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Although different parametrizations of quark mixing matrix are mathematically equivalent, the conse-
quences of experimental analysis may be distinct. Based on the triminimal expansion of Kobayashi–
Maskawa matrix around the unit matrix, we propose a new simple parametrization. Compared with
the Wolfenstein parametrization, we find that the new form is not only consistent with the original one
in the hierarchical structure, but also more convenient for numerical analysis and measurement of the
CP-violating phase. By discussing the relation between our new form and the unitarity boomerang, we
point out that along with the unitarity boomerang, this new parametrization is useful in hunting for new
physics.

© 2010 Elsevier B.V.

The mixing of quarks is one of the fundamental problems in particle physics. However, its origin is still unclear yet and the mixing is
currently described phenomenologically by the mixing matrix, i.e., the Cabibbo [1]–Kobayashi–Maskawa [2] (CKM) matrix

V CKM =
( V ud V us V ub

V cd V cs V cb
Vtd Vts Vtb

)
. (1)

The parametrization proposed by Chau and Keung (CK) [3,4] is the most popular way of parameterizing the matrix. Using three mixing
angles and one CP-violating phase, it provides a clear understanding of the mixing. However, some recent works [5,6] reveal that the
parameters in the CK parametrization are inconvenient when dealing with the unitarity boomerang (UB). A unitarity boomerang is formed
using two unitarity triangles [7] with a common inner angle, thus contains all four independent parameters in the mixing matrix, and is
a powerful tool of hunting for new physics beyond the Standard Model [8]. Instead of the CK form, Frampton and He proposed [5] that
the original Kobayashi–Maskawa (KM) [2] matrix is kept as the standard parametrization, which is given by

V =
( 1 0 0

0 c2 −s2
0 s2 c2

)( c1 −s1 0
s1 c1 0
0 0 eiδ

)( 1 0 0
0 c3 s3
0 s3 −c3

)
=

⎛
⎝ c1 −s1c3 −s1s3

s1c2 c1c2c3 − s2s3eiδ c1c2s3 + s2c3eiδ

s1s2 c1s2c3 + c2s3eiδ c1s2s3 − c2c3eiδ

⎞
⎠ . (2)

Here si = sin θi , ci = cos θi (i = 1,2,3), and θ1, θ2, θ3 are Euler angles describing the rotation among different generations, δ is the
CP-violating phase in the KM parametrization.

Although different parametrizations of quark mixing matrix are mathematically equivalent, the consequences of experimental analysis
may be distinct. The magnitudes of the elements V ij are physical quantities which do not depend on parametrization. However, the CP-
violating phase does. As a result, the understanding of the origin of CP violation is associated with the parametrization. For example, the
prediction based on the maximal CP-violation hypothesis [9] is related with the parametrization or in other words, phase convention.
As discussed in Ref. [10], only with the original KM parametrization and the Fritzsch–Xing [11] parametrization, one can get successful
predictions on the unitarity triangle [7] from the maximal CP-violation hypothesis. Therefore the original KM matrix is convenient for
studying both the maximal CP-violation and unitarity boomerangs, so that a study about it is necessary.

With the data on the magnitudes of the mixing matrix elements [4]
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⎛
⎜⎝

0.97419 ± 0.00022 0.2257 ± 0.0010 0.00359 ± 0.00016

0.2256 ± 0.0010 0.97334 ± 0.00023 0.0415+0.0010
−0.0011

0.00874+0.00026
−0.00037 0.0407 ± 0.0010 0.999133+0.000044

−0.000043

⎞
⎟⎠ , (3)

one can easily get the ranges of the parameters in the KM parametrization

θ1 = 0.228 ± 0.001, θ2 = 0.039+0.001
−0.002, θ3 = 0.016 ± 0.001. (4)

When studying mixing, it is useful to parameterize the matrix according to the hierarchical structure of the mixing to reveal more physical
information about the underlying theory. A good choice is the idea of triminimal parametrization [12–14] with an approximation as the
basis matrix to the lowest order. That is to express a mixing angle in the mixing matrix as the sum of a zeroth order angle θ0 and a small
perturbation angle ε with

θ1 = θ0
1 + ε1, θ2 = θ0

2 + ε2, θ3 = θ0
3 + ε3. (5)

With the deviations εi , one can expand the mixing matrix in powers of εi while different choices of θ0
i lead to different basis. The general

expansion of KM matrix is presented in Appendix A. Since Eq. (3) is very close to the unit matrix, it is a good approximation to let

ε1 = θ1, ε2 = θ2, ε3 = θ3. (6)

To make the lowest order be the unit matrix, we still need to adjust the phases of quarks with

c → ceiπ , s → seiπ , b → bei(π+δ). (7)

According to Eq. (4), we have ε2
1 ∼ ε2 ∼ ε3. Therefore, in order to keep the magnitude consistency of the expansion, we display all terms

of O(ε3
1 ) in our parametrization with

V =

⎛
⎜⎜⎝

1 − ε2
1

2 ε1 − ε3
1

6 e−iδε1ε3

ε3
1

6 − ε1 1 − ε2
1

2 ε2 + e−iδε3

ε1ε2 −ε2 − eiδε3 1

⎞
⎟⎟⎠ + O

(
ε4

1

)
. (8)

Comparing with the Wolfenstein parametrization [15]

V =
⎛
⎜⎝

1 − 1
2 λ2 λ Aλ3(ρ − iη)

−λ 1 − 1
2 λ2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎟⎠ + O

(
λ4), (9)

in which λ = s1, Aλ2(ρ2 + η2)
1
2 = s3 and Aλ2[(1 − ρ)2 + η2] 1

2 = s2, Eq. (8) has the same hierarchical structure with the Wolfenstein
parametrization. We can check the magnitude consistency by substituting these relations into Eq. (8) and only focus on the modulus of
each element in terms of all four Wolfenstein parameters, which gives⎛

⎜⎜⎝
1 − 1

2 λ2 λ Aλ3(ρ2 + η2)
1
2

λ 1 − 1
2 λ2 Aλ2(1 − 2ρ + 2ρ2 + 2η2)

1
2

Aλ3((1 − ρ)2 + η2)
1
2 Aλ2(1 − 2ρ + 2ρ2 + 2η2)

1
2 1

⎞
⎟⎟⎠ . (10)

Here we take δ ≈ 90◦ , which implies the maximal CP violation. The only difference comes from |V cb| and |Vts| with an extra coefficient.
However, numerical calculation gives (1 − 2ρ + 2ρ2 + 2η2)

1
2 = 1.0089 ≈ 1, so that the hierarchical structure of the quark mixing is well

preserved in Eq. (8).
A natural idea is to find the relation between these two forms. However, it is complicated in adjusting the phases by rephasing the

quark fields, as shown in Ref. [6]. This is because the phase convention adopted by Eq. (8) is different from Eq. (9). Actually, the Wolfenstein
parametrization takes the same phase convention with the standard CK form [3,4], which implies another choice of the phase δ. Therefore
one has difficulty to arrive at the Wolfenstein parametrization from triminimal parametrization of KM matrix. This is different from the
situation of triminimal parametrization of CK matrix, as shown in Ref. [14], where the Wolfenstein parametrization can be understood as
a simple form “derived” from the CK matrix.

By keeping the original Wolfenstein parameter λ = sin θ1 ≈ ε1 − ε3
1

6 and the CP-violating phase δ, and introducing two new parameters
with

f λ2 = sin θ2 ≈ ε2, hλ2 = sin θ3 ≈ ε3, (11)

we obtain a new Wolfenstein-like parametrization through substitution of them into Eq. (8), that is

V =
⎛
⎜⎝

1 − λ2

2 λ e−iδhλ3

−λ 1 − λ2

2 ( f + e−iδh)λ2

3 iδ 2

⎞
⎟⎠ + O

(
λ4). (12)
f λ −( f + e h)λ 1
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Fig. 1. The unitarity boomerang of quark mixing with the common angle φ2. The sides are AC = |V ud V ∗
ub |, AC ′ = |V ub V ∗

tb |, AB = |Vtd V ∗
tb |, AB ′ = |V ud V ∗

td|, BC = |V cd V ∗
cb|,

B ′C ′ = |V us V ∗
ts|.

This new simple form obviously preserves the unitarity of the matrix to the third order of λ and the hierarchical structure of the quark
mixing as we discussed above. The choice of two new parameters is quite natural since hλ3 = |V ub| and f λ3 = |Vtd|, thus can directly be
determined with λ = 0.2257+0.0009

−0.0010 [4] and Eq. (3), which gives

h = 0.312+0.018
−0.014, f = 0.760+0.023

−0.032. (13)

Different from the original Wolfenstein form, in which the CP violation is determined by two parameters, i.e., ρ and η, there is only
one phase δ independent of other parameters in Eq. (12). Another advantage of this new form is that V cb and Vts , with magnitudes of
O(10−2), contribute to the constraint of CP-violating phase δ, while in the original Wolfenstein form we need to consider V ub and Vtd ,
whose magnitudes being one order smaller than those of V cb and Vts but with all four parameters involved, making it inconvenient when
doing experimental analysis. Therefore, from this point of view, Eq. (12) is more convenient than the original Wolfenstein parametrization.
Simple numerical calculation of equation |( f + e−iδh)λ2| = |V cb| gives

δ ≈ 91.4◦, (14)

which means approximate maximal CP violation as we mentioned before.
A useful and natural application of this new simple parametrization is to study the unitarity boomerangs with it. The commonly used

unitarity boomerang is consisted by two unitarity triangles with the same order of the three sides, say, λ3, arising from

V ud V ∗
ub + V cd V ∗

cb + Vtd V ∗
tb = 0, V ud V ∗

td + V us V ∗
ts + V ub V ∗

tb = 0. (15)

Since the common angle of the two chosen unitarity boomerangs could be determined by the CP-violating measurement J [16,17], the
CP-violating phase could then be constrained. The Jarlskog parameter satisfies

J = 2
∣∣Vtd V ∗

tb

∣∣∣∣V ud V ∗
ub

∣∣ sinφ2

= 2
∣∣V ud V ∗

td

∣∣∣∣V ub V ∗
tb

∣∣ sinφ′
2

with φ2 = φ′
2 as the common angle of the unitarity boomerang as illustrated in Fig. 1. Using Eq. (12), we easily parameterize the sides

and angles of the unitarity boomerang with

AB = AB ′ = f λ3; AC = AC ′ = hλ3; BC = B ′C ′ = λ3( f 2 + 2 f h cos δ + h2) 1
2 ;

φ1 = φ′
1 = arctan

h sin δ

f + h cos δ
; φ3 = φ′

3 = arctan
f sin δ

h + f cos δ
; φ2 = φ′

2 = π − δ,

showing that to the third order of λ, the two chosen unitarity triangles are identical. Using the last one of these equations, we can check
the maximal CP-violation hypothesis [10] easily, and the experimental analysis consistently gives φ2 = (88+6

−5)
◦ [18]. High order corrections

to the boomerang bring about difference between these two triangles (see Appendix B). To the lowest order, the Jarlskog parameter is
given by

J = f hλ6 sin δ.

We get simple relations between these two parametrizations, i.e., diagrammatical and matrix forms. This implies that the parametriza-
tion (12) is natural in discussing the unitarity boomerangs of quark mixing. In Ref. [5] and Ref. [8], Frampton and He pointed out that the
unitarity boomerang is very helpful in searching new physics since it contains all the information about the mixing matrix and reflects
the precision attained by high-energy experiments. Thus deviations from the expected unitarity boomerang may imply possibility for new
physics beyond the Standard Model. Therefore, if new physics information show up in the unitarity boomerang analysis, we could get
corresponding signals in the parameters and consequently the mixing matrix through the relations above. Then by studying how the new
physics modify the original matrix, we may get hints of understanding the underlying theory.

Finally, we present a conclusion of this Letter. The new form of quark mixing matrix (12) is our main result. It exhibits the hierarchical
structure of the mixing, and is convenient for numerical analysis, especially for constraint of the CP-violating phase. Combined with
the unitarity boomerang, it is also helpful to study the presence of new physics. Therefore, we humbly suggest it as a simple form
corresponding to the KM matrix in theoretical and experimental studies.
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Appendix A. The general triminimal expansion of the KM matrix

We present here the general triminimal expansion of KM matrix. To second order of εi , the KM matrix is given by

V =
⎛
⎜⎝

c0
1 −s0

1c0
3 −s0

1s0
3

s0
1c0

2 c0
1c0

2c0
3 − s0

2s0
3eiδ c0

1c0
2s0

3 + s0
2c0

3eiδ

s0
1s0

2 c0
1s0

2c0
3 + c0

2s0
3eiδ c0

1s0
2s0

3 − c0
2c0

3eiδ

⎞
⎟⎠ + ε1

⎛
⎜⎝

−s0
1 −c0

1c0
3 −c0

1s0
3

c0
1c0

2 −c0
2c0

3s0
1 −c0

2s0
1s0

3

c0
1s0

2 −c0
3s0

1s0
2 −s0

1s0
2s0

3

⎞
⎟⎠

+ ε2

⎛
⎜⎝

0 0 0

−s0
1s0

2 −c0
1c0

3s0
2 − c0

2s0
3eiδ −c0

1s0
2s0

3 + c0
2c0

3eiδ

c0
2s0

1 c0
1c0

2c0
3 − s0

2s0
3eiδ c0

1c0
2s0

3 + c0
3s0

2eiδ

⎞
⎟⎠

+ ε3

⎛
⎜⎝

0 s0
1s0

3 −c0
3s0

1

0 −c0
1c0

2s0
3 − c0

3s0
2eiδ c0

1c0
2c0

3 − s0
2s0

3eiδ

0 −c0
1s0

2s0
3 + c0

2c0
3eiδ c0

1c0
3s0

2 + c0
2s0

3eiδ

⎞
⎟⎠ + 1

2
ε2

1

⎛
⎜⎝

−c0
1 c0

3s0
1 s0

1s0
3

−c0
2s0

1 −c0
1c0

2c0
3 −c0

1c0
2s0

3

−s0
1s0

2 −c0
1c0

3s0
2 −c0

1s0
2s0

3

⎞
⎟⎠

+ 1

2
ε2

2

⎛
⎜⎝

0 0 0

−c0
2s0

1 −c0
1c0

2c0
3 + s0

2s0
3eiδ −c0

1c0
2s0

3 − c0
3s0

2eiδ

−s0
1s0

2 −c0
1c0

3s0
2 − c0

2s0
3eiδ −c0

1s0
2s0

3 + c0
2c0

3eiδ

⎞
⎟⎠

+ 1

2
ε2

3

⎛
⎜⎝

0 c0
3s0

1 s0
1s0

3

0 −c0
1c0

2c0
3 + s0

2s0
3eiδ −c0

1c0
2s0

3 − c0
3s0

2eiδ

0 −c0
1c0

3s0
2 − c0

2s0
3eiδ −c0

1s0
2s0

3 + c0
2c0

3eiδ

⎞
⎟⎠ + ε1ε2

⎛
⎜⎝

0 0 0

−c0
1s0

2 c0
3s0

1s0
2 s0

1s0
2s0

3

c0
1c0

2 −c0
2c0

3s0
1 −c0

2s0
1s0

3

⎞
⎟⎠

+ ε2ε3

⎛
⎜⎝

0 0 0

0 c0
1s0

2s0
3 − c0

2c0
3eiδ −c0

1c0
3s0

2 − c0
2s0

3eiδ

0 −c0
1c0

2s0
3 − c0

3s0
2eiδ c0

1c0
2c0

3 − s0
2s0

3eiδ

⎞
⎟⎠ + ε1ε3

⎛
⎜⎝

0 c0
1s0

3 −c0
1c0

3

0 c0
2s0

1s0
3 −c0

2c0
3s0

1

0 s0
1s0

2s0
3 −c0

3s0
1s0

2

⎞
⎟⎠

+ O
(
ε3

i

)
,

where s0
i = sin θ0

i and c0
i = cos θ0

i .
The Jarlskog parameter given by

J = Im
(

V 11 V 22 V ∗
12 V ∗

21

) = s2
1s2s3c1c2c3 sin δ

is independent of phase convention, making it important when discussing CP violation. Expanding J with εi to the second order gives

J = J0

(
1 + ε1

(
3 cot 2θ0

1 + csc 2θ0
1

) + 2ε2 cot 2θ0
2 + 2ε3 cot 2θ0

3 + 1

4
ε2

1

(
9 cos 2θ0

1 − 5
)

csc2 θ0
1

− 2ε2
2 − 2ε2

3 + 2ε1ε2
(
3 cos 2θ0

1 + 1
)

cot 2θ0
2 csc 2θ0

1 + 4ε2ε3 cot 2θ0
2 cot 2θ0

3

+ 2ε1ε3
(
3 cos 2θ0

1 + 1
)

cot 2θ0
3 csc 2θ0

1

)
+ O

(
ε3

i

)
,

in which J0 = (s0
1)

2s0
2s0

3c0
1c0

2c0
3 sin δ.

Appendix B. High order calculation of the boomerang

The leading order of the sides of the unitarity boomerang in Fig. 1 are of O(λ3) and the two unitarity triangles are identical with
each other. When high order corrections are included, difference between the two triangles comes out. We need to parameterize the CKM
matrix to high order of λ, here we expand it to O(λ5)

V =

⎛
⎜⎜⎝

1 − λ2

2 − λ4

8 λ − h2λ5

2 e−iδhλ3

−λ + f 2λ5

2 1 − λ2

2 − 1
8 (1 + 4h2 + 8eiδ f h + 4 f 2)λ4 ( f + e−iδh)λ2 − 1

2 e−iδhλ4

f λ3 −( f + eiδh)λ2 + 1
2 f λ4 1 − 1

2 ( f 2 + 2e−iδ f h + h2)λ4

⎞
⎟⎟⎠ .

With this expression we can get the sides and the angles in Fig. 1 as
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AB = f λ3; AB ′ = f λ3 − 1

2
f λ5; AC = hλ3 − 1

2
hλ5; AC ′ = hλ3;

BC = λ3κ
1
2 − 1

2
λ5(h2 + f h

)
κ− 1

2 ; B ′C ′ = λ3κ
1
2 − 1

2
λ5( f 2 + f h

)
κ− 1

2 ;

φ1 = arctan
h sin δ

f + h sin δ
− f hλ2 sin δ

2κ
+ f hλ4 sin δ

(
1 − f h cos δ + h2

4κ2

)
;

φ′
1 = arctan

h sin δ

f + h sin δ
+ f hλ2 sin δ

2κ
+ f hλ4 sin δ( f 2 + f h cos δ)

4κ2
;

φ3 = arctan
f sin δ

h + f sin δ
+ f hλ2 sin δ

2κ
+ f hλ4 sin δ(h2 + f h cos δ)

4κ2
;

φ′
3 = arctan

f sin δ

h + f sin δ
− f hλ2 sin δ

2κ
+ f hλ4 sin δ

(
1 − f h cos δ + f 2

4κ2

)
;

φ2 = φ′
2 = π − δ − f hλ4 sin δ,

in which κ = f 2 + 2 f h cos δ + h2. In the expressions for angles (except the common inner angle φ2), the terms proportional to λ2 come

from the fraction of the high order terms of the elements since the definition of the angles is, for example φ1 = Arg[− V cd V ∗
cb

Vtd V ∗
tb

], thus we do

not have this kind of corrections when we only consider the leading order.
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