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Weakly interacting massive particles (WIMPs) remain a prime can-
didate for the cosmological dark matter (DM), even in the absence of
current collider signals that would unambiguously point to new
physics below the TeV scale. The self-annihilation of these particles
in astronomical targets may leave observable imprints in cosmic
rays of various kinds. In this review, we focus on gamma rays which
we argue to play a pronounced role among the various possible mes-
sengers. We discuss the most promising spectral and spatial signa-
tures to look for, give an update on the current state of gamma-ray
searches for DM and an outlook concerning future prospects. We
also assess in some detail the implications of a potential signal iden-
tification for particle DM models as well as for our understanding of
structure formation. Special emphasis is put on the possible evi-
dence for a 130 GeV line-like signal that we recently identified in
the data of the Fermi gamma-ray space telescope.

� 2012 Elsevier B.V. Open access under CC BY-NC-ND license. 
1. Introduction

Evidence for a sizable non-baryonic and cold dark matter (DM) component in the universe derives
from an impressive range of unrelated cosmological observations [1], covering distance scales from
tens of kpc to several Gpc and leaving very little room for alternative explanations. On cosmological
scales, DM contributes a fraction of Xv= 0.229 ± 0.015 to the total energy density of the universe
[2]. Weakly interacting massive particles (WIMPs) provide a theoretically particularly appealing class
of candidates for the so far obscure nature of DM [3], with the lightest supersymmetric neutralino
often taken as a useful template for such a WIMP. It is often argued that the thermal production of
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Table 1
Rough comparison of basic telescope characteristics relevant for indirect DM searches with gamma rays, for a selection of typical
space- and ground-based experiments that are currently operating, shortly upcoming or planned for the future. The quoted
sensitivity is for point sources at the 5r level, after 1 year (50 hrs) of space- (ground-) based observations and assuming typical
backgrounds. Where applicable, numbers refer to photon energies at or above E ’ 100 GeV (1 TeV). The angular resolution Dh
denotes the 68% containment radius. More details in Refs. [16] (Fermi-LAT), [17] (AMS-02), [18] (GAMMA-400), [19] (MAGIC), [20]
(HESS-II) and [21] (CTA).

Time of
operation

E-range
[GeV]

Aeff ½m2� Sens.
[108 m2 s]�1

DE/E
[%]

F.O.V.
[sr]

Dh [�]

Fermi-LAT 2008–2018* 0.2–300 0.8 200 11 2.4 0.2
AMS-02/Ecal 2011–2021* 10–1000 0.2 1000 3 0.4 1.0
AMS-02/Trk 2011–2021* 1–300 0.06 1000 15 1.5 0.02
GAMMA-400 2018*–. . . 0.1–3000 0.4 100 1 1.2 0.02 (0.006)
MAGIC 2009–. . . J 50 2 � 104 (7 � 104) 10 (0.2) 20 (16) 0.003 0.17 (0.08)
HESS-II 2012–. . . J 30 4 � 103 (105) 4 (0.1) 15 (15) 0.003 0.13 (0.07)
CTA 2018*–. . . J 20 5 � 104 (106) 1 (0.02) 20 (10) >0.006 0.1 (0.06)

* Planned.
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WIMPs in the early universe generically leads to a relic density that coincides with the observed order
of magnitude of Xv, though this rests on the assumption of a standard cosmological expansion history
and there exist well-motivated particle physics scenarios that predict alternative production mecha-
nisms for WIMP DM [4]. While the LHC non-observation of new particles below the TeV scale (apart,
possibly, from the Higgs boson) has already prompted doubts whether the WIMP DM scenario is still
our best bet [5], it must be stressed that electroweak low-energy observables (g� 2 in particular) do
favor new physics contributions not too far above 100 GeV [6]. While this tension starts to consider-
ably disfavor very constrained models of, e.g., supersymmetry [7], it may simply be an indication that
the new physics sector which the WIMP belongs to appears at a much smaller mass scale than any
new colored sector.

Attempts to identify WIMP DM can be classified into collider searches for missing transverse
energy, direct searches for the recoil of WIMPs off the nuclei of terrestrial detectors and indirect
methods that aim at spotting the products of WIMP self-annihilation. Among possible messengers
for such indirect searches, gamma raysplay a pronounced role as they propagate essentially unper-
turbed through the galaxy and therefore directly point to their sources, leading to distinctive spa-
tial signatures; an even more important aspect, as we will see, is the appearance of pronounced
spectral signatures. This prime role of gamma rays provides our motivation for an updated and ded-
icated review on these messengers, which we hope will prove useful and complementary to exist-
ing general reviews on indirect DM searches [8]. Indeed, the recent indication for a DM signature
in gamma-ray observations of the Galactic center (GC) [9,10] makes such a review extremely
timely, and we therefore dedicate a considerable part of it to discuss in great detail both the status
of the potential signal and its implications.

Gamma rays can either be observed directly from space or, via the showers of secondary particles
they trigger in the atmosphere, indirectly with ground-based experiments. The former option neces-
sarily implies rather small effective areas and an upper bound on the photon energy that can reliably
be resolved, but allows for a large field of view and the observation of gamma rays at comparably
small energies. Particularly promising instruments for the latter option are imaging Air Cherenkov
Telescopes (IACTs) that detect the Cherenkov light emitted by the shower particles and use efficient
image reconstruction algorithms to determine the characteristics of the primary photon. These instru-
ments have a limited field of view and a lower energy threshold set by the need of discriminating pho-
tons from the background of primary muons and hadronic cosmic rays; their extremely large effective
area and rather small field of view make them ideal for pointed observations. In Table 1, we pick typ-
ical examples for space- and ground-based experiments that are currently operating or planned for the
future and compare some basic telescope characteristics that are particularly relevant for DM
searches. Experiments that fall into the same broad categories but are not listed explicitly in the table
include for example AGILE [11] and VERITAS [12], as well as the future CALET [13] and DAMPE [14,15].



196 T. Bringmann, C. Weniger / Dark Universe 1 (2012) 194–217
We stress that the numbers in Table 1 are intended to provide a convenient order-of-magnitude com-
parison of instrumental characteristics; they should notbe used as the basis of detailed sensitivity esti-
mates (see, however, the stated references).

The expected DM-induced gamma-ray flux from a direction w, averaged over the opening angle Dw
of the detector, is given by
dUc

dEc
ðEc;wÞ ¼

1
8p

Z
Dw

dX
Dw

Z
l:o:s

d‘ðwÞq2
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c
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�
; ð1Þ
where the integration is performed along the line of sight (l.o.s.), hrviann is the average velocity-
weighted annihilation cross section, mv the mass of the DM particle (for which we assume v ¼ �v),
qv the DM density, Bf the branching ratio into channel f and Nf

c the number of photons per annihila-
tion. An often quoted reference value for hrviann is the so-called ‘thermal cross section’ of hrvi� 3 �
10�26cm3s�1, which is the annihilation rate expected for thermally produced WIMPs in the most sim-
ple case (i.e. s-wave annihilation without resonances or co-annihilations [22]). The right part (in
parentheses) of Eq. (1) contains all the particle physics input and, for the typically very small DM
velocities, is usually sufficiently independent of vðrÞ that it can be pulled outside the integrals (note,
however, that this is nottrue for strongly velocity-dependent cross-sections like in the case of Som-
merfeld enhancement [23,24], resonances or p-wave annihilation). It contains the full spectralinforma-
tion that we will discuss in some detail in Section 2. The remaining part, sometimes referred to as the
astrophysical factor (or ’J-value’, with J ¼

R
dX
R

d‘;q2
v), contains in that case the full information about

the spatialdistribution of the signal and will be discussed in Section 3.
We continue by reviewing in Section 4 gamma-ray limits on DM annihilation as well as the current

status of claimed DM signals. The potentially enormous implications of a signal identification for our
understanding of both the underlying particle model and structure formation are then outlined in Sec-
tion 5, with a focus on the intriguing 130 GeV feature in the direction of the GC. We discuss future
prospects for the detection of DM with gamma rays in Section 6 and conclude in Section 7. For most
of this review, we will assume that DM consists of WIMPs; many aspects, however, can be applied – or
generalized in a straight-forward way – to other cases as well, most notably decaying DM [25] (for
which one simply has to replace 1

2 hrviq2
v ! mvCqv in Eq. (1), where C is the decay rate). Where appli-

cable, we will comment on this on the way.

2. Spectral signatures

At tree level, DM particles annihilate into pairs of quarks, leptons, Higgs and weak gauge bosons.
The hadronization and further decay of these primary annihilation products leads to the appearance
of secondary photons, mainly through p0? cc, and the resulting gamma-ray spectrum dNf

c=dEc can be
obtained from event generators like Pythia [26]. Codes like DarkSUSY [27] provide user-friendly
numerical interpolations of these spectra, based on a large number of Pythia runs, but there also exist
several analytic parameterizations in the literature [8,28]. Secondary photons show a featureless spec-
trum with a rather soft cutoff at the kinematical limit Ec= mv and are universalin the sense that dNf

c=dx
(with x� Ec/mv) takes a very similar form for almost all channels fand only very weakly depends on
mv. A convincing claim of DM detection based exclusively on this signal, which would show up as a
broad bump-like excess over the often rather poorly understood astrophysical background, appears
generically rather challenging.

For this reason, it is often much better warranted to focus on the pronounced spectral features that
are additionally expected in many DM models – not only because they greatly help to discriminate sig-
nals from backgrounds, and hence effectively increase the sensitivity of gamma-ray telescopes to DM
signals [29], but also because a detection may reveal a lot about the underlying model for the particle
nature of the DM. Before discussing the various types of spectral features in more detail, let us briefly
mention further contributions to the total photon yield that do not give rise to such nice spectral features
but may still visibly change the spectrum (in particular at Ec�mv). In models with large branching frac-
tions into e+e�pairs, e.g., inverse Comptons cattering of those e± on starlight and the cosmic microwave
background leads to additional gamma rays [30]. Another source of additional low-energy photons
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are electroweak [31] and strong [32] radiative corrections, with an additional gauge boson in the final
state; these contributions can actually be quite sizable for DM masses much larger than the gauge boson
mass, in particular if the tree-level annihilation into a pair of SM particles is suppressed.

2.1. Lines

The direct annihilation of DM pairs into cX– where X= c, Z, Hor some new neutral state – leads to
monochromaticgamma rays with Ec ¼ mv½1�m2

X=4m2
v�, providing a striking signature which is essen-

tially impossible to mimic by astrophysical contributions [33]. Unfortunately, these processes are
loop-suppressed with Oða2

emÞ and thus usually subdominant, i.e. not actually visible against the con-
tinuous (both astrophysical and DM induced) background when taking into account realistic detector
resolutions; however, examples of particularly strong line signals exist [24,34]. A space-based detector
with resolution DE/E= 0.1 (0.01) could, e.g., start to discriminate between cc and cZ lines for DM
masses of roughly mv[ 150 GeV (mv[ 400 GeV) if at least one of the lines has a statistical signifi-
cance of J5r[35]. This would, in principle, open the fascinating possibility of doing ‘DM spectroscopy’
(see also Section 5).

2.2. Internal bremsstrahlung (IB)

Whenever DM annihilates into charged particles, additional final state photons appear at OðaemÞ
that generically dominate the spectrum at high energies. One may distinguish between final state radi-
ation (FSR) and virtual internal bremsstrahlung (VIB) in a gauge-invariant way [36], where the latter can
very loosely be associated to photons radiated from charged virtual particles. FSR is dominated by col-
linear photons, thus most pronounced for light final state particles, mf� mv, and produces a model-
independent spectrum with a sharp cut-off at Ec= mv[37,38]; a typical example for a spectrum dom-
inated by these contributions is Kaluza–Klein DM [39]. VIB, on the other hand, dominates if the tree-
level annihilation rate is suppressed (like e.g. the annihilation of Majorana particles into light fermions
[40]) and/or the final state consists of bosons and the t-channel particle is almost degenerate with
mv[41]. It generates pronounced bump-like features at Ec[ mv which closely resemble a slightly dis-
torted line for energy resolutions DE/E J 0.1. The exact form of VIB spectra, however, is rather model-
dependent [36] – which in principle would allow an efficient discrimination between DM models for
large enough statistics (see e.g. [42]).

2.3. Cascade decays

Another possibility to produce pronounced spectral features is DM annihilating into intermediate
neutral states, vv? //, which then decay directly (/? cc [43]) or via FSR (e.g. /? ‘+‘�c [44]) into
photons. While the latter situation results in a spectrum that resembles the standard FSR case (with
a slightly less sharp cut-off and a potentially considerably reduced rate in the degenerate case,

m/� m‘), the former process induces a box-shaped spectrum with a width of �E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

v �m2
/

q
; for

small mass differences, it is thus indistinguishable from a line.
In Fig. 1, we compare the various different spectra discussed above; in order not to overload this

figure, however, we do not include the FSR-dominated spectrum from lepton final states (see e.g.
Ref. [39]). Secondary photon spectra from all possible quark or weak gauge boson final states are all
contained in the rather thin gray band (we adopted mv= 100 GeV, though the result is quite insensitive
to this value). For the VIB spectrum, we assumed Majorana DM annihilation into light fermions via a
scalar t-channel particle (‘sfermion’) almost degenerate in mass with v, like encountered in super-
symmetry [36], and for the box we chose m/= 0.95mv.

3. Spatial signatures

The peculiar morphology of annihilation signals, tracing directly the DM density, offers another
convenient handle for discriminating signals from backgrounds. The most relevant targets are the



Fig. 1. Various gamma-ray spectra expected from DM annihilation, all normalized to N(x>0.1) = 1. Spectra from secondary
particles (gray band) are hardly distinguishable. Pronounced peaks near the kinematical endpoint can have different origins, but
detectors with very good energy resolutions DE/E may be needed to discriminate amongst them in the (typical) situation of
limited statistics. See text for more details about these spectra.
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GC, dwarf spheroidal galaxies and galaxy clusters with respective half light radii of roughly h1/2[ 10�,
h1/2� 0.1� and h1/2 J 0.1�. Further important targets are DM clumps or the angular power spectrum of
the isotropic gamma-ray background (IGRB), all of which we will discuss in this section.

3.1. Halo profiles and the Galactic center

The arguably brightest source of gamma rays from DM annihilation is the center of our Galaxy.
Within a few degrees (say 2� � 2�) around the GC, WIMPs would induce a gamma-ray flux of about
Oð10�8Þ ph cm�2 s�1 at the Earth (at > 1 GeV, assuming a thermal annihilation rate into �bb,
mv ¼ 100 GeV and standard halo profiles), very well in reach of current instruments. However, the
line-of-sight to the GC traverses the galactic disc, which harbours numerous high-energetic processes
(p0production in cosmic-ray interactions, Bremsstrahlung and inverse Compton emission, bright point
sources); the corresponding gamma-ray fluxes of Oð10�7 � 10�6Þ ph cm�2s�1 thus outshine DM sig-
nals often by orders of magnitude. Furthermore, the uncertainties in the signal and background mor-
phologies make the identification of a DM signal from the inner Galaxy a challenging task.

A useful general parametrization of DM halos, which encompasses a large number of commonly
used profiles, reads
qabc
v ðrÞ ¼ q�

r
r�

� ��c 1þ ðr�=rsÞa

1þ ðr=rsÞa
� �b�c

a

; ð2Þ
where r is the distance from the halo center, r� ’ 8:5 kpc the position of the Sun and
q� ’ 0:4 GeV cm�3 the local DM density [45] (see Ref. [46] for a discussion of systematic uncertainties
of this quantity and Ref. [47] for a recent study that includes the effect of a slightly oblate DM halo and
the possible presence of a dark disc, leading to a normalization which is a factor of �2–3 larger). The
parameters a, b and c determine the halo shape, and rs the concentration. The commonly used Nav-
arro–Frenk–White (NFW) profile [48], for example, is obtained for (a, b, c) = (1, 3, 1) (with
rs ’ 20 kpc in case of the Milky Way); the cored isothermal profile follows when setting (a, b, c) =
(2, 2, 0) and rs ’ 3:5 kpc (note, however, that matching observational constraints in principle results
in a rather large range of allowed values for rs [49]). Typically, kinematic observations of line-of-sight
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velocities do not sufficiently constrain the DM profile, so one has to rely on (extrapolated) results from
numerical N-body simulations of dissipationless structure formation in a KCDM cosmology [50,51];
see also Refs. [52,53] for a review. Most recent results tend to favor a spherical Einasto profile [54],
qEinasto
v ðrÞ ¼ q�exp

�
� 2

aE

raE � raE
�

raE
s

�
; ð3Þ
over the somewhat steeper NFW profile. Both rsand the halo shape parameter aE depend on the total
halo mass; in case of the Milky Way, numerical simulations yield aE’ 0.17 and rs ’ 20 kpc [50]. Note
that for r[ 0.01rs, there are actually numerical indications for profiles with logarithmic slopes of about
c� 1.2, i.e. steeper than both NFW and Einasto [50,55].

In the Milky Way, baryonic matter dominates the gravitational potential for roughly r[ r�, which
can have a great impact on the DM distribution with respect to the expectations from DM-only sim-
ulations mentioned above. In particular, the cooling and infall of baryons could – by a mechanism
known as adiabatic contraction – lead to a steepening of the inner DM profile [56]. However, such a
scenario becomes much less likely if, as sometimes found in simulations [57], feedback from star for-
mation and supernovae dominates over cooling and infall processes. In fact, the presence of baryons
could have the opposite effect of producing cores rather than cusps, see e.g. the discussion in Refs.
[53,58], even for a system with the size of the Milky Way [59] (though such a core might also form
only in the very center of a contracted profile [60]). The adiabatic growth of the central supermassive
black hole (SMBH) could also generate a central spike of DM within the inner �10 pc [61] if the SMBH
seed starts out close to the GC [62] (SMBH mergers, on the other hand, would rather destroyinitial
cusps in the profile [63]). Microlensing and stellar rotation curve observations can only exclude the
most extreme scenarios, yielding upper limits of about c[ 1.5 for the logarithmic slope of the DM pro-
file near the GC [64]. The resulting difference in the expected DM annihilation flux from the inner
�0.1� around the GC, when comparing the most extreme cases of a cored profile and a profile as steep
as this upper limit, amounts to around five orders of magnitude [28]. In any case, the annihilation sig-
nal from the GC would most likely appear as an extended source with a peculiar angular profile [65].
Due to the large astrophysical foreground in the very center (e.g. the bright HESS source J1745-290
[66]), the optimal region of interest (ROI) for signal searches extends out to a few degrees and could
also lie slightly away from the GC [9,29,67].

A topic that has received only little attention is the possibility that the point of highest DM density
could be displaced from the GC. The latter lies at the dynamical center of our Galaxy, coinciding with
the position of Sgr A*. Baryons are directly affected by star formation and supernovae, and they shock
during galaxy mergers whereas DM does not. It is not unlikely that at least during some periods in the
merger and formation history of our Galaxy significant displacements existed [61], like e.g. observed
for the SMBH in M87 [68]. If such a displacement remained until today, it could provide a spectacular
window into the formation history of our Galaxy, but would also introduce another unknown into the
search for a DM signal. Actually, state-of-the-art simulations of late-time spiral galaxies with a signif-
icant bar, like the Milky Way, show first hints for such a displacement [60,69].
3.2. Substructure enhancement

For annihilating DM, the gamma-ray emissivity is proportional to the DM density squared. Unre-
solved substructures in the DM distribution, predicted to exist by all cold DM N-body simulations,
can hence potentially have a huge impact on the signal strength [70] – simply because the astrophys-
ical factor in Eq. (1) effectively averages over q2

v and one always has hq2
vi > hqvi

2 for inhomogeneous
distributions. This effect is typically quantified in terms of the so-called boost factor B, which can be
defined as the ratio of the actual line-of-sight integral to the one obtained assuming a smooth (e.g. Ein-
asto) component only.

Roughly, every decade in subhalo masses down to the cutoff scale contributes the same to the total
gamma-ray flux [71] (with small subhalos possibly being slightly more important [52]), though the
details depend crucially on the adopted subhalo mass distribution and concentration, as well as sur-
vival probabilities of the smallest clumps (all of which have to be extrapolated over many orders of
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magnitude from the results of N-body simulations). The lower cutoff in the subhalo mass distribution
is set by the kinetic decoupling of WIMPs in the early Universe [72] and strongly depends on the DM
particle properties [73,74]; while in principle it could be as large as the scale of dwarf galaxies [75], it
falls into the range of roughly 10�11–10�3M� for standard MSSM neutralinos [74].

Not too much is known about the precise distribution of substructures, but what one can learn
from N-body simulations is that due to merger and tidal stripping in the Milky Way halo (see e.g.
[51,76] and references therein), fewer substructures are expected in the inner galaxy than in the outer
parts (though the surviving subhalos close to the halo center have larger concentrations). This implies
that the expected boost factor for GC observations is of order unity [50,76–78], while it may be as large
as Oð1000Þ for galaxy clusters due to the enormous contained hierarchy of masses [77,79,80]. Note
also that the expected angular dependence of the signal can change in the presence of large boost fac-
tors: in the limit where unresolved substructures completely dominate the total signal, the flux essen-
tially scales with (the line-of-sight integral over) qv rather than q2

v; for the Milky Way, this implies
that the halo flux emissivity could be changed for r J 1 kpc [76,81,82].

3.3. Point-like sources

Many complications associated with the GC are avoided when looking at point-like targets outside
the galactic disk. The corresponding signals are typically considerably fainter, which is however com-
pensated by the greatly simplified and much smaller astrophysical background.

The probably most promising source class are nearby dwarf spheroidal galaxies. These faint satel-
lites of the Milky Way exhibit the largest known mass-to-light ratios, up to �1000 M�/ L�, and do not
show signs for gas or recent star formation. As such, they are not expected to be gamma-ray emitters
[83]. A canonical set of less than 10 dwarf spheroidals were subject of numerous recent studies
[84,85]. Since dwarf spheroidals are DM dominated, stellar kinematics can be efficiently used to con-
strain the DM content [86,87]. Despite the remaining uncertainties in the shape of the DM profile, it
turns out that the integrated signal fluxes are surprisingly robust: the uncertainty is at the level of only
10–50% [88] under the assumption of an NFW-like profile in the central part, which is at least naively
well motivated (following the idea that such highly DM dominated systems might follow the expec-
tations from CDM only simulations rather closely) and also consistent with observations [89] (but see
[90]). However, baryonic processes may still change an initial NFW profile; allowing the inner slope of
the density profile to vary between 0 	 c	 1, e.g., introduces uncertainties corresponding to a factor of
a few in the resulting flux, while very steep profiles with c
 1.5 would increase the flux by an order of
magnitude [87]. Significant substructure boosts seem unlikely [87] though it is has been speculated
that they might enhance the signal by up to two orders of magnitude in the most optimistic case
[91]. This situation is in sharp contrast to the large uncertainties related to the signal flux from the
GC that we discussed above and makes dwarf spheroidal galaxies excellent targets to derive robust
constraints on the DM annihilation cross-section. Furthermore, it allows a simultaneous analysis of
multiple dwarf galaxies, which further increases the sensitivity for DM signals.

Galaxy clusters are the most massive DM dominated virialized objects in the Universe and provide
excellent targets to search for an annihilation signal [77,92]. Harboring an enormous hierarchy of sub-
structures, they are the astronomical targets that are expected to maximize the boost factor [80]. In
optimistic scenarios [80], they could therefore outshine a signal from local dwarf spheroidals by a fac-
tor of a few [88,93], which makes them very attractive as targets for the potential detection of a DM
signal [77,79,80]. The rather large involved astrophysical uncertainties connected to both the subhalo
distribution and cosmic-ray induced gamma rays, on the other hand, imply that robust limits derived
from cluster observations are usually not competitive. Similar to dwarfs, the sensitivity to cluster
signals can be enhanced by a combined analysis [93–95].

Given that they come with no intrinsic astrophysical backgrounds, clumps (subhalos) of DM in the
galactic halo that are not massive enough to trigger star formation are further important targets for
indirect DM searches [76,96,97]. If discovered as unidentified sources with no counterparts at other
wavelengths by surveying instruments like the Fermi-LAT [98], detailed follow-up observations with
IACTs could become vital to prove their DM nature by means of additional angular and spectral
information.
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3.4. Extragalactic diffuse signal and anisotropies

Gamma rays from DM annihilation at cosmological distances, integrated over all redshifts and
(sub)halo distributions, appear largely isotropic and add up to the astrophysical IGRB together with
contributions from galactic DM annihilation [99–102]. The astrophysical IGRB is presently not very
well understood, but believed to stem from unresolved sources like blazars, star-forming galaxies
and milli-second pulsars. A WIMP with thermal annihilation cross-section and Oð100 GeVÞ masses
could contribute between �1% and �100% to the IGRB, depending on the minimum mass, concentra-
tion and abundance of subhalos [103] (though the intrinsic uncertainties related to the substructure
distribution may well be even larger [104]). In case of annihilation into cc, the signal would be a gam-
ma-ray line broadened by the redshift and provide a peculiar spectral signature to look for in the IGRB
[99], which can be efficiently constrained by observations [103].

An interesting approach towards signal identification is also to exploit its angular power spectrum
[104–108], which receives contributions from subhalos within our own Galaxy as well as from extra-
galactic (sub)halos. Let us mention here in particular that anisotropy measurements might turn out to
be a feasible way to probe the minimal subhalo mass [106], which would open a completely comple-
mentary window into the particle nature of the DM [74].
4. Current status

4.1. Limits

The total number of photons above the detector threshold, typically dominated by secondary pho-
tons, is a very convenient and simple measure to constrain possible exotic contributions to observed
gamma-ray fluxes. Limits on the DM annihilation rate are therefore usually presented in the hrvi vs.
mv plane, with the assumption of WIMPs dominantly annihilating into �bb being an often adopted
standard that is useful for comparison. Such constraints have been derived from the observation of
galaxy clusters [93,94,109–111], external galaxies [28,112,113], globular clusters [114,115], Milky
Way satellite dwarf galaxies [85,88,116–121], the GC [122–127] and halo [128,129], or the IGRB
[102,103,130,131].

The currently best limits of this kind, for WIMP masses 5 GeV [ mv[ 1 TeV, derive from observa-
tions of nearby dwarf galaxies by the Fermi satellite [88]1; for mv[ 25 GeV, these limits are actually
stronger than the ‘thermal’ rate of hrvib�b � 3� 10�26 cm3 s�1. At mv’ 700 GeV, they weaken to
hrvib�b K 4� 10�25 cm3 s�1 and for even higher WIMP masses, the currently strongest limits are pre-
sented by the HESS collaboration from observations of the GC region [125]: at mv� 1 TeV (10 TeV), those
are about a factor of 10 (30) weaker than the thermal value (see also Refs. [117,132] for independent
studies of these limits). When comparing limits from different targets, however, one should always keep
in mind that the underlying astrophysical uncertainties that enter as the line-of-sight integral in Eq. (1)
may be quite different; in particular, as stressed in Section 3, predictions for integrated signal fluxes are
much more robust for dwarf galaxies than for the GC.

There have also been various searches for line signals: in M31 with HEGRA [133], at the GC with
EGRET [134], and with Fermi-LAT GC [135–137] as well as dwarf data [138] and in galaxy clusters
[139]. The currently strongest limits presented by the LAT collaboration follow from Fermi observa-
tions of the GC region [137] and extend from hrvicc[ 3 � 10�29cm3s�1at mv= 10 GeV to hrvicc[ 4
� 10�27cm3s�1 at mv= 200 GeV (slightly stronger limits can be found in independent analyses
[10,136] for masses from 1 to 300 GeV). Preliminary results from HESS exclude lines above
500 GeV down to cross-sections of hrvicc � 2� 10�27 cm3 s�1 [140]. So far, none of those limits gets
close to the expectation for vanilla WIMP models; realistic models featuring particularly strong line
signals, however, start to get constrained.
1 Depending on the assumed profile and small-scale cutoff (as well as subhalo properties), the recently presented constraints
from galaxy clusters [111] are nominally even tighter. There are also claims that limits from GC [123,127] or globular cluster [115]
observations are actually stronger (though seemingly much less robust) than the dwarf limits.



Table 2
Upper limits at 95%CL (or best-fit value with ±1r error) on the branching ratios into the secondary line, assuming that the primary
line at Ec=130 GeV is due to annihilation into cX with X = c, Z or H. Note that hrv icZ/hrv icc < 2.01 at 95%CL.

cX mv [GeV] hrv icX [10�27 cm3 s�1] hrvicc
hrvicX

hrvicZ

hrvicX

hrvicH

hrvicX

cc 129:8� 2:4þ7
�14 1:27� 0:32þ0:18

�0:28
1 0:66þ0:71

�0:48
<0.83

cZ 144:2� 2:2þ6
�12 3:14� 0:79þ0:40

�0:60
<0.28 1 <1.08

cH 155:1� 2:1þ6
�11 3:63� 0:91þ0:45

�0:63
<0.17 <0.79 1
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The small-scale (‘ J 150) gamma-ray anisotropies observed by Fermi-LAT, indicating the presence
of some unresolved source population, can only partially (if at all) be explained by DM annihilation
[131]; on the other hand, this can already be used to constrain the distribution of DM subhalos
[108]. While some unidentified gamma-ray sources in principle qualify as candidates for annihilating
DM clumps[141], the presence of any unconventional sources in current gamma-ray data seems very
unlikely after taking into account surveys at other wavelengths [98]. Finally, let us mention that the
assumed non-observation of gamma-ray point sources from DM annihilation limits the allowed abun-
dance of ultracompact mini halos [142], which can be used to put extremely stringent constraints on
the power of primordial density perturbations [143].

4.2. Signals

Historically, there have been a couple of claims of potential DM signals in gamma rays. For the GC,
e.g., they correspond to DM masses in the �MeV [144], �10 GeV [123,145,146], �100 GeV [147], �TeV
[39,148–150] (sometimes with possible counterparts at radio frequencies [151]) or even multi-TeV
range [152]. Possible DM signals in gamma rays have also been claimed in the diffuse gamma-ray flux
[153] or from galaxy clusters [154]. While it can be argued that there still remains a bit of controversy
in some of these cases, evidence is certainly not compelling; instead, in the past, more refined analyses
and new data often tended to either disfavor the DM hypotheses previously put forward or make it
less compelling in view of viable alternative, astrophysical explanations [66,111,155–160] (for a dis-
cussion of recent DM signal claims not only in gamma rays, see also Ref. [161]). One reason for this is
that the claimed signals typically rely on the presence of some broad excess in the differential gamma-
ray flux that was mostly attributed to secondary photons which, as stressed before, makes the iden-
tification of a DM signal intrinsically error-prone.2 In this context, it is also worth recalling that neither
very small (mv� 100 GeV) nor very large (mv� 1 TeV) DM masses are easily accommodated in realistic
WIMP frameworks that successfully address shortcomings of the standard model of particle physics. Fur-
thermore, one should appreciate the fact that both CMB [162] and cosmic ray antiproton data [163] pro-
vide very stringent constraints on the possibility of Oð10ÞGeV WIMP DM – even though such a
possibility might be interesting from the point of view of direct DM searches [164].

The recently discovered hint for a monochromatic gamma-ray signal at around 130 GeV in the Fer-
mi data of the GC region [9,10], on the other hand, would correspond to a rather natural DM mass of
Oð100Þ GeV and, even more importantly, for the first time provide evidence for a gamma-ray feature
which is widely regarded as a smoking gun signature for DM [33]. Performing a spectral shape analysis
in target regions close to the GC (selected in a data-driven approach by using photons at much lower
energies), the signal was found to correspond to a DM mass of mv ¼ 149� 4þ8

�15 GeV for an assumed
VIB signal [9] and mv ¼ 129:8� 2:4þ7

�13 GeV for a cc line [10], in each case with a local (global) signif-
icance of almost 5r (more than 3r). The deduced annihilation rate depends on the DM profile; for an
Einasto profile, e.g., it is hrvi‘þ‘�c ¼ ð5:2� 1:3þ0:8

�1:2Þ � 10�27 cm3 s�1 and hrvicc ¼ ð1:27� 0:32þ0:18
�0:28Þ�

10�27 cm3 s�1, respectively (see Section 5.2 and Table 2 for a discussion of cZ and cH final states). This
excess was confirmed independently [165] by adopting a different statistical technique based on
kernel smoothing; this analysis also demonstrated that the intrinsic signal width cannot be much lar-
2 The only exception is the 511 keV line from e+e� annihilation seen by Integral [224]. Its observed non-spherical distribution
[157], however, makes a DM interpretation highly unlikely – which in any case would be restricted to a very narrow mass range,
me [ mv [ 3 MeV, in order not to overproduce continuum photons from final state radiation [37,225].



Fig. 2. This plot shows the confidence contours obtained when fitting the 130 GeV signature with a broken power-law with
spectral break from c1 to c2 at 130 GeV (plus the usual background power-law with free normalization and slope). Best fits are
obtained for Dc = c2�c1 � 10, when the signal approaches a line-like shape; the gray area indicates parameters that are
realistically accessible for astrophysical sources (see e.g. [176]). In light of these results, it is not surprising that also the fit by a
hard power-law with superexponential cutoff – as e.g. realized for pulsar emission – plus a power-law background is disfavored
w.r.t. a monochromatic line by at least 3r.

T. Bringmann, C. Weniger / Dark Universe 1 (2012) 194–217 203
ger than the energy resolution of Fermi LAT (�10% at 130 GeV) – leaving only a VIB signal, a gamma-
ray line or a narrow box as possible explanation in terms of DM annihilation. Later, Su and Finkbeiner
[166] adopted a refined spatial template analysis to demonstrate that the existence of a gamma-ray
line emitting region of radius �3� (see also Ref. [165]) close to the GC is preferred over the no line
hypothesis with a globalsignificance of more than 5r(under the assumption of an Einasto profile).

It is worth emphasizing that the above described signal is the onlysignificant line-like feature in the
sky that we currently find distinguishable in the data from around 20 GeV to at least 300 GeV (we
checked this explicitly by performing line searches along the galactic disc, as well as a subsampling anal-
ysis of anti-GC data – see also Refs. [9,10,166]; conflicting claims [165,167] may likely be explained as
statistical fluctuations at the expected level). However, it is quite interesting to note that there might
be weak evidence for line signals, with much smaller significance but at the same energy, in the direction
of galaxy clusters [168]. Further weak evidence for such lines has also been found in some of the unas-
sociated gamma-ray point sources observed by Fermi [169] (but see Ref. [98]). These indications are cur-
rently intensely debated [170] – if eventually confirmed with better statistics than currently available,
they would significantly strengthen a DM interpretation. Let us also mention that there is no correlation
between the Fermi bubbles [150,171] and the line signal at the GC [161,165,166]; the significant overlap
[172] of the bubbles with the target regions adopted in Refs. [9,10] is thus purely accidental and related
to the peculiar angular distribution of signal and background photons (see also Ref. [173]).

As already stressed, the intrinsic signal width is small: assuming a Gaussian instead of a monochro-
matic signal, we find an upper limit of 18% at 95% CL (though a pair of lines might provide a marginally
better fit, see Section 5.2). A toy example for an extremely sharp gamma-ray feature with astrophys-
ical origin would e.g. be ICS emission from a hypothetical nearly monochromatic e±population at the
GC (see e.g. Ref. [174]). Such a population might arise from pile up of electrons during synchrotron
cooling, but the resulting ICS gamma-ray spectrum is still disfavoured w.r.t. a monochromatic line
by about 3r. In Fig. 2, we demonstrate furthermore explicitly that a broken power-law, as suggested
in Ref. [172], does notprovide a reasonable fit to the data unless one allows for an absurdly large spec-
tral break Dc� c2�c1� 10; the best fit is obtained in the line-like limit Dc? 1. As also indicated in
the figure, the required spectral indices both above (c2) and below (c1) the break would in that case be
well outside the range of values observed in standard astrophysical sources (the power-law back-
ground in our fit, on the other hand, has a spectral index consistent with the expected value of
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’2.6 [175], mostly determined by cosmic-ray proton collisions with the interstellar medium).3 Note
that a smooth change of c would make the fit quality even worse, so similar conclusions hold for
the more commonly encountered case of a power-law with a super-exponential cutoff, i.e.
dN/dE/E�c exp [�(E/Ecut)a]: for ‘typical’ values of c and a (roughly 1 [ c, a[ 2), but free Ecut, we find

that such a spectrum is always disfavored w.r.t. a monochromatic line by at least 3r.
Let us now briefly turn to what currently appears as the greatest challenge to a DM interpretation of

the observed signal (of course, this necessarily reflects our own bias; for extended discussions see e.g.
Refs. [9,10,166,177]; a quite thorough discussion of possible instrumental effects can be found in Ref.
[178]). The first caveat is that the signal center seems to be displaced, by about 1.5� or 200 pc, from
the dynamical center of the galaxy [166] (see Ref. [165] for an early indication); even if such a displace-
ment might in principle be possible, following our discussion in Section 3.1, this certainly came as a sur-
prise. While the most likely center of the emission is clearly displaced by an amount as stated above, on
the other hand, the photon distribution still seems to be statistically consistentwith a single source – with
an NFW or Einasto profile – centered exactly at the GC [179] (see also Ref. [180] for a corresponding ear-
lier claim). An even stronger threat to the DM hypothesis might thus be the indication, so far at a weaker
level of significance, for a line in part of the gamma rays from cosmic-ray induced air showers in Earth’s
atmosphere (commonly referred to as Earth limb or Earth albedo) [166,178]. However, the problematic
limb photons only appear at a very specific range, 30� [ h[ 45�, of incidence angles (unlike the signal
from the GC which shows up at all h). Furthermore, the majority of events with these incidence angles
come actually not from the limb but are of astrophysical origin and this larger sample does not show
any evidence for a 130 GeV feature [177,178]. This confusing situation might well be an indication that
the limb excess is merely a statistical fluctuation that soon will disappear with more limb data.

So far no compelling alternative instrumental [178,181] or astrophysical mechanism has been pro-
posed that could actually produce such a line at 130 GeV (see Ref. [182] for an interesting proof-of-
principle with fine-tuned pulsar winds – which however cannot explain the extended morphology
of the signal). We stress that all analyses of the line signal so far rely on the publicly available Fermi
data and information only, and that line searches operate by construction at the statistical and sys-
tematical limitations of the instrument. There has not yet been an official statement from the Fermi
collaboration concerning the signal, in particular with respect to whether the energy reconstruction
of Pass 7 events is reliable at energies above 100 GeV in light of the recent findings.4 Eventually, such
an independent confirmation of the 130 GeV excess will of course be indispensable.
5. What could we learn from a signal?

Gamma rays may carry important and nontrivial information about the nature of the DM particles.
Let us now demonstrate in more detail what kind of information could actually be extracted in case of a
signal identification, in particular in case of a sharp spectral signature. For definiteness, we will take the
tentative line signal as an example and assume in this section that it can indeed be explained by DM.
5.1. Dark matter distribution

A gamma-ray line would allow to study the distribution of DM in the GC with unprecedented accu-
racy, which could serve as important feedback for state-of-the-art numerical simulations of gravitational
clustering. To illustrate this, we show in Fig. 3 the ±1r range of the line flux as function of the opening
angle h of a ROI centered on the GC (green band).5 Obviously, for large galactocentric distances, the flux
3 To generate the plot, we redid the analysis from Ref. [10] in Reg4 (SOURCE events), replacing the monochromatic line by a
broken power-law that changes its spectral index from c1 to c2 at 130 GeV.

4 Note that the latest official compilation of Fermi line limits [137] was finalized before the first [9] indication for the line signal
was announced; it relies on 24 rather than 43 months of data and takes a significantly larger ROI. The tentative signal claim is thus
not in tension with those limits [10].

5 We use here an ROI with hourglass-like shape, defined by w < min(3�, h) plus w < h and |b/‘| > 0.7 (w is the angular distance
from the GC). Otherwise, we use the same procedure as in Ref. [10] to obtain the line flux, i.e. a power-law + line fit to SOURCE class
events.



Fig. 3. Comparison of different flux profiles as function of the opening angle h of an hourglass-shaped ROI that is centered on
the GC (see text for detailed definition). In green we show the ±1r uncertainty band of the line flux measured inside this region
by Fermi LAT after 3.6 years: while compatible with a standard Einasto profile at h J 1� (as well as an NFW profile; see text), it
is incompatible with both a cored and a sufficiently contracted profile, as well as with a signal from DM decay. The green bars
indicate which values of h we actually use in the fits; the profiles are arbitrarily normalized such that they reproduce the correct
flux for h = 20�. Note that we do not make any assumption about a possible displacement of the signal and that the ROI is
centered on the GC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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drops because the GC signal is washed out. Remarkably, the flux profile is perfectly consistent with the pre-
dictions from a standard Einasto profile (red solid line). The same is true for an NFW profile (not shown),
which would in this context only significantly differ closer to the GC, at angles h[ 1�. The dash-dotted black
line shows for comparison the prediction for a DM annihilation signal from a sufficiently contracted profile
(chosen to be essentially equivalent, for the angular resolution of Fermi-LAT, to a point source at the GC); at
angles h[ 5� the measured flux starts to deviate from the predictions, indicating that the 130 GeV signal is
not a point source but extended up to these angles. On the other hand, the signal is too concentrated to be
compatible with a cored profile (dotted black line, here for a core radius of 3:5 kpc). Note that a contribution
from Milky Way subhalos could further boost the signal at angles h J 20� by a factor of a few [76], which
however is not observed and thus might be used to place constraints on subhalo models. DM decay (blue
dashed line) would also lead to a flux that is too weak at the GC to be compatible with the observations (un-
less extreme assumptions on the profile are made [183], which however are likely to be in conflict with
microlensing and dynamical constraints [64]).

As already mentioned, there is some evidence for a �1.5 � offset of the signal with respect to the GC
[166] (though a centered signal might also be consistent with the data [179]). While this observation was
certainly unexpected, it might possibly be explained by the interplay between baryons forming a bar and
DM [69]. The same bar would however also likely destroy a DM cusp in the center [184]; tidal disruption
by the central supermassive black hole may be a further issue to worry about. More data, as well as more
detailed simulations along the lines of [60] are thus needed to settle in how far the morphology of the 130
GeV feature is compatible with theoretical expectations. In fact, such an improved understanding could
eventually allow to infer important details about the formation history of our Galaxy.

Once the GC signal is established, an exciting future application would be a precise all-sky survey to
look for the same 130 GeV feature, aiming at a (partial) map of the Galactic and cosmological DM dis-
tribution. For sufficiently large substructure boosts, the 130 GeV feature could for example appear as a
bump in the IGRB or in the gamma-ray spectrum of galaxy clusters. So far, no corresponding lines were
found in the IGRB [103], which would already put the more optimistic models for substructure evo-
lution from Ref. [107] under some tension if the small-scale cutoff in the subhalo distribution is
roughly 10�6M�or less (while the reference model used for the Fermi-LAT analysis [103] leads to con-
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straints almost two orders of magnitude weaker than the GC signal strength). On the other hand, there
isa possible weak indication from galaxy clusters [168]. If confirmed, it would necessarily imply a
rather small value for the small-scale cutoff in the subhalo distribution in order to produce the re-
quired large boost factors of Oð103Þ; this, in turn, could be used to obtain highly complementary
bounds on the underlying WIMP model. There is presently no sign for a 130 GeV line in dwarf galaxies
and the resulting limits on (rv)cc are about one order of magnitude weaker than what is needed to
explain the GC signal [138]; however, these limits are significantly affected by uncertainties in the
DM distribution in the dwarfs and in the most favorable case a signal might appear already after a
few times larger exposure than currently collected by Fermi-LAT. With more data, it may also be pos-
sible to identify a few individual DM subhalos (see e.g. the heavily disputed weak indications for a 130
GeV signal from unidentified sources of the 2FGL [169,170]). The galactic distribution and total num-
ber of those subhalos would in principle provide invaluable information on the DM distribution and
allow to further discriminate between subhalo models that are currently discussed. Note, however,
that presently no precise estimate exists of how many subhalos are actually expected to be visible,
in the light of results from N-body simulations, if the spectrum is dominated by a line; for a secondary
spectrum (assuming �bb annihilation and mv’ 100 GeV), on the other hand, it was predicted that Fermi
should have seen up to a few subhalos [81,97] and the non-observation places a limit on the annihi-
lation cross section comparable to the one obtained from the IGRB [185]. More detailed future studies
in this direction would thus certainly be both very interesting and worthwile.
5.2. Dark matter models

At the time of this writing, the literature has already seen a considerable amount of model-building
efforts to explain the line signal in terms of annihilating DM. This ranges from phenomenological and in
some sense model-independent approaches [124,186], or analyses in the context of effective field the-
ories [187–189], to concrete model building. Proposed solutions that mostly fall into the latter category
include an additional U(1) symmetry [190], DM as the lightest state of a new scalar multiplet [191], right-
handed sneutrino [192] or neutrino [193] DM, axion-mediated DM annihilation [194,195], two-compo-
nent DM [196], magnetic inelastic DM [197], dipole-interacting DM [198], as well as scalar DM in exten-
sions of the Higgs triplet [199] or Zee–Babu model [200]. Even neutralinos have been proposed as a
possible cause of the signal, albeit in non-minimal versions of supersymmetry like no-scale F–SU(5)
[201] or the NMSSM [188,194,202] – each time, however, arguing for additional indications in favor
of the respective model in collider data. The possibility of decaying DM being responsible for the signal
has also been entertained [183,203,204] – though the expected angular dependence of the signal in this
case is hardly consistent with observations, see the previous subsection.

One generic problem for any realistic model-building is that the annihilation cross section required
to fit the data is considerably larger than typically expected for thermally produced DM, at least if the
relic density is set by the tree-level annihilation rate. On the particle physics side, possible ways to
enhance the annihilation rate in that case include the Sommerfeld enhancement [23,24] in the pres-
ence of new light bosonic messenger particles that mediate an attractive force between the initial
state DM particles or, at the cost of some fine-tuning, the presence of a resonance (i.e. s-channel anni-
hilation via a new neutral particle with m’ 2mv, the same spin and CP properties as the initial state);
yet another mechanism might be cascade annihilation [205]. On the astrophysical side, larger annihi-
lation fluxes arise by adopting a larger local DM density for the profile normalization or a profile that is
steeper in the innermost part than our reference Einasto profile, Eq. (3); see, however, Fig. 3 for the
relatively tight constraints on the latter option. Note that even if one relaxes the theoretically appeal-
ing assumption of thermal DM production, one needs to worry about large annihilation rates at tree-
level because they would produce secondary photons potentially in stark conflict with continuum
gamma-ray data [124,126,139,183,206]; also antiproton [183,207] and radio [207,208] data are quite
efficient in constraining such large annihilation rates. This fact can be used to rule out e.g. Wino or
Higgsino DM as an explanation for the line (see also below). Antiprotons could be constraining for fu-
ture experiments not only because of the tree-level annihilation rate, but also due to the associated
DM annihilation into ggfinal states if the cc signal is dominated by colored particles in the loop [209].



Fig. 4. SUSY scan comparing the expected number of quasi-monochromatic photons (120 GeV 	 Ec 	 140 GeV) to the number
of secondary photons. Green (red, blue) points correspond to models where thermal production leads to a relic density in
(smaller than, larger than) the observed range. Filled symbols indicate models where VIB contributes at least 3 times more
photons than cc and cZ. Exclusion limits [126] and signal fit (at 1r and 2r) both assume an Einasto profile. Dashed lines show
the effect of enhancing the annihilation flux by the same amount in both exclusion (|b |, |l | < 5�) and signal ROI; only models
below the dashed line may thus in principle explain the line at 130 GeV. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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In order to illustrate the above point, we consider in Fig. 4 the result of a large scan (for details, see
Ref. [210]) over the parameter space of the cMSSM and a phenomenological MSSM-7, keeping only
neutralino DM models where IB, cc and cZ photons for Ec2 [120, 140] GeV dominate the secondary
contribution by a factor of at least 5; for reference, we also show the case of pure Wino (‘ ~W ’) and
Higgsino (‘~H’) DM. Filled symbols correspond to models where IB photons outnumber line photons
by at least a factor of 3. Assuming an Einasto profile as in Eq. (3), we also show the required signal
strength to account for the line observation (shaded area) as well as limits [126] on the continuum
flux from the GC region (solid lines). Note that both limits and signal region are roughly proportional
to ð

R
d�ds q2

vÞ
�1, albeit integrated over slightly different regions near the GC; assuming this factor to

be the same for both regions, dashed lines indicate how limits and signal region would change if
adopting a profile that is different from Eq. (3). From this figure, we can draw at least three important
conclusions: (i) As already anticipated, the large annihilation rate required to explain the signal cannot
easily be achieved for thermally produced neutralino DM. (ii) Even when enhancing the annihilation
rate such as to sufficiently increase the production of cc or cZ final states (e.g. by a higher central DM
density), it is very difficult to do so without violating the bounds from continuum gamma rays. In fact,
the observed correlation between loop- and tree-level rates is generally expected from the optical the-
orem and should thus not only apply to neutralino DM [207]. (iii) VIB, on the other hand, does not fol-
low this pattern and can thus be argued to be a more natural explanation for such a strong line-like
signal – still in need, however, of Oð10Þ enhancement factors for standard6 neutralino DM. We note
6 Let us stress that all supersymmetric models of Fig. 4 assume unification of gauge couplings at the GUT scale, which prohibits a
large Wino fraction of the lightest neutralino. Scanning a simple phenomenological MSSM-9 [226], where this assumption is
relaxed, we found the top right branch of non-thermally produced models (open red symbols in Fig. 4) to extend all the way to the
pure Wino case – albeit always above the (extended) dashed line. However, we could not find any models with larger IB rates than
shown in Fig. 4 (possibly due to the restricted nature of the scan and MSSM version employed). Secondary photons from
electroweak and strong corrections, see Section 2, were not included and would move the VIB dominated models in Fig. 4
somewhat upwards. While a dedicated future analysis is certainly warranted, let us stress that we still expect the continuum
gamma-ray limits to be easily satisfied for VIB dominated, thermally produced neutralinos (antiproton constraints from these
channels [227] are likely less stringent [9]).



Fig. 5. Significance contour (thick black lines in 1r steps) and upper limits (yellow line; 95%CL) for a second line. Assuming that
the 130 GeV feature is due to cc (green solid), cZ (blue dashed) or cH (red dotted), the vertical lines show the corresponding
positions of the other two lines. A very weak hint for a cZ line at 114 GeV can be identified. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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that such an enhancement may actually not be unrealistic given the significantly larger values of the lo-
cal DM density q� that are found when assuming a non-spherical DM profile or the presence of a dark
disc [47]; furthermore, the most recent simulations of Milky Way like galaxies suggest that baryons
should increase the DM density in the central parts by a factor of almost 3, in a way compatible with
the angular distribution of the signal as shown in Fig. 3. While most DM model-building so far has fo-
cussed on an explanation of the 130 GeV feature in terms of monochromatic gamma-ray lines, also
VIB-dominated signals have been considered explicitly in this context [9,193,211].

The possibly only way to avoid the above considerations may be to strongly restrict any coupling of
DM to charged standard model particles lighter than mv [207]: loop signals could then easily domi-
nate over VIB signals without being in conflict with constraints arising from tree-level annihilations.
In such a case, one would rather generically expect not only one but at least two lines [187] and the
observed ratio of photon counts (or limits on those) can provide crucial information about the under-
lying particle model [187,212]. In Fig. 5 we therefore provide significance contours and upper limits
for a second line besides the observed 130 GeV feature; for convenience, we summarize these results
in Table 2 in terms of limits on the annihilation cross section (rv)cX under the assumption that the
signal corresponds to DM annihilation into cY (for X, Y= c, Z, h). Interestingly, as observed earlier
[166,187], one can see a weak indication (with a significance of around 1.4r) for a second line at
114 GeV – which coincides surprisingly well with the energy expected for a cZ line if the 130 GeV
feature can be attributed to DM annihilation into cc; for this case, we also state the best fit value
for the ratio of cross sections.

6. Future prospects

6.1. Next decade

The next 10 years will bring a plethora of new results in indirect DM searches. It is right now that
experiments start to probe vanilla WIMP DM models and thus will either identify a signal or exclude
many of the most common scenarios. Ongoing experiments like Fermi-LAT, HESS-II, VERITAS and MA-
GIC will continue to take data, may identify new targets for DM searches, profit from a better under-
standing of astrophysical backgrounds and prepare the stage for planned instruments like CTA or
GAMMA-400 with considerably improved characteristics for DM searches. Indirect detection with
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gamma rays will also profit from an interplay with upcoming results from neutrino searches with
IceCube, anti-matter searches with AMS-02, results from the LHC as well as from next-generation
direct WIMP detectors. Furthermore, continuously improving results from N-body simulations that
realistically take into account the various components of baryonic matter will sharpen our under-
standing of the signal morphology.

Assuming a 10 years lifetime of Fermi-LAT, the limits on the annihilation cross-section that were
derived from observations of nearby dwarf galaxies with 2 years of data [88] would improve on purely
statistical grounds by a factor of

ffiffiffi
5
p

to 5, depending on the annihilation channel and the DM mass
(which determines whether the limits are derived in the signal-dominated high-energy regime or
in the low-energy regime dominated by the diffuse gamma-ray background). Optical surveys like
Pan-STARRS, the Dark Energy Survey or the Stromlo Missing Satellite Survey could increase the num-
ber of known dwarf spheroidals by a factor of 3, which could additionally increase the constraining
power by a factor of

ffiffiffi
3
p

to 3 in the most optimistic case [213]. Further significant improvements
are expected from the upcoming Pass 8 version of the LAT event reconstruction, which will lead to
an enhanced effective area for high energy gamma rays, better hadron rejection and an improved en-
ergy resolution [214]. It is hence conceivable that Fermi-LAT dwarf limits will improve by a factor up
to 10, which could allow to constrain WIMPs with thermal annihilation rate into �bb up to DM masses
of �600 GeV. Similar improvements might be expected for limits from galaxy clusters [94,109]. DM
searches in the GC [126,127,206] and the halo [128], on the other hand, will mostly profit from a re-
fined understanding of astrophysical backgrounds; results from different groups are expected soon.
The best limits on annihilation into gamma-ray lines [10] or VIB features [9] are right now based
on almost four years of data; more data and improved event reconstruction will strengthen them
by at least a factor of

ffiffiffi
3
p

.
By now, HESS observations of the GC provide the strongest limits on DM annihilation with

mv J 700 GeV [125], down to annihilation cross-sections of hrvib�b � 4� 10�25 cm3 s�1. The newly
mounted 28 m-diameter telescope HESS-II has an about 3 times lower energy threshold than HESS-
I, as well as additional timing information which will improve the rejection of cosmic rays. Both
improvements will help to extend the current constraints to lower masses and values of the annihi-
lation cross-section. If Fermi-LAT identifies a DM signal candidate at high enough energies, HESS could
quickly confirm it thanks to its large effective area, and provide additional information about the var-
iability and spatial extent of the source. Further results are anticipated from VERITAS, MAGIC and
AMS-02 as well. Since VERITAS and MAGIC see the GC at most at angles 33� above horizon (while HESS
at angles up to 84�), however, they are mainly interesting for observations of dwarf galaxies and less
for DM searches at the GC. Substantial improvement in the TeV regime should eventually come with
CTA. Following Ref. [215], observations of the GC are expected to exclude cross-sections down to the
thermal one at TeV DM masses, which would be an improvement of up to an order of magnitude with
respect to the current HESS constraints (note, however, that this study adopts a factor of about 10 sub-
structure boost of the GC signal w.r.t. what is expected from standard smooth Einasto or NFW pro-
files). Further improvements with respect to HESS or VERITAS are also expected for dwarf galaxy
observations, although they would still hardly be competitive with results from space-based
instruments.

Future space-based instruments like GAMMA-400 or CALET/DAMPE will – thanks to an ex-
tended imaging calorimeter and a large lever arm to the converter foils – have a much better en-
ergy and angular resolution than Fermi LAT. However, they will come with a somewhat smaller
effective area. For that reason, DM limits from e.g. dwarf spheroidal observations would likely only
be somewhat strengthened in the background limited regime at low energies. On the other hand,
these instruments would be excellent machines for detailed follow up studies of DM signal candi-
dates that might be identified in the Fermi-LAT data, in particular in case of pronounced spectral
features.

In Fig. 6 we provide a convenient summary plot of limits on the DM annihilation cross section into
�bb (in red and blue for space- and ground-based instruments, respectively) as well as in cc(in green).
The limits are collected as a representative selection of different instruments, and we concentrate on
observations of dwarf spheroidal galaxies, the GC and the Galactic halo, since they provide right now
the most stringent constraints. All limits are shown as function of the time of their publication, and



Fig. 6. Time evolution of limits. References: EGRET Draco [216]; Fermi Dwarfs [88]; Fermi Halo (CPS) [101]; Fermi Halo
(col.) [129]; Whipple Draco [113]; Veritas Willman I [119]; Veritas Segue I [217]; CTA Segue I and GC [215]; HESS GC
[125]; EGRET cc [134]; Fermi cc 1yr [135]; Fermi cc 2yr (VW) [136]; Fermi cc 2yr (col.) [137]; GAMMA-400 [35]. For the
dark red, dark green and blue far future ‘fundamental’ limits, we took only into account systematic limitations (basically
assuming that all relevant systematics can be understood at the 1% level); the corresponding observational times can be
extremely large in case of space-based telescopes, but are realistic for IACTs. For comparison, the light green and light red
symbols show the limits obtained for hypothetical sky exposures about 100 times larger than 10 years Fermi LAT
observations in survey mode. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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were derived for common assumptions on the DM profile (NFW profiles in most cases; in case of e.g.
GC and Galactic halo limits the adopted J-values are mutually consistent within a factor of about two
[except for CTA, see above]); the different symbols correspond to limits for DM masses of 10, 100 and
1000 GeV. To the right of the dashed black line, limits expected for the next decade are shown, as well
as limits that might be achievable in the more distant future (to be discussed in Section 6.2). In the
past eight years, most limits have improved by an order of magnitude; a similar improvement is ex-
pected during the upcoming 10 years. Even without excessive boost factors, these limits start to reach
deep into the parameter space of WIMP DM models. In particular observations of the GC with Cher-
enkov telescopes at high energies as well as observations of dwarf spheroidal galaxies with space-
based instruments at lower energies have a great potential for deriving constraints or discovering a
signal.

Finally, the prospects for a further study of the 130 GeV feature in the Fermi-LAT data, if it persists,
are extremely good. HESS-II has just seen its first light and given the good performance foreseen for
the instrument in hybrid mode, it should allow a quick confirmation of the signal reported in
[9,10], if systematic uncertainties are sufficiently under control [35]; for CTA, a mere 50 hrs of data
might be enough to confirm the signal [218]. In the case of the future space-based telescopes GAM-
MA-400 and DAMPE, the improved energy resolution provides an enormous potential not only for
the detection of the 130 GeV feature, but also for the efficient discrimination of a VIB feature from
one or several lines [15,35]. However, even with GAMMA-400 and its planned excellent energy reso-
lution, the discrimination between a monochromatic line and VIB would require up to a few years of
GC observations, whereas the discrimination between one and two lines (in case of cc+ cZ final states)
could be achievable much faster [35].

A substantial substructure boost will generally be necessary even in the near future to measure the
130 GeV signal elsewhere in the sky, like in dwarf galaxies [138,218], the EGBG [103], galaxy clusters
or Milky Way subhalos. On the other hand, the recent claims for an identical signal in galaxy clusters
[168] or unidentified sources of the 2FGL [169] are likely to soon be confirmed or refuted in light of the
upcoming data and improved telescope performances mentioned above.
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6.2. Fundamental reach

Let us finally estimate what may be called the systematicor fundamental reach of gamma-ray
searches for DM signals with current technology. As an instructive exercise, and somewhat comple-
mentary to other works (see e.g. Ref. [210]), we will here initially assume infinite observational time
or effective area, and concentrate on the remaining systematic limitations. These limitations come
from (1) a modeling of astrophysical backgrounds, and (2) the instrument itself (see also Ref. [219]
for an instructive comparison of sensitivities of space- and ground-based telescopes).

Numerical codes like GALPROP [220] do an excellent job in modeling the galactic diffuse gamma-
ray emission. However, uncertainties related to e.g. the simplified propagation set-up, the interstellar
radiation field or models for the gas distribution inhibit a priori predictions, and even after performing
fits to the data up to �30% residuals at large and small scales remain [129,175]. At high latitudes, away
from the galactic disk, background variations at �1� scales are much less dramatic. Here, we will adopt
an optimistic 1% systematic background uncertainty for dwarf galaxy observations.

Relevant instrumental systematics are the spatial and spectral variations in the effective area,
incomplete rejection of cosmic rays, and uncertainties in the energy and directional reconstruction
(in case of the LAT, e.g., spectral uncertainties in the effective area range from 2% to 10%, depending
on signature of interest [221]). We will adopt here an optimistic reference value of 1% as uncertainty
for the effective area, which still leaves room for future improvements in the instrumental design. In
case of IACTs, we furthermore adopt the aggressive scenario that all hadronic showers are rejected,
and only the cosmic-ray electron flux remains as an irreducible background (at energies below a
few hundred GeV, this approximation is actually already realized with current technology). Such
improvement could finally come from an improved imaging of the air shower, and from using a large
sensitive array to veto cosmic-ray induced showers by the debris that they typically induce at rela-
tively large angles from the shower axis. Although we do not include this possibility in our estimates,
one has to keep in mind that even a rejection of the electron induced background could be finally pos-
sible by detecting the Cherenkov light of electrons before their first interaction [222].

We will in the following consider two conceptionally different targets, which are of particular
interest for current DM searches: a continuum signal from dwarf spheroidal galaxies and a gamma-
ray line signal from the GC.

Dwarf spheroidals. While a combined analysis of several dwarfs could further improve the results, if
backgrounds and instrumental systematics are under control, we will here focus on a single prototypic
dwarf spheroidal galaxy. We adopt a reference J-value of J �

R
dX
R

l:o:sd‘q
2
v ¼ 1019 GeV2 cm�5 inside an

integration cone with radius h= 0.15�, which is of the expected order for e.g. Draco or Segue I [88,118].
For other values our limits would roughly scale like /J�1for constant h, but the potential cuspiness of
the DM profile could be used to further strengthen the limits by choosing a smaller integration cone
(albeit only for angular resolutions well below 0.1�, see e.g. Fig. 1 in Ref. [84]). In case of space-based
instruments, we estimate the level of the diffuse background by the IGRB determined by Fermi [158].
For ground-based instruments, we add on top of that the e±-flux measured by Fermi-LAT [223].

At the right end of Fig. 6, with dark blue and red markers, we show the limits that result from the
requirement that the signal flux from our reference dwarf is below a factor of 2

ffiffiffi
2
p

% of the background
within the integration region hat all energies (corresponding to a 2r error from 1% instrumental and
background systematics). As apparent from this plot, especially space-based instruments still allow a
substantial improvement of the limits. To really reach these systematic limitations, however, one
would need in case of space-based dwarf galaxy observations (assuming Aeff ¼ 1 m2) an unrealistic
observational time of 103(4 � 104, 9 � 105) years for DM masses of mv ¼ 10 GeV
(100 GeV, 1000 GeV), which can only be overcome with a larger effective area. For comparison, we
therefore also show by the light red symbols the limits that could be obtained with a hypothetical
exposure about 100 times larger than 10 years of Fermi LAT observations in survey mode (�5 �
1013cm2s). Ground based telescopes – which reach much higher event numbers than space based
instruments – may reach the quoted ‘fundamental’ limit already within realistic observational times
(e.g. about 100 h for mv ¼ 1 TeV and Aeff ¼ 1 km2). Any improvement beyond these limits would re-
quire an efficient rejection of cosmic-ray electrons, which is however extremely challenging (see
above).
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Gamma-ray lines.To estimate the fundamental or systematic limit for gamma-ray line searches in
case of space-based instruments, we assume the same ROI and background fluxes as in Ref. [35];
the ROI has a size of �20� and includes the GC. We adopt an energy resolution of 1% (as expected
for e.g. GAMMA-400). Requiring that the peak of the line signal after convolution with the instrumen-
tal response (assumed to be a Gaussian for simplicity) does not overshoot the background flux by
more than 2

ffiffiffi
2
p

% yields the limits shown by the green markers at the right end of Fig. 6. These fun-
damental limits are 10–100 times stronger than what is currently obtained with Fermi-LAT (see also
Ref. [29] for prospects of observing line or IB features with current and future IACTs). Again, the light
green symbols show the limits that would be obtained after a GC exposure 100 times larger than with
Fermi LAT after 10 years.
7. Conclusions

In this review, we have argued that one may consider gamma rays as the golden channelof indirect
searches for DM in view of the extraordinarily rich spectral and angular information they can carry.
This does not only help to discriminate signals from backgrounds but could eventually reveal valuable
details about the properties of the DM particles. We have discussed the most important signatures in
quite some detail and provided an update on current limits, demonstrating that indirect searches start
to probe realistic cross sections and thus become competitive probes of physics beyond the standard
model.

While too early for a final judgement at the time of this writing, the line feature at 130 GeV that is
seen in the Fermi data might turn out to be the most promising DM signalclaimed so far. In fact, the
intrinsic width of this feature must be smaller than roughly 20% (18% at 95%CL) – which leaves lines,
VIB or box signals (Fig. 1) as possible channels for an explanation in terms of DM. On the other hand, it
is extremely challenging to find any explanation related to astrophysics for such a spectral feature; for
example, even a very hard contribution to the gamma-ray flux, with a sharp break at 130 GeV, cannot
describe the data in a satisfactory way (Fig. 2). The signal morphology is perfectly consistent with
annihilating DM and an Einasto profile for the DM density, at least for distances larger than the pos-
sible displacement from the GC by 1–2�, but essentially rules out both cored and more contracted pro-
files (Fig. 3); decaying DM is also in strong tension with the data. The data show a weak hint for a
second peak at 114 GeV (Fig. 5 and Table 2) which is exactly the combination of energies expected
for the annihilation of 130 GeV DM particles into cc and cZ final states. However, large annihilation
rates into these channels rather generically imply large annihilation rates rate also at tree-level, in po-
tential conflict with continuum gamma-ray limits; VIB, on the other hand, does not suffer from this
drawback (Fig. 4).

If confirmed by the Fermi collaboration or other experiments, and in the absence of satisfactory
instrumental or astrophysical explanations, this signal would lead to the exciting conclusion that
the first particle beyond the standard model has been found in space rather than at a collider.
We have discussed at length how astrophysical observations would already now help to determine
detailed properties of this new particle. The situation will further improve in the relatively near
future given that prospects to study the 130 GeV feature in more detail are extremely good. How-
ever, we believe that even if the DM origin of the signal is eventually not confirmed, our analysis
serves to make a compelling case for the importance of focussing on clear spectral features in fu-
ture searches for DM.

During the last 10 years or so, most limits on DM annihilation have improved by about one order of
magnitude and this trend is expected to continue for the next decade (Fig. 6). We have further esti-
mated the systematics-limited (or ‘fundamental’) reach of gamma-ray experiments with present tech-
nology, demonstrating that there is still quite some room for improvement even beyond those limits
expected for the next decade, especially for space-based instruments (but also for ground-based tele-
scopes if the cosmic-ray electron background can at least partially be rejected). Eventually, it may thus
in principle be possible to probe cross sections down to at least one order of magnitude below the
thermal value for TeV-scale particles; for many models, this would correspond to interactions too fee-
ble to show up in any other kind of experiment, including direct or collider searches. While even those
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limits may not be sufficient to completely close the window for WIMP DM, model-building would cer-
tainly need to become increasingly sophisticated to avoid them.

Let us finally stress that in order to fully identify the properties of the DM particles, it will of course
be indispensable to correlate a suspected DM signal in gamma rays with results from indirect searches
at other wavelengths and with other messengers. The same holds for direct searches and new data
from colliders, both of which are guaranteed to deliver substantial new input in the near future –
be it in terms of greatly improved limits or actual first hints for a signal. Chances are thus high that
the next decade will either bring us a great deal closer to the long-sought nature of DM or, in the most
pessimistic scenario in terms of detectional prospects, force us to seriously question the very idea of
DM being composed of WIMPs.
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