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Aim: The aim of this study was to analyze the effects of protein perinatal malnutrition on the function of
dopamine DRD1 and DRD2 receptors in regards to motivation and food consumption in adult mice. The study
also analyzed the effect of protein perinatal malnutrition on the gene expression of these receptors in the ventral
striatum.

Methods: Wistar lineage mice were divided into two groups according to maternal diet: control (17% casein),
n = 30 and low protein (8% casein), n = 30. Between 30 and 120 days of life, the following factors were
measured: body weight; the effect of dopamine D1 and D2 agonists on the ingestion of palatable food; the
motivational aspect under the action of the D1 (SKF 38393) and D2 Quinpirole dopaminergic agonists; and
the gene expression of DRD1 and DRD2 receptors in the ventral striatum.

Motivation Results: The body weights of the malnourished animals remained significantly lower than those of the control
Food intake group from 30 to 120 days of life. Malnourished animals ingested a greater quantity of palatable food. There
Rat was a decrease in palatable diet consumption in both the control and malnourished groups after the application
of D1 and D2 agonists; however, the anorexic effect of the D1 agonist was understated in malnourished animals.
Perinatal malnutrition increases the motivational behavior of the animal when food reward is used. There was an
increase in gene expression of the DRD1a receptor in the ventral striatum of malnourished animals, and there
were no significant changes concerning the DRD2 receptor.

Conclusions: Perinatal protein malnutrition stimulates hedonic control of eating behavior by promoting increased
intake of palatable foods, possibly due to increased expression of dopamine receptor DRD1a in the ventral
striatum.
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1. Introduction vulnerable stages of brain development, changing brain maturation

events and leading to behavior changes, changes in cognition functions

During the developmental phase, the brain is highly vulnerable to
different types of insults (Morgane et al., 2002). The deleterious effects
of insults in the early phases of life are demonstrated through different
experimental paradigms, such as prenatal stress (Vallee et al., 1997),
maternal separation (Lehmann et al., 1999), overnutrition (Alsio et al.,
2010) and malnutrition (Lopes de Souza et al., 2008). Malnutrition is a
worldwide issue that affects newborns and children during the most
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and learning and memory disorders (Morgane et al., 2002). Developing
societies that are experiencing fast and intense transformations in their
economic growth and demographic structure patterns are experiencing
a decrease in malnutrition and an increase in obesity; this characterizes
the nutritional transition in developing societies (Popkin, 1994). The
etiology of obesity is multifactorial and is becoming a public health
problem due to its prevalent increase and the repercussions of its
comorbidities (Von Diemen et al., 2006).

The effect of malnutrition on encephalic mechanisms of food
ingestion regulation and its relevance in obesity etiology is evident.
However, the molecular, cellular and behavioral mechanisms underly-
ing this phenomenon are still poorly understood, and understanding
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the extent of the damage to health of this phenomenon requires inten-
sive scientific research (Zheng et al., 2009). The access to palatable food
is currently considered as one of the signs of metabolic disorders,
including obesity (Berridge and Kringelbach, 2008). The preference for
this type of food is associated with hedonic responses, such as motivation,
palatability and pleasure (Yamamoto, 2006; Berridge and Kringelbach,
2008). Dopamine participates in these mechanisms through the action
of dopamine D1 and D2 receptors (Wang and Xu, 2007; Beaulieu and
Gainetdinov, 2011). According to some authors, the dopamine D1
receptor can contribute to appetitive motivation and plays an important
role in increasing the incentive for acquiring natural rewards, such as
palatable food. They also suggest that the action of dopamine D2 recep-
tors is particularly focused in satiety rather than motivation; therefore,
these receptors mainly inhibit the consumption of food, controlling the
size, duration and frequency of meals (Robinson et al., 2005; Wang and
Xu, 2007; Volkow et al., 2008; Vucetic and Reyes, 2010; Beaulieu and
Gainetdinov, 2011). Even in the absence of hunger, pleasure and the
reward sensation associated with food can stimulate consumption
(Kelley and Berridge, 2002). The nucleus accumbens is critically involved
to behaviors linked to specific objectives, such as the search for natural
and artificial reinforcements, such as food and abusive drugs (Kelley
and Berridge, 2002). It is believed that the release of dopamine in the
nucleus accumbens is associated with food ingestion, especially palatable
food, such as chocolate and cookies (Beaulieu and Gainetdinov, 2011).

Studies on humans using tomography through the emission of
positrons (PET scan) showed that food consumption is associated with
dopamine release in the dorsal striatum and that the quantity of
dopamine released is correlated with the level of pleasure associated
with feeding (Small et al., 2003). This suggests that the hedonic mecha-
nisms of food consumption regulation may be more complex than
previously thought.

Although several studies have already stated the role of dopamine
D1 and D2 receptors on feeding behavior, there are still few reports
concerning the effect of perinatal malnutrition on the function of
these receptors. Perinatal malnutrition may be involved in one of the
neural mechanisms that are related to the etiology of obesity in the
current worldwide population. Based on this, the present study
analyzed the effect of protein perinatal malnutrition on the functions
of dopamine DRD1a and DRD2 in regards to feeding motivation in
adult mice. The study also analyzed the gene expression of these recep-
tors in the ventral striatum, which includes the nucleus accumbens
region in addition to the ventral portion of striatum body, of adult mice.

2. Material and methods
2.1. Animals

All experiments were approved by the Ethics Committee on Animal
Experiments of the Center for Biological Sciences, Federal University of
Pernambuco (processing number: 23076.034632/2010-79) and were
performed in accordance with the recommendations of the Brazilian
Committee for Animal Experimentation (COBEA). Virgin female Wistar
rats (n = 10) weighing 250-300 g were obtained from their birth vivar-
ium (Department of Nutrition, Federal University of Pernambuco) and
were kept on a reversed 12-h light/dark cycle (lights on at 1800 h)
under a controlled temperature (22 + 2 °C) with water and a standard
diet (Purina, Campinas, SP, Brazil S/A) (Table 1) provided ad libitum.

Table 1
Composition of macronutrients of the diet and period handling.

After an adaptation period of 15 days, the rats were mated at a ratio of
one male to one female. After confirmation of pregnancy through visu-
alization of sperm in vaginal smears, females were moved to individual
cages and fed either a normal-protein diet (17% of casein,n = 10) or a
low-protein diet (8% of casein, n = 10) during pregnancy and lactation
(Crnic and Chase, 1978; Wiener and Levine, 1983; Falcao-Tebas et al.,
2012) (Table 1). The birth day was recorded as postnatal day zero (PO)
for the pups. Sexing was performed at 24 h after birth, and the numbers
of pups were adjusted to give 8 pups per mother with an equal ratio (4:4)
of males and females. In this paper, female pups were used only to com-
plete the litters to maintain the same male:female ratio. The experimen-
tal groups consisted of two male rats from each litter, and a total of 10
animals from the control and 10 animals from the low-protein restricted
groups were used. After weaning, all animals were fed a standard diet
(Labina®; Purina).

2.2. Agonists

The dopamine D1 and D2 agonists were obtained in crystallized
form and dissolved in sterile water to a concentration of 5 mg/ml,
according to the manufacturer’s recommendation (Sigma-Aldrich®).
In all experiments, the dopamine D1 agonist (SKF 38393) was adminis-
tered in a 3 mg/kg body weight dose, and the dopamine D2 agonist
(Quinpirole) was administered in a 0.3 mg/kg body weight dose; both
were applied intraperitoneally (Cooper and Al-Naser, 2006).

2.3. Experimental procedures

2.3.1. Body weight and feeding ingestion

Body weight was analyzed at 30, 60, 90 and 120 days of life. At
60 days of life, the animals were allocated to individual cages and
were given between 100 and 150 grams of palatable food. The animals
were allowed to adaptat to the cage and diet for three days; with the
diet being offered to the animals for one hour a day. Food consumption
was measured every 24 hours.

2.3.2. Palatable food ingestion evaluation under stimuli of dopamine D1
and D2 agonists in adult rats

This experiment involved animals previously deprived of food for
four hours. The subgroups were as follows: Cp; (normonourished
animals that received an acute dose of D1 agonists, n = 10), LPp,
(malnourished animals that received an acute dose of dopamine D1
agonist, n = 10), Cp, (normonourished animals that received an acute
dose of D2 agonist, n = 10), LPp, (malnourished animals that received
an acute dose of dopamine D2 agonist, n = 10), C,, (normonourished
animals that received distilled water, n = 10), and LP,, (malnourished
animals that received distilled water, n = 10). A half hour after the
injections, palatable food was made available to the animals (30 g of
chocolate cookies - Chocookies; Nabisco®, East Hanover, NJ, USA).
After an hour, the food was removed and weighed to determine the con-
sumption by subtracting the quantity of rejected food from the quantity
of offered food (Cooper and Al-Naser, 2006).

2.3.3. Runway task

At 70 days of age, rats in both the control and undernourished
groups underwent a runway task incentive test (Silveira et al., 2010;
da Silva et al., 2013). This test assesses the motivation of the animals

DIETS Protein (% kcal) Carbohydrate (% kcal) Lipids (% kcal) (kcal/g) Period handling
Normoprotein (AIN-93G) 19.5 61.9 17.7 3.6 Gestation and lactation
Low protein 9.3 72.0 17.5 3.6 Gestation and lactation
Chow (Labina Purina®)* 26.0 63.0 11.0 3.6 P36-P180

* Data of the standard diet are in agreement with those described in the manufacturer’s packaging.
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to obtain a food reward, evaluating the time necessary for the animal to
get to the end of a center runway where a box containing the food
reward is placed (Pecina et al., 2003). The runway task incentive is
used as a tool to evaluate motivation for obtaining a food reward by
training the animals to search for a specific target (reward). The food
serves as a salient motivation incentive for the animals. As rats consume
most of their food during the night, behavioral assessments were
performed 6-8 h after the onset of the dark phase of the light/dark
cycle. The apparatus used consisted of a tunnel with three compartments:
a start box (19 cm x 14 cm x 30 cm), a center runway
(150 cm x 14 cm x 30 cm) and a target box (19 cm x 14 cm x 30 cm).
The boxes were made of transparent acrylic, and the center runway
was made of opaque polypropylene. The images were captured with a
video camera positioned in the center runway to allow viewing of the
entire apparatus. The starting box could be moved along the tunnel to
attain a 15-150 cm distance from the target box. The stimulus was placed
inside the target box and consisted of 5 g of chocolate-flavored cookies
(Chocookies; Nabisco®, East Hanover, NJ, USA). The test consisted of 11
training sessions of 5 min each held on alternating days for a total period
of 22 days. The animals were deprived of food for 4 h before each training
session. During the adaptation period (1-3 sessions), the animal was
placed directly in the closed-target box and allowed to access the reward
for 5 min. Starting with session 4, the starting box was placed 15 cm away
from the target box, and the rats were placed in the start box for 30 s with
the door closed. After 30 s, the door was opened, and the animal was
allowed to enter the center runway. If the rat did not leave the start
box within 3 min, it was gently pushed into the target box. For each sub-
sequent session, the target box was moved further away from the start
box (30 cm away for session 5; 60 cm for session 6; 75 cm for session
7; 90 cm for session 8; 120 cm for session 9, and 150 cm for sessions 10
and 11). The sessions were defined as previously described by Pecina
et al. (2003): sessions 1-3 was considered as the adjustment phase in
which the animal is exposed to a new environment and reward so that
the natural neophobic behavior of the animal disappears; sessions 4-6
was considered as the pre-exposure phase in which the animal is
exposed to the target box and execution center; and sessions 7-9 was
considered as the learning-incentive or reinforcement phase in which
the animal is encouraged by the stimulus of reward. In sessions 10 and
11, the control and low protein animals were subdivided into the follow-
ing subgroups for drug application: Cyw (control water): nourished
animals that received distilled water (n = 10); Cpy (D1 control):
nourished animals that received the D1 dopamine agonist (n = 10);
Cp2 (D2 control): nourished animals that received the dopamine D2
agonist (n = 10); LPyy (low protein water): undernourished animals
that received distilled water (n = 10); LPp; (low protein D1): under-
nourished animals that received the D1 dopamine agonist (n = 10);
and LPp, (low protein D2) undernourished animals that received the
dopamine D2 agonist (n = 10). The speed of task completion for each
session was calculated by dividing the latency time taken to reach the
target box by the length of the track. The speed of searching for the
reward indicates the motivation of the animal. The rat was considered
to have left the starting box when all four limbs were out of the box,
and the rat was considered to have entered the target box when all
four limbs were within the target box. Once the rat entered the target
box and started eating, it was allowed to consume the palatable food
for 30 s before being removed. The following parameters were analyzed:
(1) latency time before leaving the start box, (2) number of pauses on the
track, (3) number of times the rat reversed direction away from the target
(this behavior involved turning around toward the start box and was
usually accompanied by sniffing), (4) latency before beginning intake of
the palatable food, and (5) time taken to complete the task.

2.34. Ventral striatum isolation

On the 120th day of life, the animals of both groups were sacrificed.
The mice were weighed before sacrifice and were beheaded after
sacrifice. After the beheading, a craniotomy was performed to remove

the brain; then the ventral striatum, which includes the nucleus accum-
bens in addition to the ventral portion of the striatum body, was isolated
and packaged in an Eppendorf® tube that was properly labelled. The
ventral striatum was frozen in solid carbon dioxide (dry ice) and kept
in a freezer at -80 ° C until the preparation of the samples for RT-PCR
analysis.

2.3.5. Total RNA extraction

The total RNA of the ventral striatum was extracted using 1 ml of
Trizol (Invitrogen®, Carlsbad CA USA) reagent according to the manu-
facturer’s instructions, and its concentration was determined from the
absorbance measure at 260 nm.

2.3.6. cDNA synthesis (RT-PCR)

cDNA synthesis was done using a QuantiTect® Reverse Transcrip-
tion (Qiagen®, Hilden, Alemanha) kit. To eliminate genomic DNA, a
reaction was prepared using 2 ul gDNAWipeout Buffer, 7x; RNA
samples; and the amount of RNase-free water necessary to reach a
final volume of 14 pl. The reverse transcription QuantiTect® reaction
mix was prepared using 1 pl Quantiscript Reverse Transcriptase; 4 pl
Quantiscript RT Buffer, 5 x; 1 ul RT Primer Mix; and 14 pl of the elimina-
tion reaction, which contains the sample RNA. Then, an aliquot of each
reverse transcription reaction, which contains a cDNA mix, was stored
at-20°.

2.3.7. PCR in real time

The PCR reaction was done using the SYBR® Green PCR Master Mix
(Qiagen®) Kit and was analyzed in real time through an automated
system of sequence detection called the Rotor-Gene® TM RG 3000
(Corbett Life Science, Australia) to determine the mRNA expression of
the samples. The total volume of the reaction was 25 pl and included
12.5 pl of the fluorescent compound SYBR Green PCR Master Mix
(Qiagen®), 2 1l of cDNA (used as a mold to the reaction), 2.5 pl of the
sense and antisense primers and 5.5 pl of RNase-free water. The
reactions were incubated at 95 °C for 5 minutes to activate the DNA
polymerase enzyme, followed by 40 cycles of 5 seconds at 95 °C for
denaturation and 10 seconds at 60 °C, extension and collection of the
fluorescent signal. The sequence of primers used for amplification
were as follows: R-actin - forward, 5’- ACG GTC AGG TCA TCA CTA
TCG-3' and reverse, 5’- CAG CAC TGT GTT GGC ATA GAG-3’; DRD1a -
forward, 5’ CTG GAG GAC ACC GAG GAT GAC-3’ and reverse, 5'- GTC
GAT GAG GGA CGA TGA AAT GG -3’; DRD2 - forward, 5'- CAA CAA
TAC AGG CAA ACC AGA ATG AG- 3’ and reverse, 5'- ACC AGC AGA
GTG ACG ATG AAG G-3'. The primers were synthetized and purified
by IDT - Integrated DNA Technologies (EUA). The relative expression
levels of mRNA of the dopamine DRD1a and DRD2 receptors in the ven-
tral striatum were calculated using the Ct (threshold cycle) comparative
method (Livak and Schmittgen, 2001), with 3-actin as a normalizing
gene.

2.4. Statistical analysis

Data were expressed as averages + standard error of the averages. To
show the difference in the food ingestion by the experimental groups, the
values were converted to calories relativized by the body weight of each
animal, and multiplied by 100 [(g consumed x cal)/animal’s weight x
100]. Furthermore, to compare the quantity of ingested food of the
control group and low protein group in response to dopamine D1 and
D2 agonists, data were expressed as percentages related to the food in-
gestion of the groups that received distilled water. To calculate significant
differences, the Student’s t test was used for food ingestion at 60 days of
life, intergroup ingestion under the D1 agonist effect and gene expression
of the DRD1a and DRD2 receptors. A two-way ANOVA, followed by a
Bonferroni post-test, was used for the other factors analyzed (body
weight and food ingestion in response to dopamine D1 and D2 agonists).
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The significance level was considered p < 0.05. All data were analyzed
using a GraphPad PRISM 5 version 7 (San Diego USA) program.

3. Results

3.1. Effect of perinatal malnutrition on body weight and palatable diet
ingestion

The body weight of low protein animals remained significantly
lower than the control animals from 30 to 120 days of life (Table 2)
(Fig. 1). The animals exposed to the hypoproteic diet during the gesta-
tion period and lactation ingested a greater quantity of palatable food
compared to the control group during the test period at 60 days of life
(Table 3). The data were converted into calories and relativized to the
body weight of each animal.

3.2. Anorexic action of dopamine D1 and D2 agonists

The application of D1 and D2 agonists reduced the consumption of
palatable food in both the control and malnourished group (Table 3).
When comparing the percentage of consumption of the animals treated
with saline, the D1 agonist inhibited 57% of the quantity of ingested food
in the control group, and the same amount of the drug inhibited only
27% of the ingested food in the low protein group (Fig. 2). The DRD2
receptor agonist inhibited 85% of the food intake in both the control
and malnourished groups (Fig. 2).

3.3. Runway task incentive test

3.3.1. Evaluation of the number of pauses and reverses in direction,
latency time to exit the initial box and latency time to react to the
intended box

The malnourished animals showed fewer pauses in Sections 5 and
10 when compared to the control group (Table 4). In sessions 5, 6, 7
and 9, the low protein animals showed a smaller number of reverses
in directions than the control group (Table 4). For the latency time to
exit the initial box and reach the intended box, no statistically
significant difference was found between the analyzed experimental
groups.

3.3.2. Evaluation of the latency time to consume the reward

In session 5, the pre-exposure phase, malnourished animals presented
a shorter latency time to eat the reward when compared to the control
group. In session 8, the learning period, the malnourished animals also
showed a shorter latency time to eat the reward compared to the
control group. During sessions 10 and 11, no statistically significant

Table 2
Evolution of body weight of the malnourished animals and controls from 30 to 120 days.
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Fig. 1. Average bodyweight of male mice pups born from females fed with a normoproteic
(casein 17%) or hypoproteic (casein 8%) diet during gestation and lactation. When
weaning, the pups were fed with a standard vivarium diet. The data are averages 4+ SEM
with n = 30 for control animals and n = 30 for malnourished animals. The analysis was
performed between 30 and 120 days of life. The differences in body weight between
control and malnourished animals are statistically significant with **P < 0.01 at 45 days
and ***P < 0.001 at all other analyzed ages (two-way ANOVA to repeated measures by
Bonferroni post-test). g = gram.

difference in latency time to consume the reward between the control
and malnourished animals was observed.

3.3.3. Speed

In the pre-exposure period, the speed of the control and malnour-
ished animals did not show any statistically significant difference.
During the phase of encouragement of learning (sessions 7, 8, and 9),
the malnourished animals showed a faster speed in all the analyzed
sessions compared with the control group (Table 4). The malnourished
animals maintained this difference after training, during sessions 10
(LPs10) and 11 (LPg;1), when compared with the control group (Table 4)
(Fig. 3).

3.3.4. The effect of dopamine D1 and D2 agonists on the performance during
sessions 10 and 11 of the runway task incentive test

In the motivational test, the application of dopamine D1 agonist
enhanced the speed of the control and malnourished animals during
sessions 10 and 11 when compared to the saline group (Table 5)
(Fig. 4A and B). On the other hand, in the motivational test, the applica-
tion of the dopamine D2 agonist slowed the speed of the control and
malnourished animals during sessions 10 and 11 when compared
with the saline group (Table 5) (Fig. 4A and B). When comparing control
animals and malnourished animals that received the same dose of D1
agonist, the malnourished animals showed a faster speed in both
sessions of the motivational test (Table 5) (Fig. 4A and B). No statistically
significant difference in speed was found between the control and
malnourished animals after the application of D2 agonists.

Variables 30 days (g) 45 days (g) 60 days (g) 75 days (g) 90 days (g) 105 days (g) 120 days (g)
Group control 104.81 193.72 289.17 327.42 363.57 382.00 417.47
+1.85 +2.48 +3.44 +4.82 +3.99 +5.23 +9.84
Group low protein 71.46 170.55 228.02 297.20 329.59 341.11 384.57
+0.58 +3.74 +5.30 +4.43 +5.22 +2.50 +3.97
P <0.001 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001
t 5.128 3.563 9.403 4.647 5.225 6.288 5.059
N 30 30 30 30 30 30 30
Source of Variation Df p value F
Interaction 6 0.0025 3.441
Animal group Factor 1 P <0.0001 220.8
Days Factor 6 P <0.0001 1160
6

Residual 40
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Table 3

Food intake of palatable diet of control and malnourished animals with and without pharmacological stimulation.

Variables 60 days (g) Saline stimulation 100 days (g) D1 agoist stimulation (g) D2 agoist stimulation (g)
Group control 26.80 203 8.8 3.0

+0.30 +0.65 +1.18 +0.45
Group low protein 40.70 289 211 4.8

+0.30 +1.13 +0.19 +045
p <0.0001 <0.001 <0.001 <0.001
N 10 10 10 10
ANOVA Table Df
Treatment (between Animal group) 2
Residual (within Animal group) 27
Total 29
F 115.3

3.4. Analysis of gene expression of DRD1a and DRD2 receptors in the ventral
striatum

The DRD1a and DRD2 gene amplification efficiency in relation to the
normalizer gene P-actin, was systemically analyzed using cDNA
samples from both the control and malnourished animals. A significant
difference (p < 0.05) (an increase of 46.5%) was found in the levels of
DRD1a gene expression in the malnourished animals (LP = 1.89 +
0.45) in a comparison to the control animals (C = 1.29 + 0.30). In
regards to DRD2 gene expression, the average level of expression in
the malnourished animals was LP = 1.29 + 0.30 and that in the control
animals was C = 1.07 + 0.22, showing a 20.5% increase in the malnour-
ished animals; however, this difference was not statistically significant.
The relative mRNA expression level of the DRD1a receptor was
increased in the ventral striatum of malnourished animals in relation
to the control animals.

4. Discussion

The deficit of specific nutrients at the beginning of life can affect
cognitive function in adult life. Experimental studies have highlighted
the role of nutrition on neurodevelopment and have shown that prema-
ture nutritional disorders can permanently affect the function and
structure of the brain (Pollitt et al., 1993). Studies suggest that nutrition-
al intervention in the early periods of life may be associated with
alterations in food behavior in adult life, particularly in regards to
components of food reward behaviors (Vickers et al., 2000; Padoin

35 A
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T %07 - mm Agonist D
_ # .
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©
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Fig. 2. Effects of D1 and D2 dopamine agonists over food intake of palatable diet in animals
subjected to perinatal malnutrition. The hypophagic effect of D1 and D2 agonists was de-
termined at 100 days of life. Ten animals for each analyzed experimental group were used,
which received acute dose of D1 (3 mg/kg), D2 (0,3 mg/kg) agonists or saline (1 ml/kg).
The data correspond to the amount of palatable diet consumed in 60 minutes of test,
consumed by the animals that received saline from the same group. 1way ANOVA was
used to compare intra-group followed by Bonferroni post-test. T Student test for inter-
group comparison # p < 0,05 and the values compared among animals that received the
same dose of D1 agonist. No statistically significant difference was found in speed between
control and low protein animals after D2 agonist application.

et al., 2001). This study shows that animals that were subjected to pro-
tein perinatal malnutrition showed a body weight reduction in relation
to control animals. These data are consistent with those of other studies
(Remmers et al., 2008; Orozco-Solis et al., 2009; da Silva et al., 2013).
The most frequent cause of body variation in weight in the early periods
of life is the maternal nutritional contribution during the gestation and
lactation periods (Page et al., 2009). In this research, the animals that
had a low weight as newborns presented a high consumption of palat-
able food in adult life. The data corroborate experimental studies done
with animals that were subjected to protein restriction during gestation
and lactation, which resulted in hyperphagia (Bellinger et al., 2004;
Desai et al.,, 2005) and a higher preference for food rich in sugar and
fat (Bellinger and Langley-Evans, 2005; Bellinger et al., 2006). Previous
literature describes that the consumption of food rich in sugar and fat
provokes neurochemical modifications in neurotransmitter systems,
such as the mesolimbic system, and this is related to food behavior
and reward (Bellinger et al., 2006). Studies have also shown that food
restriction increases reward value of palatable caloric food (Scheggi
et al., 2013).

Dopamine neurotransmission in the central nervous system (CNS) is
associated with hedonic responses, such as palatability and pleasure
when consuming food rich in energy (Erlanson-Albertsson, 2005). Sev-
eral studies investigated the effects of dopamine agonists and their
function on where the agonists to the D1 and D2 receptors, diminished
the food ingestion, though they report the anorexic effect of the agonists
of the D1 receptor (Kuo, 2002; Gambarana et al., 2003; Cooper et al.,
2006; Goto and Grace, 2008).

In the present study, the intense administration of D1 and D2
receptor agonists caused a reduction in palatable food consumption
regardless of the nutritional history of the evaluated animals. D1 recep-
tor agonists reduced the feeding ingestion by decreasing the number of
feeding episodes, while D2 agonists reduced the quantity of ingested
food (Timmerman et al., 1989). The effects of D1 and D2 agonists on
food ingestion were compared, and it was found that malnourished
animals were less responsive to the anorexic action of D1 agonists and
more motivated for palatable food consumption. These results are in
agreement with those of another study, in which the D1 receptor
agonist increased the preference of mice for highly palatable food
(Terry and Katz, 1992) proving that perinatal malnutrition reduces the
hypophagic action of the dopamine D1 receptor. However, the same
effect was not observed after application of the D2 receptor agonist.
Thus, D2 agonists seem to mitigate the preference for palatable food
as a consequence of dopamine neurotransmission inhibition in the
brain structures.

To better understand the neural circuits involved in feeding behavior
and the possible changes that come from perinatal malnutrition in addi-
tion to changes in food consumption, the present research highlights
the role of dopamine D1 and D2 receptors in different behavioral
aspects, such as motivation and learning. Some studies have shown
that perinatal malnutrition is linked to learning deficits in both mice
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Table 4
Effect of perinatal malnutrition on the parameters of the 4th motivation test in the 11th session.
Variables Group control ~ Group low protein  p t N
Number of pauses Sessao 4 0.70 + 0.150 0.56 + 0.180 >0.05 0.5996 10  Source of Variation Df p value F
Sessdo 5 1.90 4 0.100 1.00 4 0.000 <0.01** 3.854 10 Interaction 7 0.5197 0.8854
Sessdo 6 1.10 &+ 0.180 0.67 + 0.290 >0.05 1.841 10  Parameter Factor 1 p<0.0001 40.83
Sessdo 7 1.00 & 0.210 0.44 + 0.180 >0.05 2.398 10  Animal group Factor 7 p<0.0001 8.901
Sessdo 8 0.80 & 0.130 0.33 £ 0.170 >0.05 2.013 10 Residual 144
Sessdo 9 0.80 + 0.200 0.22 £+ 0.150 >0.05 2.484 10
Sessao 10 0.80 4 0.130 0.11 £ 0.110 <0.05* 2.955 10
Sessdo 11 0.56 & 0.170 0.11 £ 0.110 >0.05 1.927 10
Number of reversals direction in the ~ Sessdo 4 0.20 + 0.130 0.33 4+ 024 >0.05 0.4251 10 Source of Variation Df p value F
runway en route to the goal Sessao 5 1.00 + 0.000 0.11 £ 0.11 <0.05* 2910 10 Interaction 7 0.0024 3.362
Sessdo 6 1.20 4 0.200 022 +£0.15 <0.05* 3.204 10  Parameter Factor 1 p<0.0001 23.57
Sessdo 7 1.70 4 0.540 033 £0.17 <0.001 4479 10 Animal group 7 0.0005 4.024
Sessdo 8 0.60 + 0.160 0.56 + 0.18 >0.05""* 0.1308 10 Residual 144
Sessao 9 1.30 & 0.300 0.44 £+ 0.18 <0.05 2.812 10
Sessdo 10 0.30 4 0.210 0.22 £+ 0.15 >0.05 02616 10
Sessdao 11 0.22 + 0.140 0.11 £ 0.11 >0.05 0.3597 10
Latency to leave the start box (s) Sessdo 4 5.10 + 1.96 6.00 + 2.28 >0.05 0.1921 10 Source of Variation Df p value F
Sessdo 5 9.60 + 3.78 15.11 £ 433 >0.05 1.176 10 Interaction 7 02225 1.370
Sessdo 6 13.80 + 3.06 18.56 4+ 5.63 >0.05 1.016 10 Parameter Factor 1 0.2538 1313
Sessdo 7 12.80 £+ 2.17 13.56 + 4.44 >0.05 0.1622 10  Animal group 7 0.0011 3.690
Sessao 8 16.30 4 3.24 722 £092 >0.05 1.938 10 Residual 144
Sessdo9  17.50 + 3.81 10.00 + 2.05 >0.05 1.601 10
Sessao 10 17.80 4 3.99 11.44 £ 2.33 >0.05 1.358 10
Sessdo 11 16.33 & 3.06 13.56 + 2.69 >0.05 0.5913 10
Latency to begin eating Sessao4  87.20 4+ 0.90 108.11 + 29.40 >0.05 2.006 10  Source of Variation Df p value F
the reward once the mouse Sessdo 5 82.60 + 0.74 51.00 + 0.60 <0.05* 3.032 10 Interaction 7 0.0028 3.290
reached goal box (s) Sessdo 6  60.30 & 0.78 37.22 £+ 0.67 >0.05 2.215 10  Parameter Factor 1 0.0011 11.06
Sessdo 7 48.00 4+ 0.49 20.33 £ 0.49 >0.05 2.655 10  Animal group 7 p<0.0001 8.901
Sessdo 8  48.30 4 0.65 17.44 + 0.49 <0.05* 2.961 10 Residual 144
Sessao9  18.20 4+ 0.43 16.78 £ 0.52 >0.05 0.1363 10
Sessio 10 8.30 4 0.24 4.56 + 0.24 >0.05 03589 10
Sessao 11 5.00 + 0.17 444 4+ 0.25 >0.05 0.05373 10 Source of Variation Df p value F
Speed (cm/s) Sessao 4 5.01 + 0.22 4.54 +0.18 >0.05 0.9697 10 Interaction 7 p<0.0001 29.01
Sessao 5 6.95 + 0.23 5.85 + 0.27 >0.05 2.270 10  Parameter Factor 1 p<0.0001 191.8
Sessdo 6 7.13 £0.23 7.29 4+ 0.28 >0.05 0.3301 10  Animal group 7 p<0.0001 2119
Sessdo 7 8.03 £ 0.22 13.85 £ 0.39 <0.001** 12.01 10 Residual 256
Sessao 8 8.23 £ 0.26 13.95 £ 0.23 <0.001***  11.80 10
Sessdo 9 11.58 4+ 0.29 15.71 £ 0.30 <0.001***  8.521 10
Sessdo 10 12.66 + 0.28 16.83 £ 0.30 <0.001***  6.867 10
Sessao 11 12.87 +0.27 14.73 £ 0.30 <0.05* 3.063 10

and humans (Wang and Xu, 2007; Ranade et al., 2008). Nutritional
insult in early life is harmful to hippocampus formation, and the hippo-
campus contains neurons that perform an essential role in learning and
memory processes (Morgane et al., 2002; Matos et al.,, 2011) and
motivational processes, particularly those related to food and feeding
behavior control (Tracy et al.,, 2001).

The protocol used in this study allowed for the verification of animal
motivation for the reward stimulus (Pecina et al., 2003; da Silva et al.,
2013). Perinatal malnutrition did not show any effect on latency time
for exiting the initial box or for the time to reach the intended box; nev-
ertheless, it induced a longer time to start reward consumption during
the adaptation sessions. This may indicate a learning deficit caused by
malnutrition. Even so, when there was repeated activity by training,
the deficit was minimized, as was noticed during the pre-exposure
period (session 5) and the phase of learning incentive (session 8),
where perinatal malnutrition contributed to a shorter latency time to
consume the reward. This reduction in latency time to consume the
reward in malnourished mice was also noticed by da Silva et al. (2013).
Underweight newborns that showed a slight loss of cognitive capacity re-
covered from this deficit over time (Richards et al., 2001; Kar et al., 2008).

These results show that although malnutrition provokes changes in
the nervous system, these changes can be reversed during life. On the
other hand, this study presents data that opposes the results of related
studies in the literature (Landon et al., 2007); those studies observed
losses in the adaption capacities to reinforcement tasks for mice with
a history of feeding restriction. These conflicting data might be
explained by the type of malnutrition imposed in the experiments; for

example, in studies by Landon et al. (2007), an energetic value restric-
tion was performed, while in the current study, protein malnutrition
was performed.

Another important observation of this experiment was that perinatal
malnutrition increases motivational behavior for a food reward. When
evaluating the time to complete the task, in other words, the time to
roam the path and react to the reward, the malnourished animals had a
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Fig. 3. Perinatal malnutrition effect on speed in the motivational test performed at 70 to
92 days of life in animals born from females fed with a normoproteic (casein 17%) or
hypoproteic (casein 8%) diet during the gestation and lactation periods. The data are
averages 4+ SEM. Two-way ANOVA to repeated measures by Bonferroni post-test. ***
P <0.0001, * P < 0.05.
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Table 5
Effects of D1 and D2 dopamine agonists over speed during the sessions 10 and 11 of Runway Incentive Task Test.
Variables Control D1 Low protein D1 p t N
Speed Session 10 17.93 £ 0.22 19.01 £ 0.23 <0.01** 3.322 10
(cm/s) Session 11 14.73 £ 0.23 18.65 + 0.25 <0.001*** 5.167 10
Control D2 Low protein D2 p t N
Session 10 5.00 + 0.16 6.47 £ 0.11 >0.05 2.092 10
Session 11 5.00 + 0.17 5414+ 0.14 >0.05 1.569 10
D1 D2
Source of Variation Df p value F Source of Variation Df p value F
Interaction 7 P <0.0001 63.91 Interaction 7 0.0276 2.339
Parameter Factor 1 P <0.0001 47.18 Parameter Factor 1 0.1235 2401
Animal group Factor 7 P <0.0001 592.7 Animal group Factor 7 P <0.0001 15.05
Residual 136 Residual 136

higher speed from the learning incentive phase (session 7) through the
last performed session compared to the normonourished animals. The
malnourished animals also showed a smaller number of pauses and
reverses in direction, suggesting less distraction. These results are similar
to those described by da Silva et al. (2013), who also performed motiva-
tional tests with malnourished animals.

When analyzing the motivation associated with dopamine agonist
treatment, it was observed that the application of a D1 receptor agonist
in the last sessions of the test resulted in a faster speed in the motiva-
tional test. Nevertheless, the effect of perinatal malnutrition potentiated
the effect of the D1 agonist, exacerbating the speed and the motivation
to acquire the reward. Some authors suggest that the dopamine D1 re-
ceptor contributes to appetitive motivation, performing an important
role in the increase of incentive to acquire natural rewards, such as
palatable food (Robinson et al., 2005; Wang and Xu, 2007; Volkow
et al., 2008; Vucetic and Reyes, 2010). The function of the D1 receptor
linked to the motivational aspect of feeding behavior seems to mediate
neurons located, among other areas, in the nucleus accumbens, ventral
pallidum, ventral tegmental area, prefrontal cortex, hippocampus and
tonsils amigdala (Beaulieu and Gainetdinov, 2011). These regions
form the food reward system (Patel and Srinivasan, 2010), which is
predominantly located in the mesocortical and mesolimbic pathways
and are particularly stimulated by the ingestion of food rich in fat and
carbohydrates (Erlanson-Albertsson, 2005).

Studies on the effect of malnutrition on dopamine receptors are
scarce. However, high levels of brain dopamine in malnourished
animals (Cooper et al., 2006) as well as changes in the sensitivity of
the dopamine agonist receptors due to food restriction have been
reported (Baladi and France, 2010). Therefore, in malnourished animals,
a reduction in the sensitivity of the dopamine D1 receptor may occur.

The results of the present study show that the relative expression of
the mRNA levels of the DRD1a receptor increased in the nucleus
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accumbens and striatum in malnourished animals when compared to
controls. There were no significant changes in the mRNA levels of the
DRD2 receptor. Available evidence has shown that dopamine D1-like
receptors are important in reward-related learning, including instru-
mental learning (Ranaldi and Beninger, 1995; Sutton and Beninger,
1999; Trevitt et al., 2001) and translation of motivation into action
(Fibiger, 1993). Systemic and intra-accumbal infusions of dopamine
D1-like receptor antagonists have been shown to attenuate food-
reinforced lever pressing and to blunt the rewarding effects of palatable
food (Beninger et al., 1987; McDougall et al., 1991; Cousins et al., 1994;
Hodge et al.,, 1996; Aberman et al., 1998; Koch et al., 2000). D1 mutant
mice have bene shown to take longer to learn to discriminate between
two levers and had significantly lower operant responding to sucrose
pellets and sucrose solution than wild-type and heterozygous mice
under all schedules of reinforcement (EI-Ghundi et al., 2003). This
may indicate a deficit in reward-related learning. Indeed, the dopamine
D1 receptor has been shown to play a role in incentive learning
(Beninger, 1983) and may be important at the initial stage of instru-
mental learning, when reward stimuli are novel and unpredictable
(Schultz, 1998).

Alsio et al., 2010 suggested a reduction in the expression of D1 dopa-
mine receptors in the nucleus accumbens in rats exposed to a chronic
palatable diet, and they concluded that exposure to HFHS diets has last-
ing consequences for the NAcc dopamine system, perhaps modifying
the motivation to search for food reward. Some studies have shown
that sugary food ingestion is associated with an increase in dopamine
release in the nucleus accumbens (Carr et al.,, 2001; Hajnal et al.,
2004). The consumption of palatable food induces the activation of the
reward system (Spiller et al., 2008). It has been observed that mice
exposed to sugary food show a greater dopamine response indicated by
increased dopamine in the nucleus accumbens in the medial prefrontal
cortex (Cooper et al.,, 1990).
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Fig. 4. A-B. Effects of D1 and D2 dopamine agonists over motivation in control and malnourished animals during Runway Task Incentive Test. The test was performed from 70 to 92 days of
life. (A) Speed- Control and malnourished animals, during the 10th session after application of dopamine D1 (3 mg/kg, n = 10), D2 (0,3 mg/kg, n = 10) agonists and saline (1 ml/kg, n =
10). (B) Speed- Control and malnourished animals, during 11th session after application of dopamine D1 (3 mg/kg, n = 10), D2 (0,3 mg/kg, n = 10) agonists and saline (1 ml/kg, n = 10).
The data are averages 4+ SEM.. Two-way ANOVA to repeated measures by Bonferroni post-test was used to compare intra-group. T Student test to intergroup comparison ***P < 0,001 and
the values compared between animals that received the same acute dose of D1 agonist. No statistically significant difference in speed was found between control and malnourished

animals after D2 agonist application.
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Manuel-Apolinar et al. (2014) demonstrated that animals subjected
to nutritional restriction during the prenatal period presented, after
90 days of life, with hyperphagia, and they attributed this result to an
increase in the expression of D1 receptors in the arcuate nucleus of
the hypothalamus, a region that is directly linked to energy metabolism.
Food restriction is associated with a raise in the reward value of abusive
drugs (Cabeza de Vaca and Carr, 1998) and palatable food (Scheggi
et al., 2013). This is most likely through the improvement of the
functional activity of dopamine receptors (Carr et al., 2001) induced
by changing dopamine receptor numbers or affinity, or through
transduction mechanisms that might be responsible for these changes
in manipulated and non-manipulated animals (Silveira et al., 2010).
Nevertheless, the exact mechanisms by which the nucleus accumbens
develops these functions are not completely understood (Valdomero
et al., 2007). More studies are needed to assess and provide solid
foundations on the role of dopamine receptors in the motivational
aspects of food reward in organisms nutritionally programmed during
the perinatal period.

5. Conclusions

Perinatal protein malnutrition stimulates hedonic control of eating
behavior by promoting increased intake of palatable foods, possibly
due to increased expression of dopamine receptor DRD1a in the ventral
striatum.
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