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Let ‘L- be a non-trivial variety of groups. For every 0 < n < w, Y has a non-free 
&-free group of cardinality N, if and only V. is not a variety of nilpotent groups 
of prime power exponent. If Y- is not a variety of nilpotent groups of prime power 
exponent then either V has a non-free h--free group of power K in every cardinal 
K for which such an abehan group exists or V has a non-free Ic+-free group of 
power K’ for every cardinal K. c 1992 Academic Press, Inc. 

0. PRELIMINARIES 

A natural question to ask about any variety of algebras is: For which 
infinite cardinals K are there almost-free algebras of cardinality K which are 
not free? This question can be studied from the point of view of universal 
algebra, where we try to prove results for all varieties or we can concen- 
trate on interesting varieties of algebras. The papers [Sl], [S2], [EMl], 
[MS] are all examples of the first approach. Since it puts the results in the 
current paper in perspective, it should be noted that Shelah’s singular com- 
pactness theorem [Sl] says that if K is a singular cardinal then any almost- 
free algebra of cardinality K is free. Most of the investigation of specific 
varieties has concentrated on varieties of modules and varieties of groups. 
Information on varieties of modules can be found in [EM1 ] or [EM2]. 
For the variety of groups, the earliest result was Higman’s [H] construc- 
tion of an almost-free group of cardinality K, which is not free. For abelian 
groups it seems that Baer [B] knew that the direct product of countably 
many copies of 22 contains an almost-free abelian group of cardinality K, 
which is not free. (The result appears more clearly in [Sp].) Many papers 
on the construction of almost-free groups and abelian groups in various 
cardinalities and with additional properties have been published. We will 
not try to summarize all these results here but will follow the main line 
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toward the construction of almost-free groups in varieties. In the rest of the 
paper a variety will be a variety of groups unless we specify that we are 
considering of algebras. 

In the variety of groups or in the variety of abelian groups, a group is 
K-free if all subsets of cardinality less than K generate a free group. For 
other varieties there are several possible definitions of being K-free. The 
weakest notion is the one used in [P2], namely, that a group is k--free if 
every subset of cardinality less than K is contained in a free subgroup. Of 
course, the notion of free is to be interpreted in the variety in which we are 
working. (When we wish to stress the variety V, we will write V-free, etc.) 
A stronger notion is to demand that most (in one of several possible 
senses) subgroups of cardinality less than K are free. A group of cardinality 
K is almost-free if it is K-free. The precise definition of K-free need not be 
a great concern in this paper (although it does seem to matter for the 
singular compactness theorem). Any example of an almost-free group G 
that we produce will be almost-free according to any of the definitions. On 
the other hand when we are able to assert that there is no almost-free 
group which is not free, we are able to use the weakest possible definition. 
So our results do not depend on which definition has been adopted. (The 
phrasing of the strongest notion is somewhat awkward but the following 
notion suffices for a group G of regular cardinality K; namely that G is the 
union of a smooth chain of free subgroups of cardinality less than K.) 

Recently, Pope [P2] published a paper which purported to show that 
any variety containing a finite simple group has non-free almost-free 
groups of power K, for every n > 0. Unfortunately there is an error in the 
proof. Lemma 1 of that paper is incorrect. However, using some ideas from 
that paper in combination with results in [EM l] and [S2] it is possible 
to show that any variety which is not nilpotent of prime power exponent 
has an almost-free group of power K, for every n > 0. We first review the 
results we will need. No attempt is made to avoid the use of logical 
machinery even where it is possible. However, we will try to state the 
consequences which are needed later in this paper in non-logical terms. 

In [EMl], the construction principle (CP) for an arbitrary variety was 
defined as follows: 

There are countable free algebras H c K so that 

(i) H has a set of free generators {h, : n <w} such that for every finite Sco 
the algebra generated by {h, : n E S} is a free factor of K with a free complementary 
factor. 

(ii) H is not a free factor of K * F(o) with a free complementary factor. 

In the above condition * denotes free product, F(rc) denotes the free 
algebra of rank K. When we say that A is a free factor of B with a free com- 
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plementary factor, we mean that there is a free C, so that A * C= B. (This 
definition is not the one which appears in [EMl] but is equivalent to it.) 
The condition in (i) that the complementary factor of the subalgebra 
generated by {h,, : n E S} be free is superfluous. It is not hard to see that, 
using the notation above, if a subalgebra A of K is a free factor of K * F(o) 
which is free, then it has a complementary factor which is free. Suppose C 
is a complementary factor and let H, denote the subalgebra generated by 
{h, : n ES>. Then, replacing F(o) by F(o) * F(w), we have K * F(w) 2 A * 
C * F(o). But C * F(o) g C * A * F(o), since A is free, and C * A is free. 
Similar comments apply for (ii). 

THEOREM 1. Let V he a variety of algebras in a countable similarity 

type. 

(a) [EM1 ] The construction principle holds if and only if there is an 
L,,,-free algebra of cardinality N, which is not free. 

(b) [MS] If the construction principle fails to hold then either every 
L,,-free algebra is free or free every infinite cardinal IC there is an algebra 
of cardinality tc+ which is K + -free but not free. 

There is an easily understood algebraic characterization of L,,-free 
algebras of cardinality N,. By a theorem of Kueker [Ku], an algebra of 
cardinality N, is L,,,- free if and only if it can be written as the union of 
a smooth chain of K, countable free algebras. In [EM1 ] it is shown that 
in the presence of certain set-theoretic principles, the construction principle 
can be used to build K-free non-free algebras of cardinality IC for any 
regular non-weakly compact cardinal, in particular for each K, (0 < n < w). 
The set-theoretic principles used, while consistent with the axioms for set 
theory, are independent assuming the consistency of some large cardinal 
axioms. For an arbitrary variety of algebras there is no way to deduce the 
existence of an almost-free algebra of cardinality N, from the existence of 
an almost-free algebra of cardinality N, , without appealing to additional 
set-theoretic assumptions. (It is possible to go in the other direction.) For 
varieties of groups rather more is known. Building on previous work of 
Eklof [E] and Mekler CM], Pope showed: 

THEOREM 2 [PI]. If-Y is a variety of groups of infinite exponent (i.e., 
containing H), then for all 0 < n < w, there is an NE-free group of cardinality 
K, which is not free. 

Actually this theorem could have been deduced easily from earlier results 
in [M]. First to tix some notation, if V is a variety and G is a group let 
VG denote G modulo the verbal subgroup defined by laws determining V. 
For g E G denote its image in ‘VG by g/Y. In [M] for any 0 < n < w, an 
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L cc (0, -free group G of cardinality N, is constructed so that G/[G, G] is 
not free abelian. So for any variety V containing Z, YG/[“Y-G, VG] g 
G/[G, G]. Hence YG is not free, but “VG is L,,,,-free since the verbal 
subgroup determined by -tr is definable in L,,,. For Hi, Pope’s theorem 
can be derived using the group which Higman constructed in [H], since 
that group is L,,,-free. 

This result can be approached differently by using a stronger version of 
the construction principle. The strong construction principle (CP+ ) is 
defined as follows: 

For every 0 < n < w there are countable free algebras H G K and a partition of w 
into n infinite blocks s’, . . . . Q” so that 

(i) H has a set of free generators {h,, : m <w}. and for every subset SE w if 
for some k, S n sk is finite then the algebra generated by {h,, : m E S} is a free factor 
of K with a free complementary factor. 

(ii) H is not a free factor of K * F(w) with a free complementary factor. 

The following theorem is implicit in the methods of [S2] and [EMl] 
and is explicitly stated in [EM2]. 

THEOREM 3. Suppose V is a variety of algebras which satisfies (CP + ). 
For any uncountable cardinal K, if there is an almost-free abelian group of 
cardinality K which is not free then there is an almost-free algebra of 
cardinality K in V which is not free. 

Although we will not try to summarize Shelah’s construction, it may help 
the reader to understand the definition of (CP+ ) if we say a few words 
about the proof of Theorem 3. From the existence of an almost-free non- 
free abelian group of cardinality K the existence of a family {si : i E I} of 
countable sets is deduced, where I is a set of cardinality K. For some fixed 
n, each si is the disjoint union of infinite sets s) , . . . . s:. For any Jr Z, if the 
cardinality of J is less than K, then there is a well ordering cJ of J so that 
for all iE J there is some k so that sr n iJ. ,<J i sj is finite. (For n > 0 and 
finite and K = K,, the construction of such a family is fairly straightforward.) 
To construct the algebra take K; a copy of K for each i E I. The algebra is 
the free product of the K,‘s, where we identify the generators of the copy 
of H in Ki with the elements of si. It should not be difftcult to believe that 
the algebra constructed is almost-free. Other properties of the family are 
used to guarantee that the algebra is not free. 

The strong version of the construction principle holds in any variety of 
groups of infinite exponent. Indeed the usual example of the construction 
principle, where K is the group freely generated by {t, : n < o} and H is the 
subgroup freely generated by {t, t;: l : n < o} is an example of (CP + ). So 
Theorem 2 is a consequence of Theorem 3 and the fact that (CP + ) holds 
in every variety of infinite exponent. In [Pl] there is an inductive 
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argument which shows that if a variety Y of groups satisfies (CP), then for 
every 0 <n < o, V has a non-free L,,,“- free group of cardinality 24,. The 
group-theoretic content of the inductive argument in [Pl] (and of [E] 
and [M]) is contained in the following theorem. 

THEOREM 4. If V is a variety of groups which satisfies (CP) then Y 
satisfies (CP + ). 

Proof: In this proof we use the following simple fact. 

FACT. Suppose X and Y are disjoint sets whose union freely generates a 
V-free group G and for each x E X, u ~ is a word in Y. Then Y v { xu ~ : x E X} 
freely generates G. 

Proof (of fact). Consider two endomorphisms, cp, tj of G defined by 
q(y) = y, for y E Y, and p(x) = XU,~ for x E X and Ii/(y) = y, for y E Y, and 
l+qx)=xu;’ for x E X. Both endomorphisms act as the identity on Y and 
so also on each u,~. Hence cp($(x)) =x; i.e., $ = ‘p-l. So cp is an 
automorphism of G and Y u {xu,, : x E X) is the image of a set of free 
generators of G. 

We now prove the theorem by induction on n. (We now work in V.) Let 
H c K satisfy the requirements for n with respect to a set of free generators 
{h m : m < o} and some partition of o into IZ pieces. Let G be a free group 
freely generated by {g ,:m<o}. Let K,=G*Kand H,=G*H. By the 
fact, HI is freely generated by {gm : m < w} u {g,h, : m < o}. To prove 
that part (i) of (CP+ ) holds for n + 1 in place of n it is enough to show: 

(a) for all r co, the subgroup generated by (g, : m < r} u 
krnh M:m<cO} is a free factor of K,; 

(b) if S is a subset of o so that {h, : m E S} generates a free factor 
of K, then {g ,:m<o)u{g,h,:m~S) generatesafreefactorofK,. 

First we consider (a). Choose a free group C so that K= 
C * (h, : m < r ). (Here (X) denotes the subgroup generated by A’.) 
Then 

K,=C*(h,:m<r)*(g,:m<w), 

which by the fact gives 

K,=C*(h,:m<r)*(g,:m<r)*(g,h,:rdm), 

and applying the fact again gives 

K,=C*(g,h,:m<r)*(g,:m<r)*(g,h,:r,<m), 

which is the desired expression. 
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Now consider (b). Choose C so that K= C * (h, : me S). Then 
K, = C * (h, : m E S) * (g, : m co), Applying the fact to this equation 
yieldsK,=C~(g,h,:m~S)*(g,:m<o), whichisasrequired. 

To prove part (ii) of (CP + ) holds, suppose that 

K,*F(o)=H,*C. 

First note that H is a free factor of the right-hand side. Since K, = K * G, 
K, * F(o) is isomorphic over K to K * F(o). This contradicts the fact that 
H and K satisfy (ii). 1 

In considering all infinite cardinals, we are led to consider the incompact- 
ness spectrum of a variety, that is, the class of uncountable cardinals K for 
which there is a non-free K-free algebra of cardinality K. By the singular 
compactness theorem, the incompactness spectrum of any variety consists 
of regular cardinals. The incompactness spectrum may be influenced by the 
underlying set theory. In [EM1 ] it is shown that if V= L is true then the 
incompactness spectrum of any variety of algebras which satisfies the 
construction principle contains all uncountable regular non-weakly 
compact cardinals. In [MS], it is shown that the incompactness spectrum 
of any variety of algebras which does not satisfy the construction principle 
is either empty or is exactly the class of successor cardinals. Since there are 
models of set theory in which the incompactness spectrum of abelian 
groups, the class of uncountable regular cardinals, and the class of 
successor cardinals all coincide (e.g., a model of V= L and there are no 
inaccessible cardinals), it is consistent that there are exactly two possible 
incompactness spectra. However, it is consistent, assuming the consistency 
of some large cardinal, that the incompactness spectrum of abelian groups 
is very different from the class of regular cardinals. For example, given the 
consistency of a supercompact cardinal, it is consistent that the incompact- 
ness spectrum of abelian groups contains some weakly inacessible cardinals 
but does not contain any cardinals greater than or equal to 2’O [BD]. One 
can hope to obtain absolute information by comparing the incompactness 
spectrum of a variety with that of abelian groups. Theorem 3 can be 
restated as saying that the incompactness spectrum of any variety which 
satisfies (CP + ) contains that of abelian groups. Much is known about the 
incompactness spectrum of abelian groups; for example, it is known that it 
contains K, for each n > 0 and that if a cardinal IC is in the spectrum then 
IC+ is also in the spectrum [El. Theorem 2 can be strengthened to the 
following. 

THEOREM 5 [SZ]. Suppose V is a variety of groups of infinite exponent. 
The incompactness spectrum of V contains that of abelian groups. 
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If a variety does not satisfy the construction principle then its incompact- 
ness spectrum is either empty or consists of the class of successor cardinals. 
A variety of nilpotent groups has the ame incompactness spectrum ao the 
variety of abelian groups it contains. The following theorem contains what 
is known for these varieties of finite exponent. 

THEOREM 6 [EMl]. Suppose V is a variety of nilpotent groups offinite 
exponent. 

(a) -Y- does not satisfy (CP). 

(b) IfV is of prime power exponent then every HI-free group (of any 
cardina&v) is free. 

(c) If V is not of prime power exponent, then for every infinite 
cardinal IC there is an almost-free group of cardinality K i which is not free. 

More recently, Pope [P2] with the help of a lemma due to Kovacs has 
claimed an extension of these results to varieties which contain a finite sim- 
ple group. We will show that Kovacs’ lemma can be extended to arbitrary 
varieties which are not solvable. Unfortunately there is an error in another 
part of [P2]. 

Lemma 1 of [ P23 says: 

Let 9” be a variety of groups. Suppose there are countable V-free groups H, 
(n < w), H, L so that H, ( H,, 1 ( L, H = U H,, and HZ L. Let N be the smallest 
normal subgroup of L containing H. If L/N is not free, then the construction 
principle holds in Y‘. 

This statement is not true. For example, let -tr be the class of abelian 
groups of exponent 6. The last statement would be true if the hypothesis 
“L/N is not free” were replaced by “L/N * F is not free, for any free 
group F.” 

Our goal (in which we will be only partly successful) is to determine 
which varieties satisfy (CP + ) and which varieties have non-free almost-free 
algebras of cardinality Et,, for 0 <n < w. We consider a series of over- 
lapping cases. The nilpotent and torsion-free varieties have already been 
discussed. It should be stressed again that the ideas in [P2] form an 
important part of our approach. By Theorem 4, to show that a variety of 
groups satisfies (CP+ ) it is enough to show that it satisfies (CP) (although 
in the examples we will give, it is not much harder to verify (CP+ ) 
directly.) 

Our basic strategy in proving that (CP) holds in a variety V will be to 
find H and K in the variety of all groups which satisfy (i) and then show 
that in V they satisfy (ii). The following lemma makes the strategy explicit. 
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LEMMA 7. Let H G K he countable free groups in the variety of all groups 
such that H and K satisfy part (i) of the definition of (CP). Let A denote the 
quotient of K by the smallest normal subgroup containing H. If % is a variety 
of groups so that %A *@ F *(CO) is not free, then any variety Y 2 4P satisfies 
(CP) (or equivalently (CP + )). 

Proof The groups V‘H E YK satisfy (i) of (CP). Suppose now that 
VH( VK*, F, (0). Then Y-A *, F, (0) is free, but %(VA *I F, (0)) 
=@A *,# F,(o), which is not free. This is a contradiction, so VHE Y‘K 
also satisfies (ii). [ 

1. NON-SOLVABLE VARIETIES 

First we review Pope’s attempt to find an example of the construction 
principle. Following the strategy outlined in Lemma 7, we first work in the 
variety of all groups. 

EXAMPLE 8. Let K be the group freely generated by {t, : n < w} and H 
the subgroup generated by { t; i [tarn + r, t,,, + 2] : m < o}. It is not hard to 
see that for all m, the subgroup, H,, generated by { t;‘[t,, + i, t,, + 2] : 
k < m} is a free factor of K. (This example is close to the one in Section 4 
of [M] and CBS], where it was used to construct groups which were 
parafree as well as being almost free.) In fact if Ss o is such that 
(m : m + 1, m + 2, . . . . 2m+2$S} is unbounded then {tm’[t2m+l, t2,+2] : 
m E S} freely generates a free factor of K. The group generated by 
{t, : m $ S} is a complementary factor. To see this it suffices to show that 
WCt 2m+ Lr t2mt2 ] : m E S} u {t, : m $ S} freely generates K. Choose m so 
that m + 1, . . . . 2m+2$S. Then {t;‘[t2k+l, t2k+2] : kES, k<m) u {tk: 
k 4 S, k 6 2m + 2) generates the same subgroup as ( tk : k < 2m + 2). For 
any finite k, if k elements generate a free group of rank k, then they 
generate it freely (cf. Corollary 2.13.1 of [MKS]). It is also easy in this 
specific case to prove directly or using the fact in the proof of Lemma 4 
that these are free generators. 

We could now argue directly that part (i) of (CP + ) is satisfied. But to 
apply Lemma 7, it is enough to note that H G K satisfy part (i) of (CP). Let 
N be the smallest normal subgroup of K containing H. Let A = K/N. 

Our generalization of Kovacs’ lemma is the following lemma. (Kovacs’ 
version requires that -I/‘ contain a finite simple group.) 

LEMMA 9. Let A be as in Example 8 and V a variety of groups which is 
not solvable (i.e., contains a non-solvable group). Then VA is non-trivial. 
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Proof Rephrasing the statement of the lemma, we are claiming that the 
first order theory consisting of the laws of the variety Y, the equations 
t,z= Cf2n+,r t 2,, + J, and the inequation t, #e has a model. By the compact- 
ness theorem, it suffkes to show that any finite subset of the axioms is 
consistent. Let G be the V-free group on countably many generators 
{g, : n < o}. Consider a finite subset of axioms. Let n be the largest num- 
ber so that the equation t, = [tZn+ 1, t2,,+J is in the subset. Expand G to 
a structure for the language of the theory by interpreting t,,+,,, as g, and 
the other constants according to the equations in the subset. The inter- 
pretation of to is not e, since G is not solvable. So G can be expanded to 
a model of any finite subset of the axioms. 1 

THEOREM 10. Suppose V is a variety of groups which is not solvable. 
Then either V satisfies (CP + ) or for every infinite cardinal IC there is an 
almost-free algabra of cardinality K+ which is not free. 

Proof: Let A be as above. There are two possibilities: either Y,4 * F(o) 
is free, where F(p) denotes the V-free group on p generators, or it is not. 
If this group is not free then, by Lemma 7, V satisfies (CP+ ). Suppose 
YA * F(o) is free. Let G = F(K) * eKt VA, where * denotes the V-free 
product. G is almost-free, since F(K) * *K VA is free. 

Suppose now that G is free. Since Y,4 is non-trivial, G has cardinality 
lc+. So the abelianization of G is the direct sim of K+ copies of Vi? and 
so has cardinality K +. However, the abelianization of *,+ VA is trivial 
since A = [A, A]. So the abelianization of G has cardinality K. This is 
a contradiction. (The argument that G is not free is based on Pope’s 
argument for Lemma 3 of [P2].) 1 

2. VARIETIES CONTAINING NON-NILPOTENT LOCALLY NILPOTENT VARIETIES 

We now turn to considering solvable varieties which are not nilpotent. 
We will show that these varieties satisfy the strong construction principle. 
First we consider the easier case of the varieties which are locally nilpotent. 

EXAMPLE 11. Let K be the group (in the variety of all groups) freely 
generated by (t m : m co} and let H be the subgroup generated by 
Gxf Zm+l, t,,+*] :m<o>. As in Example7, we can show that Hand K 
satisfy (i) of (CP). Now let N be the smallest normal subgroup containing 
H and A = K/H. 

LEMMA 12. Suppose ^Y- is a variety of groups which is not nilpotent but 
is locally nilpotent (i.e., every finitely generated group is nilpotent). Let A be 
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the group constructed in Example 11. Then VA is not contained in a V-free 
group. 

Proof First note that VA is the V-group presented by (t,(n <w); 
t2n’Cfh+l> t *,, + *] (n < w)). As in the proof of Lemma 9, we can see that to 
is not e. Suppose VA is contained in the V-group F freely generated 
by (f, : n <w}. Choose IZ so that toE (fO, . . . . fn). (Recall ( ) denotes 
“subgroup generated by.“) Let q~ be the homomorphism from G onto 
( fo, . . . . f,,) defined by 

k<n 

otherwise. 

Then cp is the identity on (fO, . . . . fn). In particular, cp(t,) # e. Hence cp(t,) 
is a non-identity element of a nilpotent group and in that group can be 
expressed as a commutator of arbitrarily high weight. Thus we have a 
contradiction. 1 

Lemma 12 can be used to show that any variety which contains a non- 
nilpotent locally nilpotent variety satisfies the strong construction principle. 
A group will generate a non-nilpotent locally nilpotent variety if and only 
if it is not nilpotent but is uniformly locally nilpotent. A group is uniformly 
locally nilpotent if for every n there is m such that every subgroup 
generated by n elements is nilpotent of class m. 

THEOREM 13. Suppose V is a variety which contains a non-nilpotent 
uniformly locally nilpotent group (or equivalently contains a non-nilpotent 
locally nilpotent variety); then V satisfies (CP + ). 

Proof By Lemma 7, this is a direct consequence of Example 11 and 
Lemma 12. 1 

3. VARIETIES CONTAINING A FINITE NON-NILPOTENT GROUP 

Recall that the lower central series of a group G is defined by Gr = G and 
G n+, = [G,, G]. We let G(l) denote the commutator subgroup. 

LEMMA 14. Suppose G is a finite group which is not nilpotent and V is 
a variety containing G. Then -Y- contains a finite group H so that H”) is an 
elementary abelian p-group for some prime p, and H = (z, H(l)), where the 
order of z is aprime qfp andz-’ az #a for any non-identity a in H”‘. 

Proof In this proof we use the following straightforward group- 
theoretic fact. If G = QP, where Q is an abelian q-group, P an abelian 
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p-group which is normal in G, then the centre of G/Z(G) is trivial. Here 
Z(G) denotes the centre of G. In particular G/Z(G) is nilpotent if and only 
if G is abelian. Choose H an element of V which is not nilpotent so that 
the cardinality of H is minimal. Every proper subgroup of H is nilpotent. 
It is known (cf. [SC, 6.5.7, p. 1481) that H= QP, where Q is a cyclic 
q-group, P is a p-group, and P is normal. Fix z a generator of Q. Choose 
the greatest n so that z does not commute with every element of P,. By the 
observation at the beginning of this proof, QP,,/P,,+ , is not nilpotent. By 
the minimality of H, P is abelian and the centre of H is trivial. By further 
applying the minimality of H, we can deduce that the order of z is q and 
P is elementary abelian. 

Finally we can see that H (I) = P by noting that [z, -1 is a one-one , 
function on P. 1 

Let H be as in the conclusion of the last lemma. We, now, make some 
comments on H and subgroups of powers of H. Let H denote H/H”‘. We 
denote elements of H by small Greek letters. For any a E H, the function 
[a, -1 on H (‘) depends only on the image of a in R. So there is no 
ambiguity in denoting these functions as [a, -1, where 0 E i!?. To emphasize 
that R is abelian we use additive notation for the elements of R. Similarly 
we use additive notation for H (” but multiplicative notation if we work in , 
all of H. For any non-zero CJ, [a, -1 is a non-singular linear operator on 
H(l) and so is invertible. Let m denote the order of GL(H”‘). So for any 
non-zero 0 and any UE H”‘, [a, -]“(a) = a 

Consider H’, where I is some index set. Extending our notation we will 
let small greek letters stand for elements of 8’. By the support of an 
element a (or a), we mean (i : u(i) #e} ({i : a(i) # 0)). There are two basic 
facts which we will use. 

PROPOSITION 15. Let H be us above, and suppose that a E (H(I))’ and 
CER’. 

(a) The support of [a, a] is contained in the support of o and in the 
support of a. 

(b) [o, -1”’ (a) = a if and only if the support of a is contained in the 
support of a. 

ProoJ: Clear. m 

LEMMA 16. Suppose H is us in the conclusion of Lemma 14 and V” is the 
variety generated by H. Then the V-group B presented by (t,(n < 0); 
tG1Ct2n+1> t 2n+2] (n < 0)) is not contained in a V-free group. 

Proof: We first show in B that the elements, { tzn : n < o}, are pairwise 
distinct non-zero elements of B . (I) Fix a a non-zero element of H(‘) and let 
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z be as in the definition of H. Define elements in H” as follows. For all n, 
t,,+,(k) =z, if k dn and let r2,+ ,(k)= e, otherwise. Let t,,(O) =a and 
t,(n)=O, for n>O. Let tznfZ= [tZn+l, -1” I ( tz,) + g, where g(n + 1) = a, 
and g(k) = 0 if k #n + 1. Since these elements of H”’ satisfy the relations in 
the presentation, we are done. 

We now turn to studying the V-free group on countably many 
generators. Consider the V-free group F freely generated by {fn : II co}. 
As is well known, F can be considered a subgroup of H’ for some index 
set 1, where for every map cp from w to H there is a coordinate i so that 
for all n, fit(i)= q(n). Note that F(“c_ (H(“)’ and F=F(H(“)‘/(H(“)’ is 
an elementary abelian q-group freely generated by {,f, : II < w}. Here X 
denotes x/(H”‘)‘. We now make the following claim. 

CLAIM. Suppose g E (fO, . . . . fn> n (H”‘)‘, g # 0 and x E F. If 
Cx, -1” k) = g, then 2 E <fo, . . . . .L>. 

Proof (of Claim). Suppose not. Then there is some r >n such that 
x=Cs<r ks.f,, where k, f 0 (mod q). Choose i so that g(i) # 0. Since B 
is a group of order q, there are elements g,, + , , . . . . err E R so that 

By the construction of the V-free group, there is j so that for all s dn, 
f,(j) =f,(i) and for n <s <r, f$(j) = Go. So j is not in the support of 
[x, g], but j is in the support of g. This is a contradiction. 

Suppose now that A is a subgroup of F. Choose n so that 
to E (fo, ..., f,). For all n, t,, = [t 2n+,,f2n+2]. So for all n, tznE(Hcl))’ 
and, by Proposition 15(a), the support of t,, is contained in both the sup- 
port of izn + , and the support of t,, + 2. In particular the support of to is 
contained in the support of iz, + I for all n. So by Proposition 15(b), for all 
n[t,,+,,-]m(to)=to. Hence for all n, i2,,+l~(f0,...,f,,). Choose k 
greater than the cardinality of any group in V with n + 2 generators. Then 
for all r < k, tzr E ( fo, . . . . f,, t,,). Since for r # s, t,, # t2r, we have a 
contradiction. 1 

Now we can settle the last case. 

THEOREM 17. Suppose V is a variety of groups which either contains a 
finitely generated solvable group which is not nilpotent or contains a finite 
group which is not nilpotent; then V satisfies (CP + ). 

Proof: If V contains an infinite finitely generated solvable group, then 
V is of infinite exponent and so satisfies (CP+ ). Hence we can assume 
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that V contains a finite group which is not nilpotent. But now Example 11 
and Lemmas 7 and 16 show that V satisfies (CP + ). 1 

4. CONCLUSION 

Putting all the information together we have the following theorem. 

THEOREM 18. Let Y be a non-trivial variety of groups. Then at least one 
of the following possibilities holds in V. 

(a) Every almost-free group is free. 

(b) For every in infinite cardinal K, there is an almost-free group 
(in V) of cardinality K+ which is not free. 

(c) For every uncountable cardinal u, if there is an almost-free abelian 
group of cardinality K which is not free then there is an almost-free group 
(in ‘V) of cardinality K which is not free. 

Furthermore possibility (a) holds if and only if V is a variety of nilpotent 
groups of prime power exponent. 

In particular, for all 0 c n < w there is an K,-free group of cardinality K, 
which is not free tf and only tf V is not a variety of nilpotent groups of prime 
power exponent. 

Stated in terms of the incompactness spectrum, the last theorem says the 
incompactness spectrum of any variety is empty or else contains either the 
incompactness spectrum of abelian group or the class of successor car- 
dinals. The last two possibilities are not mutually exclusive. There are 
varieties of groups whose incompactness spectrum contains the successor 
cardinals and the incompactness spectrum of abelian group. Consider the 
variety V generated by S3 @ C(5), where C(5) is the cyclic group of order 
5. At cardinals K, for which there is an almost-free non-free abelian group 
of cardinality K we can construct a V-free group using the (CP + ). For 
successor cardinals the construction is easier. Let G be the free group of 
cardinality K + in the variety generated by S,. Then G @ OK C(5) is 
K +-free but not free in ‘V. 

There are several unanswered questions which concern which varieties 
satisfy (CP + ). For example, for 0 <n < w we can ask which varieties of 
groups have L,,,,n- free groups of cardinality N, which are not free. These 
are exactly those varieties in which the construction principle holds. As well 
we can ask how many KU-free groups there are of cardinality N,. In a 
variety of groups, for any 0 <n < o, there are 2’” &-free groups of 
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cardinality K, if and only if the construction principle holds. Otherwise 
there are only finitely many such groups for any n. (The finiteness result 
appears in [MS].) 

The only varieties about which we are in doubt are varieties of finite 
exponent which are not solvable but with the property that any solvable 
group in the variety is nilpotent and with the property that any uniformly 
locally nilpotent group is nilpotent. I am indebted to the referee for 
pointing out that there are such varieties. Ol’shanskii [0] announces the 
existence of a nonabelian variety of finite exponent whose solvable groups 
are all abelian. (A variety of infinite exponent in which all finite groups are 
abelian is constructed. The last sentence of the paper says: “Apparently, 
not very substantial modifications in the proof would suffice for an 
analogous example with an identity of the form ~~~~~ = 1, where n, and n 1 
are sufftciently large odd numbers.“) There remains the question: “If Y” 
such a variety and A is the group constructed in Example 8, is Y-.4 * F(w) 
free?” Of course the existence of a variety, which we do not know how 
to prove satisfies (CP+ ), would not in itself give an example of a non- 
nilpotent variety which does not satisfy the construction principle. We hope 
that someone who is more familiar with varieties of finite exponent will be 
able to prove that all varieties which are not nilpotent satisfy (CP + ). 

A question which may be harder to resolve is: What are the possible 
incompactness spectra of varieties of groups? The obvious conjecture is 
that if ^Y- is any variety of groups its incompactness spectrum is either 
empty, the class of successor cardinals, the incompactness spectrum of 
abelian groups, or the union of the class of successor cardinals and the 
incompactness spectrum of abelian groups. Since it is consistent with the 
axioms of set theory that the incompactness spectrum of abelian groups, 
the class of uncountable regular cardinals, and the class of successor 
cardinals coincide, this conjecture is consistent. The point of the conjecture 
is to prove it as a theorem of ZFC. 

The reader may have observed, as one of the referees did, that we have 
not allowed K, to appear in an incompactness spectrum. It is natural to 
ask what happens for K,. For varieties of infinite exponent, Q is an 
example of an almost-free non-free group of cardinality N,. On the other 
hand, for nilpotent varieties of finite exponent any almost-free group of 
cardinality K, is free. 

One aspect of the construction whose significance is unclear is the fact 
that every construction we know of a almost-free non-free group in a 
variety V which uses (CP+ ) can be done as follows: first construct an 
almost-free group (in the variety of all groups); then consider its image 
modulo a verbal subgroup. Is this observation an accident brought about 
by our lack of knowledge or does it follow from more general principles? 
Note that we are not dealing with a (crude) universal algebraic principle, 
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since in the variety of algebras in the language of groups which satisfies no 
laws every almost-free algebra is free. 
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