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We prove that the Cauchy problem for an n� n system of strictly hyperbolic
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1. INTRODUCTION

This paper deals with sonic phase boundaries in conservation laws, i.e. in
first-order systems of PDEs in divergence form

@tuþ @x½f ðuÞ� ¼ 0; ð1:1Þ

where t 2 ½0;þ1½; x 2 R and u is the vector of the conserved quantities. The
flow function f : O 
 Rn/Rn is smooth. We assume that O is the disjoint
union of two phases O0; O1 and that system (1.1) is strictly hyperbolic in O:
The present approach allows to handle various physical situations in a

unified way: typical examples are the liquid–vapor phase transitions, the
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stretching or shearing of various materials in elastodynamics and chemical
reactions in fluids.
We consider two reference states

%
u‘ 2 O0 and

%
ur 2 O1 and assume that the

Riemann problem

@tuþ @x½f ðuÞ� ¼ 0;

uð0; xÞ ¼
%
u‘ if x50;

%
ur if x > 0

8><
>:

8>>>><
>>>>:

ð1:2Þ

admits the piecewise constant solution

%
uðt; xÞ ¼

%
u‘ if x5

%
Lt;

%
ur if x >

%
Lt:

8><
>:

The line x ¼
%
L � t is called the phase boundary. We assume that it is left-

sonic, i.e.
%
L coincides with one of the characteristic speeds of

%
u‘; say

%
L ¼

lkð
%
u‘Þ; and moreover lkð

%
urÞ5

%
L5lkþ1ð

%
urÞ:

Motivated by physical considerations, see for example [12], the Riemann
problem for initial data ðu‘; urÞ close to ð

%
u‘;

%
urÞ is solved as follows. From left

to right, there are k Lax waves in O0; a phase boundary of speed L; and
n� k Lax waves in O1: The phase boundary can be either left-subsonic or
left-sonic. In the former case, the kth wave in O0 is null and the phase
boundary behaves exactly as a k-shock. In the latter case, the kth wave is a
(possibly null) rarefaction adjacent to the phase boundary.
This kind of solutions are considered in Chapman–Jouguet theory of

combustion [12, 13]: in that framework a left-sonic phase boundary is called
a Chapman–Jouguet detonation, and a subsonic phase boundary is a strong
detonation. We refer to [6, 8, 17] for other related mathematical results on
sonic phase transitions. Solutions with features similar to those of sonic
phase boundaries appear also in nongenuinely nonlinear systems, see [15].
Physical models are considered in [9, 18, 20].
Under natural stability assumptions on (1.2), we prove by an ad hoc front

tracking algorithm that there exists a positive d such that for all functions
u0 : R/O with jju0jj1 þ TVðu0Þ5d; the Cauchy Problem

@tuþ @x½f ðuÞ� ¼ 0;

uð0; xÞ ¼
%
u‘ þ u0ðxÞ if x50;

%
ur þ u0ðxÞ if x > 0

8><
>:

8>>>>><
>>>>>:

ð1:3Þ
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admits a global solution. Moreover, the phase boundary remains for all
times subsonic on the right and either subsonic or sonic on the left. The total
variation of its propagation speed is OðdÞ: Throughout the proof, the phase
boundary is considered as a ‘‘generalized’’ Lax wave, whose regularity is
C1;1 and in general not C2; see also [10].
We limit the construction below to perturbations of a single left-sonic

phase boundary. The more general situation where the unperturbed
Riemann problem is solved in terms of several subsonic or sonic phase
boundaries can be recovered by a suitable mixing of the techniques
presented below and in [5].
The problem of the continuous dependence of the solutions upon the initial

data seems to present the same difficulties of the nongenuinely nonlinear case,
which is still open in the n� n case, even if phase boundaries are absent.
Section 2 contains the precise statement of our result. Proofs are given in

Sections 4 and 5. In Section 3, we provide applications to phase transitions
both in gas dynamics and elastodynamics, and to Chapman–Jouguet
combustion waves.

2. NOTATIONS AND MAIN RESULT

We consider the system of conservation laws (1.1). The function f : O
/Rn is of class C3 and O ¼ O0 [ O1; where O0 and O1 are two disjoint open
subsets of Rn: We refer to O0 and O1 as phases, see [5].
On system (1.1) we require the following standard conditions:

(1) the n� nmatrix Df ðuÞ is strictly hyperbolic, i.e. it has n real distinct
eigenvalues;

(2) each characteristic field is either genuinely nonlinear or linearly
degenerate. The k-characteristic family is genuinely nonlinear in O0:

The latter part of assumption (2) is of an essentially technical nature. In
the situation where the kth family is linearly degenerate, an existence result
similar to the one below is known to hold, see [4, 7].
We denote by liðuÞ and riðuÞ; respectively, the ith eigenvalue and the ith

right eigenvector of Df ðuÞ; for i ¼ 1; . . . ; n and for all u 2 O: The indexes are
chosen so that li�1ðuÞ5liðuÞ for all u in O: For simplicity, below we write
AðuÞ for Df ðuÞ:
Let u : ½0;þ1½�R ! O be a weak solution to (1.1) such that uðt; �Þ 2 BV

for all t: As in [5], we say that a Lipschitz-continuous curve x ¼ LðtÞ is a
phase boundary for u if for a.e. t the traces

uðt;LðtÞ�Þ ¼ lim
x!LðtÞ�

uðt; xÞ and uðt;LðtÞþÞ ¼ lim
x!LðtÞþ

uðt; xÞ
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are in different phases. We say that the phase boundary x ¼ LðtÞ is left-sonic

at time t with respect to the kth characteristic field if

lkðuðt;LðtÞþÞÞ5lkðuðt;LðtÞ�ÞÞ ¼ LðtÞ5lkþ1ðuðt;LðtÞþÞÞ: ð2:1Þ

Clearly, the inequality on the right is missing if k ¼ n: We say also that the
phase boundary x ¼ LðtÞ is left-subsonic, respectively left-supersonic, if lkðu
ðt;LðtÞ�ÞÞ > LðtÞ; resp. lkðuðt;LðtÞ�ÞÞ5LðtÞ: Since the present results are
local in the state space, we may assume that the inequalities in (2.1) hold as
well. Analogous definitions may well be given in the right-sonic case.
When no misunderstanding arises, we drop the ‘‘left’’ and refer simply to

sonic (subsonic, supersonic) phase boundaries. If a phase boundary x ¼ LðtÞ
is subsonic, respectively supersonic, then there are nþ 1 (resp. n)
characteristics impinging into the phase boundary and n� 1 (resp. n)
outgoing from it. In other words, subsonic phase boundaries behave like k-
shock waves, while supersonic ones do not.
We now fix two states

%
u‘ 2 O0 and

%
ur 2 O1 and assume that the Riemann

problem (1.2) has the solution

%
uðt; xÞ ¼

%
u‘ if x5

%
L � t;

%
ur if x >

%
L � t;

8><
>: ð2:2Þ

and that the phase boundary x ¼
%
L � t is left-sonic with respect to the kth

characteristic field, i.e.,

lkð
%
urÞ5lkð

%
u‘Þ ¼

%
L5lkþ1ð

%
urÞ: ð2:3Þ

Small perturbations of solution (2.2) lead to consider both subsonic and
supersonic phase boundaries. To avoid the under-determinacy caused by
supersonic phase boundaries, we now introduce a class of solutions to the
Riemann problem for initial data ðu‘; urÞ close to ð

%
u‘;

%
urÞ which have only

either sonic or subsonic phase boundaries.

Definition 1. Consider two states u‘ 2 O0; ur 2 O1 close to
%
u‘;

%
ur;

respectively. An admissible solution to the Riemann problem

@tuþ @x½f ðuÞ� ¼ 0;

uð0; xÞ ¼
u‘ if x50;

ur if x > 0

(
8>><
>>: ð2:4Þ
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is a function consisting (from the left to the right) of k � 1 Lax waves, a
phase boundary (with possibly a k-rarefaction attached to its left), and
ðn� kÞ Lax waves.

More precisely, according to the definition above, the phase boundary is
either left-subsonic or left-sonic with respect to the kth characteristic field,
see Fig. 1. In the former case, no k-wave is present in the solution. In the
latter case, a k-rarefaction and the phase boundary constitute a so-called
compound (or mixed) wave, similarly to what happens in nongenuinely
nonlinear systems of conservation laws, see [15].
A well-known example of phase boundaries in the sense of Definition 1 is

found in the Chapman–Jouguet detonations model of combustion theory,
[12, 13]. The class of admissible solutions introduced above is a natural
generalization to n� n systems of the solutions considered there. We refer to
Section 3 for more details and other examples.
In order to obtain the unique solvability of the Riemann problem (2.4) in

the sense of Definition 1, in addition to hypotheses (1) and (2) we need a
stability assumption on the solution

%
u:

(3) The solution
%
u defined in (2.2) satisfies

det½r1ð
%
u‘Þ; . . . ; rk�1ð

%
u‘Þ;

%
ur �

%
u‘; rkþ1ð

%
urÞ; . . . ; rnð

%
urÞ�=0:

The condition above is also the stability condition for a (large) k-shock
wave, see [16].

Proposition 2.1. Let assumptions (1) and (2) hold. If the Riemann

problem (1.2) admits solution (2.2) satisfying to (3), then for all u‘; ur in

suitable neighborhoods of
%
u‘ and

%
ur the Riemann problem (2.4) admits a unique

admissible solution in the sense of Definition 1.
FIG. 1. Solutions to the Riemann problem in the case n ¼ 4: (a) with a subsonic phase
boundary and (b) with a left-sonic phase boundary joined to a rarefaction attached on its left.

The phase boundary is represented by a thick line, the small waves by thin lines.
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Consider now the Cauchy problem (1.3). In the definition below we refer
to the classical Lax entropy conditions as stated in [14].

Definition 2. By admissible solution to the Cauchy problem (1.3) we
mean a pair ðu;LÞ with u : ½0;þ1½�R/O0 [ O1 and L : ½0;þ1½/R and

1. in the region x5LðtÞ; u is a weak entropic solution to (1.3) and
uðt; xÞ 2 O0;

2. in the region x > LðtÞ; u is a weak entropic solution to (1.3) and
uðt; xÞ 2 O1;

3. along x ¼ LðtÞ the Rankine–Hugoniot relations

f ðuðt;LðtÞþÞÞ � f ðuðt;LðtÞ�ÞÞ

¼ ’LLðtÞ � ðuðt;LðtÞþÞ � uðt;LðtÞ�ÞÞ ð2:5Þ

hold for a.e. t:

We are now ready to state the main result of this paper.

Theorem 2.1. Let f : O/Rn be a smooth function satisfying (1) and (2).
Assume that the Riemann problem (1.2) admits the weak solution (2.2)
consisting of a left-sonic phase boundary and satisfying condition (3). Let u0 be

such that

jju0jj1L þ TVðu0Þ4d

for some positive d:
Then, if d is sufficiently small, there exists a global solution

u 2 BVlocð�0;þ1½�RÞ

to the Cauchy problem (1.3) in the sense of Definition 2. The solution u has a

Lipschitz-continuous phase boundary x ¼ LðtÞ which is for a.e. t either left-

sonic or left-subsonic. Moreover,

TVðuðt; �Þ; � �1;LðtÞ½Þ þ TVð ’LLÞ þ TVðuðt; �Þ; �LðtÞ;þ1½Þ ¼ Oð1Þ � d: ð2:6Þ

Above, TVðu; IÞ denotes the total variation of the function u over the
(space) interval I ; while TVð ’LLÞ is the total variation of ’LL over the whole
(time) interval ½0;þ1½:
This result is proved by means of a wave-front tracking scheme as in [2, 3],

suitably adapted to the present situation, see condition (K) in Section 5.
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3. APPLICATIONS

A first example of phase transition is given by the p-system

@tt� @xv ¼ 0;

@tvþ @xpðtÞ ¼ 0:

(
ð3:1Þ

Here, t is the specific volume, v the speed and p : O0 [ O1/R is the
pressure. O0 represents the liquid phase while O1 stand for the vapor one.
Under standard assumption on p; namely

p0ðtÞ50 and p00ðtÞ > 0 8t 2 O0 [ O1; ð3:2Þ

in [6] it is shown that if also pðsupO0Þ5pðinfðO1Þ holds, in general a global
and continuous Riemann solver leads to sonic phase boundaries. Theorem
2.1 applies since the above assumptions are well known to imply (1) and (2).
Also (3) holds, as it follows from simple computations.
More generally, the full system of Euler equations of gas dynamics in

Lagrangian coordinates is

@tt� @xv ¼ 0;

@tvþ @xp ¼ 0;

@tðeþ 1
2
v2Þ þ @xðp � vÞ ¼ 0;

8>><
>>: ð3:3Þ

where e is the internal energy density. The pressure law p ¼ pðt; eÞ satisfies
the conditions

@tpðt; eÞ50 and @epðt; eÞ > 0: ð3:4Þ

It is well known that due to the former inequality above, (3.3) satisfies (1)
with eigenvalues 0; � l; where l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ppe � pt

p
: Moreover, if

p@el� @tl=0 ð3:5Þ

then also (2) holds. Assumptions (3.4)–(3.5) hold in the polytropic case,
where p ¼ ðg� 1Þe=t; g > 1:
Let u denote the triple of the conserved quantities ðt; v; eþ v2=2Þ:

Lemma 3.1. Let
%
u‘;

%
ur be such that (2.2) is a weak solution of (3.3) with

%
L

left-sonic with respect to the third characteristic family. If (3.4) holds, then the

stability condition (3) is satisfied, provided

ur=u‘: ð3:6Þ

% %
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Proof. Let
%
u‘ ¼ ðt; v; eþ v2=2Þ and

%
ur ¼ ðtr; vr; er þ ðvrÞ2=2Þ: First, note

that the flow in (3.3) has the Jacobian

0 �1 0

@tp �v@ep @ep

v@tp p � v2@ep v@ep

2
664

3
775:

Then (3) is equivalent to

ðtr � tÞ@tp � ðvr � vÞðv@ep � lÞ þ er þ
ðvrÞ2

2
� e�

v2

2

� �
@ep=0:

Using the Rankine–Hugoniot conditions (2.5) and (3.6) the above relation
amounts to

ðpr � pÞð�@tp þ pr@ep þ l2Þ=0:

By (3.6) the first factor does not vanish, and by (3.4) the second one is
strictly positive, completing the proof. ]

Remark that the above lemma holds thanks only to the form (3.3) of the
equations, the thermodynamic assumptions (3.4) and the left-sonicity of the
phase boundary.
Theorem 2.1 applies also to liquid–vapor sonic phase transitions in (3.3).

Assume that the fluid satisfies, for instance, van der Waals equation of state.
Then, it is well known that (3.4) and (3.5) are locally satisfied a.e. in the
hyperbolic region. The present result ensures that the phase boundary is
stable with respect to small BV perturbation for all times in the sonic case.

3.1. Chapman–Jouguet Detonations

We briefly recall here the following standard combustion model,
consisting of two Euler systems coupled by a free boundary where the
reaction takes place.
At time t ¼ 0; burnt gas covers the half-line x50; while unburnt gas fills

x > 0: The two ideal gases satisfy Euler equations, with eventually different
equations of state. The two gases differ in the expression for the internal
energy, since the one of the unburnt gas contains also a term accounting for
the energy to be released through combustion.
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Using Lagrangian coordinates:

Burnt Gas Unburnt Gas

@tt� @xv ¼ 0;

@tvþ @xp ¼ 0;

@tðeþ 1
2
v2Þ þ @xðpvÞ ¼ 0;

8>><
>>:

@tt� @xv ¼ 0;

@tvþ @xp ¼ 0;

@tðeþ 1
2
v2Þ þ @xðpvÞ ¼ 0;

8>><
>>:

pt ¼ RT=mB; pt ¼ RT =mU;

e ¼ cBv T ; e ¼ cUv T þ Q:

ð3:7Þ

As usual, cBv (resp. c
U
v ) is the specific heat of the burnt (resp. unburnt)

gas, mB and mU are the molar weights, and R is the universal gas
constant. The constant Q is the energy density that is released from the
unburnt gas through combustion. Let e ¼ eþ v2=2 be the total energy
density.
Introducing the parameters aB ¼ cBv =ðnBRÞ and aU ¼ cUv =ðnURÞ with aB;

aU 2 ½1;þ1½; the relations eB ¼ aBpt and eU ¼ aUptþ Q allow to close
system (3.7) with the aid of the only two parameters aB and aU:
The (free) boundary between the two gases is the reaction front. Its

propagation speed is chosen according to the Rankine–Hugoniot condi-
tions.
We refer to [21] for the study of the global Riemann problem for

(3.7). Locally, i.e. in the spirit of the present paper, on the left we fix a
burnt state

%
uB ¼ ð

%
tB;

%
vB;

%
eBÞ and an unburnt state

%
uU ¼ ð

%
tU;

%
vU;

%
eUÞ so

that
%
uB is the Chapman–Jouguet detonation point related to

%
uU; see for

instance [12,13]. Clearly, (3.6) holds. Let OB be a neighborhood of
%
uB

and OU a neighborhood of
%
uU; with OB \ OU ¼ |: Let f : O0 [ O1/R3

defined by

ðt; v; eÞ/

v;
e� 1

2
v2

aBt
;
v e� 1

2v
2

� �
aBt

� �
if ðt; v; eÞ 2 OB;

v;
e� 1

2
v2 � Q
aUt

;
v e� 1

2
v2 � Q

� �
aUt

� �
if ðt; v; eÞ 2 OU:

8>>>><
>>>>:

With the f above, problem (3.7) is equivalent to (1.1) and is well known to
satisfy (1) and (2). Moreover, it enjoys also (3), as follows from Lemma 3.1.
Theorem 2.1 then ensures the global existence of solutions to (3.7) for small
BV perturbations of initial data near to the Chapman–Jouguet detonation
point. Note that bound (2.6) on the total variation of the speed of the phase
boundary imply that the reaction continues for all times.
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3.2. Phase Transitions in Elastodynamics

In the more general case of adiabatic thermoelastic materials, system (3.3)
reads as

@tw� @xv ¼ 0;

@tv� @xs ¼ 0;

@tðeþ 1
2
v2Þ � @xðsvÞ ¼ 0:

8>><
>>: ð3:8Þ

Above, w is the strain, v the velocity, s ¼ sðw; SÞ the stress and e ¼ eðw; SÞ
the internal energy, where S is the entropy. We denote by T the temperature.
See [11] for further reference.
In particular materials, see [18, 20], suitable stresses produce changes in

the crystalline structure propagating at a speed comparable to that of sound.
These phase transitions fall in the same framework provided by Theorem 2.1,
under suitable assumptions on the stress function s; namely (3.4) and (3.5)
are replaced by

@wsðw; SÞ > 0; @Ssðw; SÞ50 and @2wwsðw; SÞ=0:

Moreover, (3) now reads as

sr � s=� 2T
@ws
@Ss

;

where sr (resp. s) is the stress on the right (left) of the unperturbed left-sonic
phase transition and the terms on the r.h.s. are computed on the left state.

4. THE RIEMANN PROBLEM

This section is devoted to the study of the Riemann problem (2.4). For
u 2 O and i ¼ 1; . . . ; n we introduce the following curves exiting u: the ith
shock curve s/Siðu;sÞ; the ith rarefaction curve s/Riðu;sÞ and their
gluing, the ith Lax curve

Fiðu; sÞ ¼
Riðu;sÞ if s50;

Siðu;sÞ if s40:

(

If the ith family is linearly degenerate, then the curves above are
parametrized by means of the arc length. If the ith family is genuinely
nonlinear, following [3] we choose the parameter s so that

liðRiðu;sÞÞ ¼ liðuÞ þ s ¼ liðSiðu; sÞÞ: ð4:1Þ
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It is well known [3, 19] that all the curves above are C2: Below, Id denotes
the n� n identity matrix.

Lemma 4.1. The Rankine–Hugoniot condition L � ður � u‘Þ ¼ f ðurÞ�
f ðu‘Þ implicitly defines a unique smooth function ur ¼ H ðu‘;LÞ in a

neighborhood of the unperturbed solution
%
ur ¼ H ð

%
u‘;

%
LÞ: Moreover,

DLH ðu;LÞ ¼ ½AðH ðu;LÞÞ � L � Id��1 � ðH ðu;LÞ � uÞ;

DuH ðu;LÞ ¼ ½AðH ðu;LÞÞ � L � Id��1 � ðAðuÞ � L � IdÞ:

Proof. Write RH ðu‘; ur;LÞ ¼ f ðurÞ � f ðu‘Þ � L � ður � u‘Þ: Note that

DurRH ð
%
u‘;

%
ur;

%
LÞ ¼ Að

%
urÞ �

%
L � Id

which is a nonsingular matrix, due to (2.3). The Implicit Function Theorem
allows to complete the proof. ]

A property of the Hugoniot function H of key importance in the sequel is
that for all u

DuH ðu; lkðuÞÞrkðuÞ

¼ ½AðH ðu; lkðuÞÞÞ � lkðuÞ � Id��1 � ðAðuÞ � lkðuÞ � IdÞ � rkðuÞ ¼ 0 ð4:2Þ

since rk is a right k-eigenvector.
It turns out very useful to consider the phase boundary as part of a

generalized k-wave. We thus introduce the generalized kth Lax curve as

*FFkðu;sÞ ¼
H ðRkðu;sÞ; lkðRkðu; sÞÞÞ if s50;

H ðu; lkðSkðu;sÞÞÞ if s40:

(
ð4:3Þ

The above parameterization of the generalized Lax curve is of key
importance in the sequel. In fact, it amounts to assign a size s to the phase
transition exiting from u: This size is a (signed) measure of the distance from
the left-sonic phase boundary exiting from u: More precisely, if s40 then
the states u and *FFkðu;sÞ are connected by a subsonic phase boundary; if
instead s50 then the state u is connected first to the state Rkðu;sÞ (by a k-
rarefaction) and subsequently to *FFkðu;sÞ by a sonic phase boundary
(attached to the right part of the rarefaction).
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Note that due to choice (4.1), definition (4.3) can be rewritten as

*FFkðu;sÞ ¼
H ðRkðu; sÞ; lkðuÞ þ sÞ if s50;

H ðu; lkðuÞ þ sÞ if s40:

(
ð4:4Þ

Lemma 4.2. The function u/ *FFkðu; sÞ is of class C2 for every fixed s: The

function ðu;sÞ/ *FFkðu;sÞ is C1;1: Moreover,

Ds *FFkðu; 0Þ ¼ DLH ðu; lkðuÞÞ; ð4:5Þ

Du *FFkðu; 0Þ ¼ DuH ðu; lkðuÞÞ þ DLH ðu; lkðuÞÞ � rlkðuÞ: ð4:6Þ

Proof. The regularity of u/ *FFkðu;sÞ for fixed s is well known [3, 19].
Consider now (4.5). If s > 0; from (4.2) it follows that

Ds *FFkðu;sÞ ¼DuH ðRkðu;sÞ; lkðuÞ þ sÞÞ � rkðRkðu;sÞÞ

þ DLH ðRkðu;sÞ; lkðuÞ þ sÞ

¼DLH ðRkðu;sÞ; lkðuÞ þ sÞ;

hence Ds *FFkðu; 0þÞ ¼ DLH ðu; lkðuÞÞ: On the other hand, if s50 then

Ds *FFkðu;sÞ ¼ DLH ðu; lkðuÞ þ sÞÞ;

hence Ds *FFkðu; 0�Þ ¼ DLH ðu; lkðuÞÞ: Comparing the expressions above, (4.5)
is proved.
To prove (4.6), compute

s > 0 : Du
*FFðu;sÞ ¼DuH ðRkðu; sÞ; lkðuÞ þ sÞ � DuRkðu;sÞ

þ DLH ðRkðu; sÞ; lkðuÞ þ sÞ � rlkðu; sÞ;

Du *FFðu; 0þÞ ¼DuH ðu; lkðuÞÞ þ DLH ðu; lkðuÞÞ � rlkðuÞ;

s50 : Du
*FFkðu;sÞ ¼DuH ðu; lkðuÞ þ sÞ

þ DLH ðu; lkðuÞ þ sÞ � rlkðuÞ;

Du
*FFkðu; 0�Þ ¼DuH ðu; lkðuÞÞ þ DLH ðu; lkðuÞÞ � rlkðuÞ:

This proves (4.6).
The functions Ds *FFk and Du *FFk are thus continuous in both the variables

ðu;sÞ; hence *FFk 2 C1: Furthermore, *FFk is C
2 for s50 and, separately, for

s40: By an easy argument we find that *FFkðu;sÞ 2 C1;1; completing the
proof. ]
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The fact that s/ *FFkðu;sÞ is C1;1 is optimal, as shown by the next lemma
in the case of the p-system.

Lemma 4.3. In the case of the p-system (3.1) with a pressure law satisfying

(3.2), the function s/ *FF2ðu; sÞ (here, k ¼ 2) is not twice differentiable.

Proof. Fix a state u: From the proof of Lemma 4.2 we see that

Ds *FFkðu;sÞ ¼
DLH ðRkðu;sÞ; lkðuÞ þ sÞ if s50;

DLH ðu; lkðuÞ þ sÞ if s40:

8<
:

By computation of D2s *FFkðu;sÞ we see that the map s/ *FF2ðu; sÞ is twice
differentiable if and only if

ðDuðDLH ÞÞðu; lkðuÞÞ � rkðuÞ ¼ 0: ð4:7Þ

In the case of the p-system (3.1), u ¼ ðv; tÞ; cðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p0ðtÞ

p
and for a

suitable function tH ¼ tH ðt;LÞ;

H ðu;LÞ ¼
v� L � ðtH ðt;LÞ � tÞ

tH ðt;LÞ

2
4

3
5:

In contrast with (4.7), we prove that

ðDuðDLH ÞÞðu;LÞ � rkðuÞ=0

for every u and L close to
%
u‘;

%
L; respectively. In fact, from the formula

DLH ðu;LÞ ¼
tH ðt;LÞ � t

L2 � c2ðtH ðt;LÞÞ

L2 þ c2ðtH ðt;LÞÞ

�2L

0
@

1
A ¼

Iðt;LÞ

J ðt;LÞ

0
@

1
A

we find that

ðDuðDLH ÞÞðu;LÞ ¼
0 DtIðt;LÞ

0 DtJ ðt;LÞ

0
@

1
A:

Let us write tH for tH ðt;LÞ: A simple computation shows that DtJ ðt;LÞ ¼ 0
if and only if

DttH ¼
L2 � c2ðtH Þ

L2 � c2ðtH Þ þ 2 � cðtH Þ � c0ðtH Þ � ðtH � tÞ
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provided

L2 � c2ðtH Þ þ 2 � cðtH Þ � c0ðtH Þ � ðtH � tÞ=0:

If this happens then

DtIðt;LÞ ¼ 2 �
tH � t

L2 � c2ðtH Þ
� cðtH Þ � c0ðtH Þ � DttH

which does not vanish. ]

In the following, we use the notation

*FFðu‘; s1; . . . ;snÞ ¼ Fnð. . . *FFkð. . .F1ðu‘; s1Þ; . . . ;skÞ; . . . ;snÞ;

Fðu‘; ur; s1; . . . ;snÞ ¼ *FFðu‘; s1; . . . ;snÞ � ur: ð4:8Þ

Note that solving the Riemann problem (2.4) according to Definition 1
amounts to solve

ur ¼ *FFðu‘; s1; . . . ;snÞ

for the wave sizes s1; . . . ;sn in terms of the states u‘; ur:

Proof of Proposition 2.1. According to the previous notations, solving
(2.4) as specified in Definition 1 is equivalent to solving

Fðu‘; ur; s1; . . . ; snÞ ¼ 0

in terms of s1; . . . ;sn for given u‘ and ur: Applying the Implicit Function
Theorem in C1;1 amounts to require that the determinant of the matrix

A ¼ ðA1; . . . ;AnÞ ¼ Ds1;...;snFð
%
u‘;

%
ur; 0; . . . ; 0Þ ð4:9Þ

does not vanish, whereA is the n� n matrix having columnsAh defined by

Ai ¼ ½Að
%
urÞ � lkð

%
u‘Þ � Id��1½ðlið

%
u‘Þ � lkð

%
u‘ÞÞIdþ ½

%
u�rlkð

%
u‘Þ�ri; ð

%
u‘Þ

14i4k�1;

Ak ¼ ½Að
%
urÞ�lkð

%
u‘Þ � Id��1½

%
u�;

Aj ¼ rjð
%
urÞ; kþ14j4n:
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By multiplying A by Að
%
urÞ � lkð

%
u‘Þ � Id we see that detA=0 iff detB=0;

where

Bi ¼ ½ðlið
%
u‘Þ � lkð

%
u‘ÞÞIdþ ½

%
u�rlkð

%
u‘Þ�rið

%
u‘Þ; 14i4k � 1;

Bk ¼ ½
%
u�;

Bj ¼ ½ljð
%
urÞ � lkð

%
u‘Þ�rjð

%
urÞ; k þ 14j4n: ð4:10Þ

Since lið
%
u‘Þ � lkð

%
u‘Þ=0 and ljð

%
urÞ � lkð

%
u‘Þ=0; from the properties of the

determinant we deduce that detB=0 iff detC=0; where

Ci ¼ rið
%
u‘Þ þ

rlkð
%
u‘Þrið

%
u‘Þ

lið
%
u‘Þ � lkð

%
u‘Þ

½
%
u�; 14i4k � 1;

Ck ¼ ½
%
u�;

Cj ¼ rjð
%
urÞ; k þ 14j4n:

In the first k � 1 columns a scalar multiple of the kth column ½
%
u� appears as a

summand. Therefore, the determinant does not change if we skip those
columns, concluding the proof. ]

For future reference let us denote bj ¼ ljðurÞ � lkðu‘Þ; G ¼ ½u�rlkðu‘Þ;
gi ¼ liðu‘Þ � lkðu‘Þ þ G; for ur ¼ *FFkðu‘; 0Þ and i; j ¼ 1; . . . ; n: Remark that bj
are numbers while G; gi are n� n matrices.
Under these notations we remark that we have, for ur ¼ *FFkðu‘; 0Þ;

Ds1;...;snFðu‘; ur; 0; . . . ; 0Þ ¼ ðAðurÞ � lkðu‘Þ � IdÞ
�1Bðu‘; urÞ;

where the matrix B is defined as

Bðu‘; urÞ ¼ ½g1r1ðu
‘Þ; . . . ; gk�1rk�1ðu

‘Þ; ½u�; bkþ1rkþ1ðu
rÞ; . . . ; bnrnðu

rÞ�: ð4:11Þ

5. THE CAUCHY PROBLEM

The existence Theorem 2.1 is achieved through the construction of
piecewise constant approximate solutions having uniformly bounded total
variation. We use the standard wave front tracking algorithm for n� n
systems as defined in [3, 11]. Hence, we underline here only those
modifications necessary in the present construction and refer to the cited
books for further reference.
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The whole technique relies on the Approximate Riemann Solver and on the
Simplified Riemann Solver. While keeping the later essentially unchanged,
we modify the former so that

(K) Each rarefaction wavelet of the kth family is assigned the k-
characteristic speed of the state to its left.

In the spirit of (4.3), the phase boundary is considered as a k-wave,
whenever a Riemann problem involving data in different phases is tackled.
Note that, as a consequence of (K), approximate sonic phase boundaries are
assigned null size and propagate with the exact speed.
Furthermore, we prescribe that all the Riemann problems along the phase

boundary be solved by the Accurate Solver, unless the Riemann problem
arises from the interaction of a nonphysical wave. In this case, the simplified
solver is used, that is the phase boundary is prolonged with the same speed
while the nonphysical wave changes slightly its size.
The above modifications do not alter the key properties of the algorithm,

provided suitable interaction estimates are proved, which is the scope of the
next paragraph. Later, in Subsection 5.2 we shall show that any limit of the
sequence of approximate solutions satisfy (2.5).

5.1. Interaction Estimates

We consider now the interaction estimates. We limit the present study
only to those simple interactions to which the phase boundary takes part,
the other cases being covered as in [3].
As it is standard in this context, the Landau symbol Oð1Þ denotes a function

whose modulus is uniformly bounded as u and s range over a compact set.

Lemma 5.1. Assume that a (possibly nonphysical) j-wave s�j ; with j=k;
hits the phase boundary *ss�k ; see Fig. 2a. Then, the sizes *ssþk and sþi ; i ¼
1; . . . ; k � 1; k þ 1; . . . ; n of the outcoming waves satisfy

j *ssþk � *ss�k j þ jsþj j þ
X

i¼1;...;n
i=j;i=k

jsþi j ¼ Oð1Þ � js�j j; ð5:1Þ

j *LL
þ
k � *LL

�
k j ¼ Oð1Þ � js�j j; ð5:2Þ

jjuþ‘ � u�‘ jj þ jjuþr � u�r jj ¼ Oð1Þ � js�j j; ð5:3Þ

where *LL
þ
k (resp. *LL

�
k ) is the speed of the outgoing (resp. incoming) phase

boundary and u�‘ (resp. u�r ) is the state to its left (resp. right).



FIG. 2. Interactions of the phase boundary *ss�k with a wave s
�
j from the right, (a), and with a

wave s�k from the left, (b). The small outgoing waves are denoted in Lemmas 5.1 and 5.2 by

sþi ; i=k:
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Proof. Assume that j > k; the other case being entirely analogous. Note
that the value j ¼ nþ 1 is not excluded. LetF be as in (4.8). By the Implicit
Function Theorem in C1;1 the equality

Fðu‘; *FFkðFjðu‘;s�j Þ; *ss
�
k Þ; s

þ
1 ; . . . ; *ss

þ
k ; . . . ;s

þ
n Þ ¼ 0; ð5:4Þ

implicitly defines a C1;1 function ðsþ1 ; . . . ; *ss
þ
k ; . . . ;s

þ
n Þ ¼ Sjðs�j ; *ss

�
k ; u

‘Þ with
the property

Sj
i ð0; *ss

�
k ; u

‘Þ ¼
0 if i=k;

*ss�k if i ¼ k:

(

The Lipschitzeanity of Sj then implies (5.1).
To prove (5.2), simply use the Implicit Function Theorem and the linear

independency of the right eigenvectors. ]

Lemma 5.2. Assume that a k-wave s�k hits the phase boundary *ss�k ; and

denote by sþi ; i ¼ 1; . . . ; n; i=k and *ssþk the sizes of the outcoming waves, see

Fig. 2b.
If s�k interacts from the right then

j *ssþk � *ss�k j þ
X

i¼1;...;n
i=k

jsþi j ¼ Oð1Þ � js�k j; ð5:5Þ
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while if s�k interacts from the left we have

*ssþk ¼ s�k þ *ss�k þ Oð1Þ � ðjs�k j þ j *ss�k jÞ � js
�
k j; ð5:6Þ

sþi ¼ Oð1Þ � ðjs�k j þ j *ss�k jÞ � js
�
k j; i ¼ 1; . . . ; n; i=k: ð5:7Þ

In both cases

j *LL
þ
k � *LL

�
k j ¼Oð1Þ � js�k j;

jjuþ‘ � u�‘ jj þ jjuþr � u�r jj ¼Oð1Þ � js�k j:

Proof. We prove first (5.5) and assume that s�k comes from the right.
Replace the l.h.s. in (5.4) with

Gðu‘; s�k ; *ss
�
k ; s

þ
1 ; . . . ; *ss

þ
k ; . . . ;s

þ
n Þ

¼ Fðu‘;Fkð *FFkðu‘; *ss�
k Þ; s

�
k Þ; s

þ
1 ; . . . ; *ss

þ
k ; . . . ;s

þ
n Þ: ð5:8Þ

The function implicitly defined by Gðu‘; s�k ; *ss
�
k ; s

þ
1 ; . . . ; *ss

þ
k ; . . . ;s

þ
n Þ ¼ 0 is

ðsþ1 ; . . . ; *ss
þ
k ; . . . ;s

þ
n Þ ¼ Skðs�k ; *ss

�
k ; u

‘Þ ð5:9Þ

and enjoys the property

Sk
i ð0; *ss

�
k ; u

‘Þ ¼
0 if i=k;

*ss�k if i ¼ k:

(
ð5:10Þ

Then (5.5) follows as in the previous proof by Lipschitzeanity of Sk :
We prove now (5.6) and (5.7).
Define

Gðu‘; s�k ; *ss
�
k ; s

þ
1 ; . . . ; *ss

þ
k ; . . . ;s

þ
n Þ

¼ Fðu‘; *FFkðFkðu‘;s�k Þ; *ss
�
k Þ; s

þ
1 ; . . . ; *ss

þ
k ; . . . ;s

þ
n Þ:

Then

Ds�k
Gðu‘; 0; 0; 0; . . . ; 0Þ ¼ �½AðurÞ � lkðu‘Þ � Id��1 � ½u�

for ur ¼ *FFkðu‘; 0Þ: Hence, by the Implicit Function Theorem and (4.11)

Ds�k
Skð0; 0; u‘Þ ¼ B�1ðu‘; urÞ½u� ¼ ek ; ð5:11Þ
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where ek is the kth vector of the canonical basis of Rn: Therefore,

Ds�k
Sk
i ð0; 0; u

‘Þ ¼
0 if i=k;

1 if i ¼ k

(

and moreover, from (5.10),

D *ss�k S
k
i ð0; *ss

�
k ; u

‘Þ ¼
0 if i=k;

1 if i ¼ k:

(

This proves (5.6) and (5.7). The latter estimates on the change in the
propagation speed and on the variation of the side states are entirely
analogous to those in Lemma 5.1. ]

We point out that estimates (5.6) and (5.7) do not hold if the wave s�k
interacts from the right. In fact, if we still use the notation Sk for the set of
outgoing waves produced by the interaction, then in this case we find

Ds�k
Skð0; 0; u‘Þ ¼ ðlkðurÞ � lkðu‘ÞÞB�1ðu‘; urÞrkðurÞ;

instead of (5.11).

5.2. Convergence

Assume now that an e-approximate solution ue to (1.1) has been defined
according to the algorithm in [3]. Then, at every fixed time t;

ueðt; xÞ ¼
%
u‘ � w��1;x0�ðxÞ þ

XN
a¼1

ua � w�xa�1;xa�ðxÞ þ
%
ur � w�xN ;þ1½ðxÞ : ð5:12Þ

Here, xa is a (time-dependent) point of jump of ue: Moreover, the Riemann
problem with data ua�1; ua is solved by waves of (total) sizes s1;a; . . . ; sn;a:
Let *aa be such that

u*aa�1 2 O0 and u*aa 2 O1; ð5:13Þ

so that sk;*aa is the size of the phase boundary, in the sense of
parameterization (4.3) and (4.4).
Define the following Glimm functionals:

V eðueÞ ¼
X
a5*aa

Xk�1
i¼1

jsi;aj þ W �
Xnþ1
i¼kþ1

jsi;aj

 !

þ
X
a5*aa

ðW � � [sk;a]� þ W þ � [sk;a]þÞ þ W þ � [sk;*aa]þ
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þ
X
a>*aa

W �
Xk
i¼1

jsi;aj þ
Xnþ1
i¼kþ1

jsi;aj

 !
;

QeðueÞ ¼
X

½ði;aÞ;ðj;bÞ�2A

jsi;asj;bj;

UeðueÞ ¼ V eðueÞ þ QeðueÞ:

The term W þ � [sk;*aa]þ deserves some explanation. It is needed to assure the
decrease of the functional Ue at times t0 when a sonic phase boundary arises
by interaction. At t0 the strength of the phase boundary is positive, though
for later times the rarefaction attached on the left is split and separates from
it; at those times the phase boundary has strength 0:
Above, we followed the standard notation of considering nonphysical

waves as waves belonging to the ðnþ 1Þth family. Moreover,A denotes the
set of approaching waves, see [3, 19]. In the set A is included also the wave
associated to phase boundary, differently from [5].
The role of the functionals above is to provide a bound for the total

variation. This is achieved by showing first that Ue is ‘‘equivalent’’ to TVðueÞ
and, secondly, showing that the map t/UeðueðtÞÞ is a nonincreasing
function of time.

Proposition 5.1. Let u be a function of the form (5.12), satisfying (5.13).
Then there exists positive constants c and C such that

c � UðuÞ4TVðuÞ4C � ðUðuÞ þ jj
%
ur �

%
u‘ jjÞ: ð5:14Þ

Proof. The former inequality is a standard consequence of strict
hyperbolicity. To obtain the latter inequality, observe that

jju*aa � u*aa�1jj4jju*aa �
%
urjj þ jj

%
ur �

%
u‘ jj þ jj

%
u‘ � u*aa�1jj

4C � UðuÞ þ jj
%
ur �

%
u‘jj: ]

Proposition 5.2. The map t/UeðueðtÞÞ is nonincreasing.

Proof. Several cases are in order, depending on the types of waves that
interact. We consider in detail however, only the interaction of the small
waves with the phase boundary. In fact, the interactions of small waves is
analogous to [3], because the weights that we assigned to the functional Ue

do not play any role far from the phase boundary. We emphasize that the
interaction of a physical wave with the phase boundary never produces a
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nonphysical wave, as a consequence of the choice of the Riemann solvers,
see Section 4.
1. A k-rarefaction s�k hits the phase boundary *ss�k from the left. Due to the

particular choice (K) of the wave speed made above, the phase boundary *ss�k
needs to be subsonic before the interaction, i.e. *ss�k 50; for otherwise no
interaction may occur. Moreover, for the same reason, s�k þ *ss�k 50: To
estimate DQe we remark that the set of waves approaching *ss�k contains the
set of waves approaching *ssþk : Due to (5.6)

DV e 4
X
j=k

jsþj j þ W þ[ *ssþk ]þ � W þjs�k j

¼ Oð1Þð1þ W þÞðjs�k j þ j *ss�k jÞjs
�
k j � W þjs�k j

¼ ðOð1Þ � ð1þ W þÞd� W þÞ � js�k j;

DQe 4
X
j=k

jsþj jdþ j *ssþk � *ss�k jd� js�k *ss
�
k j

¼ Oð1Þ � d � js�k j;

DUe ¼ ðOð1Þ � ðW þ þ 1Þd� W þÞ � js�k j:

The latter quantity is negative, provided W þ is sufficiently large
(independently from W and W �!) and d sufficiently small.
2. A k-shock hits the phase boundary coming from the left. Then, *ssþk may

have either signs. In both cases, due to (5.6),

[ *ssþk ]þ � [ *ss�k ]þ 4Oð1Þ � ðjs�k j þ j *ss�k jÞjs
�
k j;

DV e 4
X
j=k

jsþj j þ W þð[ *ssþk ]þ � [ *ss�k ]þÞ � W �js�k j

¼ ðOð1Þ � ð1þ W þÞd� W �Þjs�k j:

To estimate DQe we remark that if *ss�k 50 then the set of waves approaching
to it contains the set of waves approaching *ssþk ; these sets are equal if both
*ss�k > 0 and *ssþk > 0: In the remaining case *ss�k > 0; *ssþk 50 we remark that
j *ssþk j4j *ssþk � *ss�k j: In any case we have the estimates

DQe 4
X
j=k

jsþj jdþ j *ssþk � *ss�k jd� js�k *ss
�
k j

¼ Oð1Þ � d � js�k j;

DUe ¼ ðOð1Þ � ð2þ W þÞd� W �Þjs�k j;

which is negative provided W � is sufficiently large and d sufficiently small.
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3. Let i ¼ 1; 2; . . . ; n; but i=k: Assume that an i-wave s�i hits the phase
boundary *ss�k ; resulting in various outcoming waves s

þ
j and in the phase

boundary *ssþk : Due to (5.1) and arguing as in the previous case

DV e 4
X
j=k

jsþj j þ W þ[ *ssþk ]þ � W þ[ *ss�k ]þ � W js�i j

¼ ðOð1Þ � ð1þ W þÞ � W Þ � js�i j;

DQe ¼ Oð1Þ � d � js�i j;

DUe ¼ ðOð1Þ � ð1þ W þÞ � W Þ � js�i j:

If i ¼ k and the wave sk is coming from the right then we use (5.5) and
obtain analogous estimates.
4. We consider now the interaction of a nonphysical wave s� with the

phase boundary *ssk; the outcome is a phase boundary with the same strength
*ssk and a nonphysical wave sþ: Since sþ ¼ Oð1Þs� from (5.1), we have

DV e ¼ ðOð1Þ � W Þjs�j;

DQe ¼ � js� *ss�k j;

DUe ¼ ðOð1Þ � j *ss�k j � W Þjs�j

and so again DUe50 if W is sufficiently large.
5. The phase boundary does not take part to the interaction. Then, the

standard estimates in [3] ensure that if the interacting waves have sizes s and
s0; then

DUe5� 1
2
jss0j; ð5:15Þ

provided that d is sufficiently small with respect to the weights that have
been fixed in the previous steps. ]

To complete the construction of the solution to (1.3) it is now necessary to
choose sequences en and rn converging to 0 as in [3]. The corresponding
sequences un and Ln satisfy Helly’s Compactness Theorem and, up to a
subsequence, converge to u and L:
We are thus left with the task of showing that the solution so obtained in

the limit does satisfy the Rankine–Hugoniot conditions as stated in
Definition 2. To this aim, let

RHðu;w; lÞ ¼ f ðuÞ � f ðwÞ � l � ðu� wÞ

and denote by UnðtÞ ¼ Uen ðunðtÞÞ: The limit *UUðtÞ ¼ limn!þ1UnðtÞ is a
bounded nonincreasing function.
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Lemma 5.3. For a.e. positive t and for every positive e there exists a

positive d and an increasing (positive) sequence fdn : n 2 Ng such that limn!þ1

dn ¼ d and

*UUðt � dn�Þ � *UUðt þ dnþÞ5e

for all large n:

Proof. Fix e > 0: For every t but a finite set there exists a positive d such
that

*UUðt � d�Þ � *UUðt � dþÞ5
e
2
:

By the point-wise convergence and the monotonicity of the Un the thesis
follows.

Lemma 5.4. For a.e. positive t; there exist two positive sequences flng and

frng such that limn!þ1 ln ¼ 0; limn!þ1 rn ¼ 0 and

uðt;LðtÞ�Þ ¼ lim
n!þ1

unðt;LnðtÞ � lnÞ;

uðt;LðtÞþÞ ¼ lim
n!þ1

unðt;LnðtÞ þ rnÞ:

For the proof, see Lemma 6.1 in [1].

Lemma 5.5. For a.e. positive t; the following estimates hold:

lim
n!þ1

X
xa2½LnðtÞ;LnðtÞþrn�

Xnþ1
i¼1

jsi;aj ¼ 0; ð5:16Þ

lim
n!þ1

X
xa2½LnðtÞ�ln;LnðtÞ�

Xk�1
i¼1

jsi;aj þ
Xnþ1
i¼kþ1

jsi;aj

 !
¼ 0: ð5:17Þ

Proof. Consider first (5.16). Fix e > 0 and a time t > 0: Define l0 ¼
infO1 lkþ1; l00 ¼ supO1lk and

Tr
nðtÞ ¼ ðt; xÞ 2 ½0;þ1½�R :

x > LnðtÞ

x5l00 � ðt � tÞ þ LnðtÞ þ rn

x5l0 � ðt � tÞ þ LnðtÞ þ rn

8>><
>>:

9>>=
>>;;

8>><
>>:

see Fig. 3a. Due to (2.3), Tr
nðtÞ is nonempty and bounded, for

TVðu0Þ sufficiently small. Without loss of generality, we may assume that



FIG. 3. A k wave ‘‘almost parallel’’ to the phase boundary (a), waves incoming and outgoing
from the phase boundary (b).
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Tr
nðtÞ is contained in the strip ½t� dn; tþ dn� � R: Consider a wave s

of the ith family crossing the segment S ¼ ftg � ½LnðtÞ;LnðtÞ þ rn�: If s
vanishes at some time within ½t� dn; tþ dn�; prolong it in the future if i4k
and in the past if i > k with null size. With this provision, all the waves
crossingS either hit the phase boundary (if i4k) or arise out of it (if i > k).
Thus, by the interaction estimates in Proposition 5.2 their total size is small,
since

X
xa2½LnðtÞ;LnðtÞþrn�

Xnþ1
i¼1

jsi;aj ¼ Oð1Þ � ð *UUðt � dn�Þ � *UUðt þ dnþÞÞ5Oð1Þ � e:

This proves (5.16). Concerning (5.17), replace Tr
nðtÞ with

T‘
nðtÞ ¼ ðt; xÞ 2 ½0;þ1½�R :

x5LnðtÞ

x > l00 � ðt � tÞ þ LnðtÞ � ln

x > l0 � ðt � tÞ þ LnðtÞ � ln

8>>><
>>>:

9>>>=
>>>;
;

8>>><
>>>:

see Fig. 3b, where now l0 ¼ supO0lk�1; l00 ¼ infO0lkþ1 and follow an
entirely similar procedure. ]

The following proposition concludes the proof of Theorem 2.1
proving that the Rankine–Hugoniot conditions (2.5) are satisfied in the
limit.

Proposition 5.3. For a.e. positive t;

lim
n!þ1

RHðunðt;LnðtÞ � lnÞ; unðt;LnðtÞ þ rnÞ;LnðtÞÞ ¼ 0:
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Proof. Write

RHðunðt;LnðtÞ � lnÞ; unðt;LnðtÞ þ rnÞ;LnðtÞÞ

¼ RHðunðt;LnðtÞ � lnÞ; unðt;LnðtÞ�Þ;LnðtÞÞ ð5:18Þ

þRHðunðt;LnðtÞ�Þ; unðt;LnðtÞþÞ;LnðtÞÞ ð5:19Þ

þRHðunðt;LnðtÞþÞ; unðt;LnðtÞ þ rnÞ;LnðtÞÞ: ð5:20Þ

The second summand (5.19) vanishes since the Rankine-Hugoniot condi-
tions are exactly satisfied along the approximate phase boundary. The third
summand (5.20) is estimated as

RHðunðt;LnðtÞþÞ; unðt;LnðtÞ þ rnÞ;LnðtÞÞ

¼ Oð1Þ �
X

xa2½LnðtÞ;LnðtÞþrn�

Xnþ1
i¼1

jsi;aj;

hence it vanishes when n ! þ1 due to (5.16).
The first summand (5.18) is the key point. Let w0 ¼ unðt;LnðtÞ � lnþÞ and

call w1;w2; . . . ;wN the values attained by un at time t for x 2 ½LnðtÞ �
ln;LnðtÞ�; with wN ¼ unðt;LnðtÞ�Þ: We have, with an obvious notation,

RHðunðt;LnðtÞ � lnÞ; unðt;LnðtÞ�Þ;LnðtÞÞ

¼
XN
j¼1

RHðwj�1;wj;LnðtÞÞ

¼
X
k-jump

RHðwj�1;wj;LnðtÞÞ þ
X

non k-jump

RHðwj�1;wj;LnðtÞÞ ð5:21Þ

4
X

k-shock

RHðwj�1;wj;LnðtÞÞ ð5:22Þ

þ
X
k-rar

RHðwj�1;wj;LnðtÞÞ ð5:23Þ

þOð1Þ �
X

xa2½LnðtÞ�ln;LnðtÞ�

Xk�1
i¼1

jsi;aj þ
Xnþ1
i¼kþ1

jsi;aj

 !
: ð5:24Þ

Consider the last three summands separately.
In (5.22), note that the approximate shocks satisfy Rankine-Hugoniot

conditions. Secondly, split the sum in three parts, the former relative to
those k-shocks that arise in the time interval ½t � dn; t þ dn�; the second
relative to those k-shocks that hit the phase boundary within ½t � dn; t þ dn�
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and the latter relative to those shocks that do not interact with the phase
boundary: X

k-shock

RHðwj�1;wj;LnðtÞÞ

¼
X

k-shock

jlkðwj�1;wjÞ � LnðtÞj � jjwj�1 � wjjj

¼
X0

jlkðwj�1;wjÞ � LnðtÞj � jjwj�1 � wjjj

þ
X00

jlkðwj�1;wjÞ � LnðtÞj � jjwj�1 � wjjj

þ
X000

jlkðwj�1;wjÞ � LnðtÞj � jjwj�1 � wjjj:

The first and the second sums involve only small waves. Indeed, the
strengths of those k-shocks that either arise or hit the phase boundary are
bounded by Oð1ÞDUn; see Proposition 5.2. In the last summand, it is the
difference in the wave speeds that needs to be small, since the latter sum refer
to those k-shocks that are ‘‘almost parallel’’ to the phase boundary. ThusX

k-shock

RHðwj�1;wj;LnðtÞÞ

4Oð1Þ � jDUnj þ Oð1Þ � jDUnj þ
X000 ln

d
� jjwj�1 � wjjj

 !

which is small due to Lemmas 5.3 and 5.4.
The rarefactions in (5.23) are treated similarly to shocks. In fact,

introduce the three sumsX
k-rar

RHðwj�1;wj;LnðtÞÞ

¼
X0

þ
X00

þ
X000 !

RHðwj�1;wj;LnðtÞÞ

¼ Oð1Þ � jD *UUj þ
X000

RHðwj�1;wj;LnðtÞÞ

¼ Oð1Þ � jD *UUj þ Oð1Þ �
X000

jsk;aj

¼ Oð1Þ � jD *UUj þ Oð1Þ � jDUnj þ
X000 ln

d
� jjwj�1 � wjjj

 !
:

The last term obtained can be made arbitrarily small.
Finally, the last summand (5.24) is small due to (5.17). ]
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