categories involved in core cellular functions,

such as primarymetabolism, protein synthesis, and general tran-

scription, and lower coverage of tissue-specific categories, such

as transcription factors and receptors (Figure 1E).

To infer protein absolute abundances (as copies/cell), we

used intensity-based absolute quantitation (iBAQ). Quantitative

reproducibility between biological replicates was uniformly

high across all cell lines, with an average R2 equal to 0.92 (Fig-

ure 1F; Figure S1D). Proteins that were highly abundant and

identified in all samples were the most reproducibly quantified

(median CV = 16%, Figure S1E). By comparison, the average

R2 between different cell lines was 0.72, indicating significant dif-

ferences in global protein expression.

The data presented here comprises more than 200,000 quan-

titative measurements of absolute protein abundance (Table S1).

Innovations in instrumentation and extensive peptide fraction-

ation prior to analysis have greatly increased the sensitivity and

reproducibility of shotgun proteomics analysis, and our quantita-

tive results compared favorably with a recent targeted prote-

omics study on many of the same cell lines (Kennedy et al.,

2014) completed by the Clinical Proteomic Tumor Analysis

Consortium (CPTAC). To facilitate use and dissemination of the

data, we have developed a web resource (https://zucchini.gs.

washington.edu/BreastCancerProteome/) in which protein

abundances can be queried and correlated to genomic and

drug sensitivity data, as presented below. To demonstrate the

validity of our dataset as a quantitative resource, we examined

several clinical breast cancer biomarkers including ESR1,

PGR, and ERBB2 (Figure 2). These measurements accurately

reproduce the known classification of cell lines based on immu-

nocytochemistry (Subik et al., 2010) and correspond with known

copy-number (CN) amplifications. In contrast to antibody stain-

ing, which assesses the presence or absence of expression,

mass spectrometry provides sensitive and precise quantitation

over a broad range. This is an important consideration for

markers such as Ki-67, which are dynamically expressed in all

cells. As another example, the cell line MDA-MB-453 stains

negative for ERBB2 (Vranic et al., 2011) and was classified as

a TNBC cell line (Neve et al., 2006), despite bearing a CN ampli-

fication. However, our results show that MDA-MB-453 ex-

pressed ERBB2 at levels 20-fold higher than the median,

compared to several-hundred-fold overexpression of ERBB2

by cell lines such as BT474 and SKBR3.

Quantitative Analysis of TNBC Proteomic Subtypes
Molecular subtyping using gene expression or copy-number ab-

erration has been used extensively to characterize clinical breast

cancer specimens and cell lines (Banerji et al., 2012; Lehmann

et al., 2011; Prat and Perou, 2011). We used hierarchical clus-

tering to identify patterns based on correlation of protein expres-

sion profiles. This approach classified the panel of cell lines into

two overarching groups containing four clusters (Figure 3A). To

illustrate the relationship between driver gene alterations and

proteome profiles, we show the most frequent census mutations

and copy-number aberrations for each cell line (Figure 3A, top).
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Figure 1. Mass Spectrometry-Based Profiling of TNBC

(A) Overview of samples analyzed is shown. N, normal epithelial; +, ER/PR/ERBB2+; L, luminal-like; M, mesenchymal-like; B, basal-like; ?, not matched. TNBC

cell line classifications are according to Lehmann et al. (2011).

(B) Workflow of proteomics sample preparation and data collection is shown.

(C) Average number of proteins identified in each replicate (blue bars) and total number of proteins for each cell line (green bars) are shown. Error bars

represent SD.

(D) Percentages of identified proteins relative to the Uniprot/Swiss-Prot database (left) and the COSMIC census (right) are shown.

(E) Number and percentage representations of indicated gene ontology categories are shown.

(F) Representative scatter plot for cell line SKBR3 replicate protein measurements shows quantitative reproducibility of iBAQ protein abundance.
Cell lines with similar genetic abnormalities tended to cluster

together. As has been observed previously (Cancer Genome

Atlas Network, 2012), PIK3CA mutations were associated

with luminal breast cancer subtypes (80% of the cell lines in

cluster 1), whereas TP53 mutations were characteristic of

TNBC (100% of the cell lines in clusters 3 and 4). Mutations in

the tumor suppressor NF1 were exclusive to the mesen-

chymal-like subtype (cluster 4) and BCR mutations were exclu-

sive to luminal cells (cluster 1).
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Protein expression patterns within subtype clusters were

still highly cell-type specific. To better illustrate this, we used

principal component analysis (PCA) to project the distances

between each proteome onto a two-dimensional coordinate

system. Some of the sample proteomes formed tight clusters,

while others were more distantly related to those in the same

group (Figure 3B). Additional principal component dimensions

are necessary to capture the proximity of cell lines, such as

MFM223, BT474, and HCC1599, to their respective subtypes.



Figure 2. Quantification of Clinical Breast Cancer Biomarkers

ESR1, estrogen receptor; PGR, progesterone receptor; ERBB2, human

epidermal growth factor receptor-2; TP53, tumor protein p53; MKI67, Ki-67

antigen; EGFR, human epidermal growth factor receptor. Sample labels are

shown (bottom). Absolute protein abundancewas calculated using iBAQ. Error

bars represent SD. Red dots indicate gene CN amplification (more than seven

copies).
Intra-subtype correlation was also modest in earlier classifica-

tion studies using mRNA expression (Lehmann et al., 2011),

and the differences in mRNAmay be further amplified at the pro-

tein level. The heterogeneity of protein expression underscores

the importance of data-driven cell line selection in cancer

research.

Accurate analysis of genes, transcripts, or proteins from het-

erogeneous clinical specimens represents a major challenge

for precision medicine. The proteins expressed >10-fold in tu-

mors versus the cell lines were enriched with proteins from blood

cells and plasma (p < 0.001). These proteins accounted for as

much as 20% of the total proteome intensity from the tumors.

Given that TNBC cell lines should better represent the cellular

component of the tumor, we correlated tumor samples to the

centroids from each cell line cluster to identify to which proteo-

mic subtype they belonged; we found that they were all more

similar to clusters 3 and 4, an observation that also can be

made based on PCA (Figure 3B).
Nevertheless, many proteins significantly over- or underex-

pressed within each cluster could be identified. We were partic-

ularly interested in potential drug targets and proteins known to

be involved in cancer biology. For example, the protein STAT5A,

a pro-survival transcription factor, was expressed at high levels

in the tumors and mesenchymal-like cell lines (Figure 3C). Using

the first cluster as an example, we show how these proteins

can be identified using our web-based resource (Figure S2A).

The transcription factor FOXA1 was exclusively expressed by

luminal-like cells, whereas TGFB1 was not found (Figure S2B).

PPM1A, a protein involved in the suppression of TGF-b-signaling

pathways (Lin et al., 2006), was decreased in TNBC, while many

proteins involved in immunity and metastasis, such as POSTN,

MYLK, andHLA-A, were expressed at higher levels in TNBC (Fig-

ure S3A). Some of these proteins are thought to be provided by

tumor-infiltrating immune cells and fibroblasts (Quail and Joyce,

2013), but here we show they also are abundant in the homoge-

nous conditions of cell culture.

The composition of each cluster showed striking similarity to

subtypes defined by mRNA expression arrays and morpholog-

ical studies (Kenny et al., 2007; Lehmann et al., 2011; Neve

et al., 2006). Cluster 1 contained the luminal breast cancer cell

lines SKBR3, MCF7, and BT474 as well as luminal-androgen-re-

ceptor cell line MFM-223, which expresses the androgen recep-

tor protein, and MDA-MB-453, which overexpresses ERBB2 as

described above. The set of proteins that was highly expressed

by these cell lines was enriched for functions typically expected

of cancer cells, including insulin and ErbB signaling, glycolysis,

and nucleotide excision repair (Figure 3D). Cluster 2,most similar

to the basal-like 2 gene expression subtype, contained, DU4475,

SW527, HCC1806, MDA-MB-436, and the normal breast epithe-

lial cell line MCF10A. Cluster 3 included all basal-like 1 cell lines:

HCC38, HCC1143, HCC1937, BT20, and MDA-MB-468. Cluster

4, containing BT549, HS578T, MDA-MB-231, and MDA-MB-

157, was identical to ‘‘mesenchymal-like/claudin-low’’ subtype

(Lehmann et al., 2011), all showing stellate morphology in

three-dimensional culture (Kenny et al., 2007) and high invasive-

ness in chamber assays (Neve et al., 2006). To better understand

the biology of each subtype, we compared the distribution of

protein abundance within gene ontology categories. Interest-

ingly, luminal-like cells expressed higher levels of pathways

associated with proliferation, such as cell cycle, growth factor

signaling, metabolism, and DNA damage repair mechanisms

(Figure 3E; Figure S3B). TNBC cell types, particularly the tumors

and more invasive cells, expressed higher levels of pathways

associated with metastasis, such as ECM-receptor interaction,

cell adhesion, and angiogenesis (Figure 3E; Figure S3B). The ex-

pressions of proliferation and metastasis pathways were mutu-

ally exclusive, an observation also made in an analysis of

mRNA expression profiles from claudin-low tumors (Prat et al.,

2010). Thus, therapies targeting immune and metastatic sig-

naling are an exciting avenue for TNBC treatment.

Differential Expression of Cancer-Signaling Proteins
The cancer genome has been studied extensively (Futreal et al.,

2004; Vogelstein et al., 2013). We sought to characterize the

abundance of proteins derived from known cancer census genes

and signaling pathways (Figure 4; Figure S4). The abundance of
Cell Reports 11, 630–644, April 28, 2015 ª2015 The Authors 633
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Figure 3. The TNBC Proteome

(A) Hierarchical clustering of protein expression profiles computed using centered Pearson’s correlation identified four proteome subtypes as indicated. Protein

expression values were normalized to a scale from 0 to 1 prior to clustering. Frequent genetic aberrations are overlaid onto the proteome clustering results. Green

circles represent exonicmutations. Red and blue circles represent CNgain (more than seven copies) or loss (0 copies), respectively. Colored background shading

corresponds to cluster membership. At the time of writing, exome sequence and CN data were not available for MCF10A and SW527.

(B) Scatterplot of principal components 1 and 2. PCA was performed using protein expression profiles. Each point represents a sample. Colors represent hi-

erarchical cluster membership from (A).

(C) Biological pathways enriched from the indicated proteins clusters. Inverted log10 p values are shown.

(D) Representative example shows a protein upregulated in cluster 4 and tumors. STAT5A, signal transducer and activator of transcription 5A. Error bars

represent SD.

(E) Distribution of protein abundances within each cluster (colors) for indicated biological processes. For (A–E), cluster membership is indicated by the same

colors used in (A), with tumor samples indicated in yellow.
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Figure 4. Expression of Cancer-Signaling Proteins

(A–G) Distribution of absolute abundance for each protein in the signaling network. Chart titles indicate subnetwork membership. Each data point represents a

sample, color coded according to cluster membership from Figure 4A.

(H and I) Top 25 most differentially expressed proteins (highest SD between different samples) from (H) the COSMIC gene census or (I) the protein kinase su-

perfamily are shown.
most signaling proteins spanned two to three orders of magni-

tude, but others were expressed similarly across all cell lines

(Figures 4A–4G). These proteins included several members of

the RAS-MAPK pathway, such as GRB2, HRAS/KRAS/NRAS,

MEK1/2, and ERK1/2. In certain cases, expression of these

proteins was associated with proteomic-based breast cancer

subtypes. For example, CHEK2, HMGA2, POT1, and IL6ST

were highly expressed by members of clusters 1 through 4,

respectively (Figures 4H and 4I). However, protein expression

was generally variable and cell-type specific. MLL3 was specif-

ically expressed by BT474, BT20, and tumor A, which were each

from different clusters (Figure 4H). HCC1806 and MDA-MB-436

specifically lacked expression of the protein kinase AKT1/2 (Fig-

ure 4B). PKCa was expressed at high levels in each of the cell

lines from cluster 4, but also was highly expressed in DU4475
(Figure S4J). These results show that, despite overall concor-

dance of whole proteome profiles with various cellular pheno-

types, in most cases the expression of particular cancer proteins

did not uniformly belong to one subtype or another.

The identification of proteins with very specific outliers or large

dynamic range provides a valuable resource for TNBC drug

development efforts. EGFR, ERBB2, ESR1, and PGR exemplify

these properties (Figures 4A and S4D) and are already routine

clinical targets in breast cancer, but there are many others. For

example, ephrin type A receptors, which are involved in embry-

onic development and not normally present in adult tissues, were

overexpressed by several orders of magnitude in many TNBC

cell lines compared to luminal-like cells (Figure 4A). With the

increasing availability of comprehensive quantitative proteomics

datasets, protein expression should continue to be one of the
Cell Reports 11, 630–644, April 28, 2015 ª2015 The Authors 635



most valuable parameters for drug development and clinical

diagnostics.

Isoform-Specific Protein Expression
The identification and quantification of protein isoforms resulting

from alternative splicing is a significant challenge in proteomics,

arising from the reduced number of isoform-specific peptides

that are amenable to analysis bymass spectrometry. For this da-

taset, we first relied on isoform-specific peptides to unambigu-

ously identify proteins mapping to the same gene in the Uniprot

sequence database. This led to the identification of 1,860 protein

isoforms that corresponded to 844 genes, 52 of which were

members of theCOSMIC census. Next, we examined the relative

quantification of protein isoforms. Protein isoforms share long

segments of identical sequence but are missing certain protein

domains, resulting in altered signal intensity from those parts

of the protein.

We relied on manual inspection to analyze the expression of

isoforms for proteins involved in cancer progression. For most

proteins, different isoformswere nearly perfectly correlated, indi-

cating no difference in expression of specific isoforms, but there

were notable exceptions. For example, we identified variants in

the p65 subunit of the transcription factor NF-kB, the tumor an-

tigen CD47, and focal adhesion kinase PTK2. The protein

sequence of the NF-kB p65 variant is identical to the canonical

sequence until proline 344, followed by the read-through trans-

lation of 33 amino acids and an early stop (Figure 5A). The alter-

native sequence lacks many important regulatory regions

including the residues phosphorylated by IKKB that directly

affect its transcriptional activity (Sakurai et al., 1999). The p65

variant was detected in two cell lines and was expressed at

higher levels in all four tumor samples (Figure 5B). This result

was confirmed by an isoform-specific peptide, FSSVQLR, which

matched no other entry in the Uniprot protein sequence data-

base (Figure 5A). This finding was especially interesting since

the tumor proteomes were enriched in immuno-modulatory

pathways. NF-kB modulates the inflammatory response and

plays an important role in cancer by promoting metastasis

(Huber et al., 2004; Luo et al., 2004).

CD47 is an atypical G protein-coupled receptor with fivemem-

brane-spanning domains that participates in integrin signaling

and is proposed to have many important roles in cancer (Sick

et al., 2012).We detected two of the four known alternative splice

variants that differentially encode the cytoplasmic tail. The cell

line DU4475 expressed higher levels of the long isoform (Figures

5C and 5D), which is highly expressed in neurons (Brown and

Frazier, 2001). Although little is known about the functional differ-

ences between the isoforms, it is likely that this tail mediates

intracellular signaling downstream of the receptor.

PTK2, or focal adhesion kinase 1, is a tyrosine protein kinase

involved in cell migration (McLean et al., 2005). We confirmed

the presence of an N-terminally truncated form of this protein,

which lacks the FERM (4.1-Ezrin-Radixin-Moesin) domain (Fig-

ure 5E). The FERMdomain regulates PTK2 localization and inter-

action with other proteins to affect its activity (Frame et al., 2010).

Interestingly, the full-length form appeared to be expressed

higher in HS578T and BT20 cells based on the relative intensity

of N-terminal versus C-terminal peptides (Figures 5E and 5F).
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The differential expression of structural protein variants, many

of which occur post-translationally, could be a significant regula-

tory mechanism in cancer. Further work will be necessary to sys-

tematically identify and accurately quantify these events.

Proteogenomic Analysis Identifies Signatures of Driver
Mutations
Genetic aberrations such as sequence mutations and amplifica-

tions, which typically occur in regulatory proteins, can have

pleiotropic downstream effects on other proteins that more

directly drive cancer phenotypes. We integrated publicly avail-

able exome sequence and gene CN data from COSMIC (Forbes

et al., 2011) with proteome profiles from 18 cell lines. Protein

abundance trended positively with gene CN. The average

expression of all proteins in each CN bin correlated strongly

with CN (R = 0.96). However, it was more variable and correlated

poorly on a pairwise basis (n = 56,579, R = 0.19) (Figure 6A). For

example, the cancer census gene NDRG1 was not correlated

with CN (R = �0.06) and was not highly expressed even when

amplified (Figure 6B). This poor correlation is expected for pro-

teins under high transcriptional, translational, or proteasomal

control.

Driver mutations occur frequently in regulatory proteins such

as protein kinases, E3 ubiquitin ligases, and transcription fac-

tors, which alter the physiology of the cell by modulating the

abundance or activity of other proteins. For example, our data

showed that DU4475, the cell line with an APC mutation, ex-

pressed more than 4-fold median levels of b-catenin (p = 3.3 3

10�4, heteroscedastic t test) (Table S1), which APC normally tar-

gets for degradation. Initially we characterized cellular subtypes

according to protein abundance profiles and asked whether

frequent genetic mutations were associated with these subtypes

(Figure 3). An alternative analysis approach is to group cell lines

by their mutational status and ask whether the abundance of

specific proteins are associated with these mutations, as in the

b-catenin and APC example.

We reasoned that mutations in certain driver genes, such as

those in the same signaling pathway, would likely converge to

regulate common effectors. To determine the global effects of

driver gene mutations on protein expression, we systematically

evaluated gene-protein associations for frequently mutated

census genes (n R 3 cell lines) by comparing the abundance

of each protein in cell lines with versus without a mutation, and

plotted this information as a network. Driver genes and their

protein targets formed clusters according to their shared associ-

ations (Figure 6C). The number of significant (p < 0.001) associ-

ations for each gene ranged from 11 to 320 (Figure 6D). The

network degree distribution fit an exponential function (R2 =

0.99), revealing 233 hub proteins, each associated with three

or more cancer census genes (Figure 6E). Cell cycle was the

only significantly enriched gene ontology term among hub pro-

teins (p = 5.66 3 10�4). While not surprising, it demonstrates

that dysregulation of cell-cycle protein abundance may be a

common effect of diverse genetic mutations.

On an individual basis, proteins regulated downstream of ge-

netic lesions (e.g., TP53 loss of function) might represent more

suitable therapeutic targets than the gene product itself. Several

highly significant (p < 0.001) gene-protein associations are
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Figure 5. Differential Expression of Protein Isoforms

(A) Schematic of RELA (NF-kB subunit p65) mRNA sequence variants and intensity-based quantification of the isoform-specific peptide FSSVQLR in each

sample. Peptide intensity was divided by the total proteome intensity for normalization. The location of an exon read-through event is indicated.

(B) Scatterplot shows the full-length NF-kB protein versus the read-through variant, highlighting off-diagonal samples.

(C) Four alternative splice variants encode the cytoplasmic tail of integrin-associated protein CD47. The sequence of these variants is shown along with the

quantification of the peptide specific to isoform 1, AVEEPLNAFK.

(D) Scatterplot shows CD47 isoform 1 versus isoform 3, highlighting off-diagonal samples.

(E) Schematic shows N-terminally truncated form of focal adhesion kinase PTK2 and quantification of N-terminal/C-terminal intensity in each sample.

(F) Scatterplot shows PTK2 long form versus short form, highlighting off-diagonal samples.
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Figure 6. Proteogenomic Associations

(A) Boxplot shows the relationship of protein abundance to gene CN. Protein abundances were row-normalized to a scale of 0 to 1 to account for differences in

absolute expression.

(B) NDRG1 (N-myc downstream regulated gene 1) is a representative protein that was not correlated with CN. CN > 6 highlighted in red. R represents Pearson’s

correlation. Error bars represent SD between replicate measurements.

(C) Network of gene-protein associations. Each edge represents an association (p < 0.001) between a mutated census gene (gray nodes) and protein expression

(yellow nodes). Only genes from the COSMIC census mutated in at least three cell lines were analyzed. Node size represents the number of connections. The

network was plotted in Cytoscape using edge-weighted spring-embedded layout so that genes with common associations cluster together.

(D) Number of outgoing associations for each mutated gene in network is shown.

(E) Number of incoming associations for each target protein in network (node degree distribution). Cell-cycle proteins were enriched among proteins with three or

more associated genes (p = 5.66 3 10�4).

(F–J) Representative gene-protein associations (p < 0.001) for common genetic lesions in breast cancer. Protein is indicated in chart title, and mutated gene is

shown in italics below plot. Error bars represent SEM.

638 Cell Reports 11, 630–644, April 28, 2015 ª2015 The Authors



shown (Figures 6F–6J). In the case of TP53, nearly all of the

significantly associated proteins were involved in DNA meta-

bolism and repair. One such protein was ecto-50-nucleotidase
(NT5E or CD73), a GPI-anchored cell surface enzyme involved

in the production of membrane-permeable nucleosides, which

can be used for nucleotide salvage (Zimmermann, 1992). Target-

ing it by small interfering RNA (siRNA) or small molecule inhibition

(using adenosine [(a,b)-methylene] diphosphate) arrested the

cell cycle and triggered apoptosis in MDA-MB-231 breast can-

cer cells (Zhi et al., 2010). Monoclonal antibodies against NT5E

also were demonstrated to block breast cancer metastasis

in vivo (Stagg et al., 2010). NT5E may be an effective drug target

specifically for cancers with TP53 mutations. In addition to the

discovery of potential drug targets, these proteins also could

be used as markers to infer whether or not a mutation is

deleterious.

Proteomics of Drug Sensitivity
To generate a resource for drug sensitivity prediction, we

screened the 16 TNBC cell lines from our panel against a library

of 160 compounds at eight different concentrations spanning

four orders of magnitude. We used this data to determine the

IC50, defined as the dose required to reach a 50% reduction in

cell viability, for each drug in each cell line (Table S2). Approxi-

mately three quarters (123/160) of the compounds elicited a

measurable response in at least one cell line, and each cell line

was sensitive to at least five compounds at sub-micromolar

doses. The distribution of responses for each drug was diverse

(Figure 7A). The IC50 distribution for most drugs spanned a

wide range, 790-fold on average. Some drugs were very specific

with few sensitive cell lines (e.g., everolimus, methotrexate, and

lapatinib), while other drugs were indiscriminate with few resis-

tant cell lines (e.g., bortezomib, paclitaxel, and MG132).

Next, we combined our pharmacological dataset with publicly

accessible data from the Genomics of Drug Sensitivity in Cancer

(CRx) resource (Yang et al., 2013) and performed regression

analysis against mass spectrometry-derived protein abun-

dances to discover proteomic markers of drug sensitivity or

resistance. We used hierarchical clustering to analyze global

patterns among drug sensitivity-protein expression relation-

ships, revealing many distinct clusters (Figure 7B). Drugs target-

ing proteins in the same pathway (e.g., BRAF andMEK inhibitors)

showed similar correlation profiles. Interestingly, proteins that

were part of the same pathways or complexes also clustered

together, which did not occur using protein expression data

alone (Figure 3A). The cluster that was highly enriched with mito-

chondrial proteins was associated with sensitivity to drugs that

might depend on mitochondrial protein expression (belinostat,

vorinostat, and obatoclax). For example, since protein acetyla-

tion is known to be enrichedwithin themitochondrial space, cells

with more mitochondria might be more sensitive to deacetylase

inhibition. In a similar vein, the cluster that was enriched with

translation factors was associated with increased sensitivity to

proteasome inhibitors MG132 and bortezomib. These results

show that the integration of proteomics and drug sensitivity

data using regression analysis provides a rich resource to iden-

tify unexpected modes of action and to discover new features of

target pathways.
We used the regression analysis to select the most effective

and robust drugs for known targets. For example, EGFR expres-

sion was, as expected, strongly associated with sensitivity to the

EGFR inhibitor lapatinib in both drug screens (our data: R = 0.96,

p = 2.363 10�9; CRx: R = 0.99, p = 6.23 10�4; Figure 7C). Pro-

teomics data also can be used to uncover mechanisms of drug

sensitivity. For example, several cell lines were hypersensitive

to the drug bleomycin, an antibiotic used to treat plantar warts

as well as many forms of cancer by inducing DNA damage.

Expression of DDX60, an antiviral RNA/DNA helicase that binds

cytosolic DNA (Miyashita et al., 2011), was most significantly

associated with sensitivity to bleomycin (R = 0.99, p = 1.1 3

10�15) (Figure 7D).

We curated these drug sensitivity results to ask whether drug

sensitivity associated with (1) genetic mutations or protein

expression of the drug target itself, (2) proteins in the same

pathway as the target, or (3) other literature-supported synthetic

lethal interactions. Drug sensitivity associated strongly with both

genomic and proteomic features of known targets. For example,

we found that sensitivity to all-trans retinoic acid (ATRA) was

correlated with the expression of its target protein RXRB (R =

0.98, p = 7.91 3 10�9). HCC1806 cells, which expressed the

highest level of RXRB, were >200-fold more sensitive than the

median cell line (Figure 7E). The cell line DU4475, which harbors

the hyperactive BRAF-V600E mutation, was hypersensitive to

both BRAF and MEK inhibitors (6,000-fold and 100,000-fold

versus median, respectively) despite similar expression of the

target proteins.

Another potential mechanism of drug sensitivity is synthetic

lethality, in which the right combination of genetic, proteomic,

or pharmacologic perturbations leads to cell death. Synthetic

lethality tends to occur between proteins in the same pathway.

For example, the AKT1/2 inhibitor MK-2206 was not associated

with expression of AKT isoforms, but was significantly associ-

ated with expression of RPS6KB2 (R = 0.84, p = 3.54 3 10�4)

(Figure 7F), which lies downstream in the signaling pathway

(Shaw and Cantley, 2006). Other drugs correlated with proteins

that are not known to be in the same pathway, but have been

previously proposed to be synthetic lethal relationships in

genetic datasets. For example, poly-ADP ribose polymerase

(PARP) inhibition disrupts DNA repair leading to genotoxic stress

and cellular senescence, a process shown to be accelerated in

overactive AKT-signaling mutants (Chatterjee et al., 2013;

Mendes-Pereira et al., 2009). In our data, AKT protein expression

was also significantly correlated with sensitivity to PARP inhibi-

tion using AG-014699 (R = 0.74, p = 0.0014) (Figure 7G).

We explored how the differences in drug sensitivity and target

expression between members of a signaling pathway relate to

pathway structure. In the Akt-mTOR-S6K-signaling pathway, ri-

bosomal protein S6 kinases (RPS6KB1/2) are activated by

mTOR. Curiously, despite its association with MK-2206 sensi-

tivity, expression of either RPS6KB1 or RPS6KB2 was inversely

correlated with the S6K inhibitor PF-4708671 in luminal breast

cancer cells (R =�0.96, p = 0.04) (Figure S5A). This is consistent

with the suggestion that S6K inhibition may amplify upstream

cancer signaling due to the chronic ablation of a negative feed-

back loop (Carracedo et al., 2008; Manning, 2004). Thus, the

tumorigenic action of this protein may be best targeted indirectly
Cell Reports 11, 630–644, April 28, 2015 ª2015 The Authors 639
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Figure 7. Protein Expression and Drug Sensitivity

(A) Distribution of drug sensitivity (�log10IC50) values across 16 TNBC cell lines for each drug in order of increasing median sensitivity. Drugs with sub-micromolar

IC50 in at least one cell line are shown. Gray dots represent outlier values (>1.53 interquartile range).

(B) Hierarchical clustering of drug-protein associations. Pairwise Pearson’s correlation was calculated systematically between drug sensitivity (inverted IC50) and

protein abundance (iBAQ) values and clustered in both dimensions. Enriched gene ontology terms are shown for several clusters with Benjamini-Hochberg

adjusted p value.

(C) Association of drug sensitivity with EGFR expression. The EGFR inhibitor lapatinib was significantly associated in both drug screen datasets (CRx: p = 6.23

10�4, our data: p = 2.4 3 10�9, FDR < 0.05).

(legend continued on next page)
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(Figure S5B). Unlike RPS6KB2, RPS6KB1 expression did not

correlate with AKT1/2 inhibitor MK-2206 sensitivity but instead

was most highly correlated with the p21-activated kinase (PAK)

inhibitor IPA-3 (R = 0.99, p = 1.91 3 10�12). Based on images

from the Human Protein Atlas, RPS6KB1 and PAK2 are localized

to the nucleus whereas RPS6KB2 and PAK1 are cytoplasmic

(Uhlen et al., 2010). Thus, the reported activation of PAK1 down-

stream of S6K (Ishida et al., 2007) might be localized and isoform

specific. Together, these results demonstrate that integrated

analysis of drug sensitivity and protein expression provides a

useful strategy for selecting drugs, finding diagnostic markers,

and identifying potential mechanisms of cellular signaling.

Further experimentation will be required to confirm these

findings.

Finally, to demonstrate the potential clinical utility of these re-

sults, we asked how many proteins from the drug association

analysis could be identified in primary tumors. We found that

73% (6,798/9,292) were quantifiable in the four clinical speci-

mens we analyzed (Figure S5C). Of these, 494 were at least

5-fold more abundant than the average sample in at least one tu-

mor. For example, the abundance of the protein kinase AKT2

was higher in one of the tumor samples than in any cell line

analyzed in this study (Figure S5D).

DISCUSSION

Despite the success of large-scale ‘‘-omic’’ studies in providing

molecular targets for therapeutic intervention, these studies

have been limited by the lack of comprehensive protein data.

Mass spectrometry-based proteomics has advanced rapidly,

and it has become routine to reproducibly quantify near-com-

plete proteomes using this technology. Here we used mass

spectrometry to interrogate the proteomes of TNBC. We then in-

tegrated proteomics, genomics, and drug sensitivity data to

study the effects of genomic aberrations in the proteome and

build predictive models of drug response using proteomics.

This dataset is a useful resource to further explore the biology

of TNBC. For example, many of the recently described metasta-

tic stem cell pathways were highly expressed at the protein level

in TNBC compared to luminal breast cells. The most invasive

TNBC cells and solid tumors expressed low levels of proteins

involved in cell proliferation and high levels of proteins involved

in the epithelial-to-mesenchymal transition. Thus, the highly

specialized nature of metastatic TNBC cells may be one reason

they are so difficult to treat using conventional cytotoxic agents

that target highly proliferative cells. Precise knowledge of the

proteomes of these cells can guide the development of new

drugs to target the metastatic transition.
(D) Association of protein expression with bleomycin sensitivity. The protein DD

FDR < 0.05).

(E–G) Pairwise comparisons of protein expression and drug sensitivity for three e

sensitivity to the drug; (F) pathway target, expression of a protein in the pathway

lethal, expression of a protein in an independent pathway from the drug target in

sensitivity (inverse IC50, M
�1) across the same cell lines. RXRB, retinoid X recep

threonine-protein kinase; ATRA, RXR agonist all-trans retinoic acid; MK-2206, pa

Pearson’s correlation and p value are indicated below the plots. CRx data from Y

from the CRx were included. Missing IC50 values were not imputed.
Machine learning has become a useful tool to capture the mo-

lecular features responsible for differences in drug sensitivity

(Barretina et al., 2012; Costello et al., 2014; Weinstein et al.,

1997; Yang et al., 2013). Statistically significant differences in

drug sensitivity based on cellular subtype have been observed

(Lehmann et al., 2011), but the effect sizes are small compared

to treatment strategies directed toward precise molecular in-

sults. Examples include ERBB2 amplification (trastuzumab),

BCR-ABL fusion (imatinib), or BRAF-V600E mutation (vemurafe-

nib), all of which result in orders-of-magnitude increases in drug

sensitivity. In reality, large-effect sizes are needed to make an

impact in the clinic. In this study, drug sensitivity and the expres-

sion of cancer-related proteins were not generally attributable to

subtypes derived by clustering global protein profiles. Consid-

ering these cells were all derived from the same tissue type

(breast) and were cultured in the same conditions, the dynamic

range and specificity of protein expression for established regu-

latory proteins and drug targets was surprising. Using regression

and prior knowledge to interrogate mechanisms of protein

expression in drug sensitivity, we found that, in many cases,

drug sensitivity was strongly correlated with the expression of

the drug target itself (e.g., retinoic acid receptors, EGFR) or pro-

teins in the same biological pathway (e.g., S6K expression as a

marker for sensitivity to AKT inhibitors).

With the exception of drugs targeting amplified genes, the

importance of protein expression in drug efficacy might be

underestimated. While it is evident that the target of a drug

must be expressed at some level in order for the drug to take ef-

fect, many drugs are developed with the assumption that the

target is expressed at similar levels in all cells. Even in the case

of gene amplification, CN does not fully account for differences

in protein expression among specimens. In any case, quantita-

tive analysis of drug targets and genetic abnormalities at the

protein level might represent a useful addition to the current

adjuvant therapy selection algorithm. Indeed, this is already

routine for estrogen, progesterone, and epidermal growth factor

receptor-2. Larger panels of cell lines will be necessary to cap-

ture rare genetic events and to enable more robust machine-

learning approaches. This will facilitate the discovery of less

obvious markers of drug sensitivity, such as synthetic lethal in-

teractions. Proteomics also could provide an indispensable

tool to rescue clinical trial results that do not improve patient out-

comes in aggregate, but have many exceptional responses that

might be due to underlying molecular features.

This study builds on other deep proteomic characterizations of

cancer (Geiger et al., 2012b; Moghaddas Gholami et al., 2013;

Nagaraj et al., 2011; Zhang et al., 2014) and represents the

first deep proteome characterization targeting TNBC. With the
X60 was significantly associated with bleomycin sensitivity (p = 1.1 3 10�15,

xamples are shown. (E) Direct target, expression of the target protein indicates

of the drug target, but not the target itself, indicates sensitivity; (G) synthetic

dicates sensitivity; (left) protein abundance (iBAQ) across cell lines; (right) drug

tor beta; RPS6KB2, ribosomal protein S6 kinase-2; AKT1, RAC-alpha serine/

n-isoform AKT inhibitor; AG-014699, poly-ADP ribose polymerase 1/2 inhibitor.

ang et al., (2013). (A) includes only data generated in this study. For (B–G), data
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development of large -omics approaches, personalized, predic-

tive medicine is the prevailing direction of next-generation

healthcare technology (Tian et al., 2012). Systematic, data-

driven approaches are necessary to meet this goal. We antici-

pate that genome-scale nucleic acid sequencing and protein

analysis will provide the basic molecular diagnostics toolbox

for precision cancer medicine. TNBC is one of many unmet clin-

ical needs that will benefit from future research in this area.

EXPERIMENTAL PROCEDURES

Sample Preparation

Samples were lysed in denaturing buffer and centrifuged at 12,000 3 g for

10 min to pellet insoluble material. Protein extracts were reduced with

5 mM DTT at 55�C and alkylated with 15 mM iodoacetamide at room temper-

ature in the dark. Extracts from each sample (25 mg) were diluted and

digested in solution overnight with either LysC (Wako Pure Chemicals Indus-

tries) or sequencing-grade trypsin (Promega). Peptides were desalted and

fractionated on StageTips (Rappsilber et al., 2007) by basic reverse-phase

using a stepwise gradient of increasing acetonitrile (5%, 10%, 15%, 25%,

and 80%) in 0.1% NH4OH. The resulting fractions were analyzed by LC-

MS/MS.

LC-MS/MS

Peptide fractions were analyzed on an EASY-nLC-1000 (Thermo Scienti-

fic) coupled to a hybrid quadrupole-orbitrap Q-Exactive mass spectrom-

eter (Thermo Scientific) configured for data-dependent acquisition. Raw

mass spectra were searched using Sequest (release 2012.01.0 of UW Se-

quest) against a concatenated forward and reverse version of the Uniprot

human protein sequence database (v11/29/2012). Peptide spectral

matches for all fractions corresponding to the same sample were filtered

to reach a protein identification FDR of less than 1%, resulting in an

aggregate peptide-level FDR of less than 0.1% for the entire dataset. Pro-

tein quantifications were calculated using the iBAQ approach (Schwan-

häusser et al., 2011).

Drug Screen and Curve Fitting

Compounds were added to cells using the CyBi-Well Vario Workstation

(CyBio) and incubated at 37�C, 5% CO2 for 96 hr. Cell viability was measured

by luminescence using quantitation of ATP as an indicator of metabolically

active cells. Measurements were corrected for background luminescence

and percentage cell viability was reported as relative to the DMSO solvent con-

trol. Non-linear curve fitting was performed using MATLAB’s nlinfit function

(MathWorks). External drug sensitivity data (IC50) was downloaded from the

Genomics of Drug Sensitivity in Cancer resource (Yang et al., 2013), release

2.0 (http://www.cancerrxgene.org).

Statistical Analysis

Significance tests and correlation analysis were performed using built-in

functions of Microsoft Office Excel 2013 or R statistical computing envi-

ronment version 3.1.0. Gene enrichment significance testing was per-

formed in DAVID version 6.7 using the EASE metric, a modified Fisher’s

exact test (Huang et al., 2009). All error bars represent SD unless other-

wise noted.
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