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Review of Hydrodynamic Principles for the Cardiologist: Applications
to the Study of Blood Flow and Jeis by Imaging Techniques
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An understanding of the basic concepts of the physics of
blood fiow is of vital importance to the cardiologist as he or
she attempts to utilize new bleod flow imaging modalities,
such as Doppler ultrasound and neclear magnetic reso-
nance imaging. Concepts such as the Bernoulli equation
and its limitations, the continuity equation and volume flow
calculations and the theory of Iree and confined jets have
applications in cardiac blood How-related problems. For
example, mitral regurgitant flow may be treated with the
free jet theory. Aortic stenosis results in confined jet flow.

It is important that the cardiologist understand the basic
principles behind these hydrodynamic concepts so that he
or she can use them in appropriate applications. The
limitations of the simplification of complex hydrodynamic
relations that are used clinically need to be clearly
understood so that these simplified principles are not
used improperly or used to draw oversimplified conclu-
sions.

(J Am Coll Cardiol 1988;12:1344-53)

Blood flow within the human circulatory system must obey
the principles of conservation of mass, momentum and
energy (I-3). The principle of conservation of mass as
applied to any given region of flow states that whatever mass
flows in must flow out. The principle of conservation of mass
is used to derive the continuity equation. Similarly, the
principle of conservation of energy states that in the absence
of applied forces, the total energy of a system is constant
(i.c.. total energy flowing into the system is equal to the total
energy flowing out). The principle of conservation of energy
is used to derive the Bernoulli equation. The principle of
conservation of momentum transiates into Newton's second
law, which states that the rate of change of momentum of a
body (or fluid element) is equal to the forces acting on that
body. From the principle of conservation of momentum are
derived the fundamental working equations fr solving hy-
drodynamic problems. These equations are called the Na-
vier-Stokes equations (1).

A majority of the hydrodynamics problems that have
been studied by engineers are steady flow problems. In the
heart we deal with unsteady or pulsatile flow conditions.
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However, some of the concepts used in steady fluid flow
problems are useful in understanding the physics of blood
flow and therefore will be discussed in this article. In
addition, the following concepts will be discussed: 1) the
Bernoulli equation, 2) the continuity equation and volume
flow. and 3) the basic principles of je:s.

Steady Flow Concepts

Flow through a cylindrical (that is, circular) tube or vessel
may be characterized as laminar, transitional or turbulent.
The character of the flow is a result of the various forces
acting on the fluid. Fluid particles in steady flow through a
cylindrical tube experience two primary forces that charac-
terize the flow field. namely, inertial and viscous forces.

The concept of dynamic similarity. This concept is uti-
lized 1o characterize the flow in a generalized manner. If we
have two flow geometries that are of different sizes but have
the same shape (that is, two blood vessels that are circular
but of different diameters), when do we expect the flow fields
to be identical? The flow fields will be identical when the
forces acting on volume eclements of fluid at poims of
identical position have the same ratio. Therefore, for steady
flow in two circular tubes, we would expect identical flow
fields when the ratio of inertial to viscous forces in both
tubes is the same. The ratio of these two forces is a
dimensionless number that is known universally as the
Reynolds number (Re). 1t is defined as
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Figure 1. Laminar and turbulent flow. A. Developing velocity
profiles in a cylindrical tube. At line F-D the velocity profile has a
parabolic shape. B, The relative Ratness of a turbulent velocity
profile as compared with a laminar velocity profile.

_ Inertial forces _ pVd
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where p = fluid density; V = cross-sectionally averaged fluid
velocity (that is, volumetric flow rate/tube cross-sectional
area); d = tube diameter; and p = fuid viscosity. A large
Reynolds number indicates that inertial effects are dominant,
whereas a small number indicates that viscous effects are
dominant. Therefore, the Reynolds number is used to char-
acterize a flow field as laminar, transitional or turbulent.

Laminar flow. Typically, if the Reynolds number is
<1,200, the flow is characterized as laminar. Consider fluid
entering a long tube from a relatively large reservoir (Fig.
1a). At the entrance of the tube, the velocity profile is flat.
Now, as we move away (that is, distal) from the inlet, the
velocity profile begins to have curvature near the wall and
has a magnitude of zero at the wall (that is. the no slip
condition). The profile in the center remains flat. As the fluid
passes line F-D, the profile has assumed a parabolic shape.
The section of tube before line F-D is called the entrance
length or flow development region. The section of tube past
line F-D is called the fully developed flow region.

In the laminar flow region (Reynolds number <1,200). the
fluid moves in what may be thought of as concentric cylin-
drical shells. Radial and tangential velocities are negligible
so fluid particles remain in the same radial position as they
move through the tube. The fluid enters the tube with a
volume flow rate Q and its development is governed by two
basic constraints: 1) because the tube is of constant cross
section (i.e., constant diameter), the average velocity at any
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position along the tube is constant by continuity: and 2) the
finid particles adjacent to the wall are motionless with
respect to the wall. As a result of these constraints, the
profile shown in Figure | develops. The motionless "shell™
of fluid adjucent to the wall retards the motion of the next
shell through shearing forces. These forces act in the direc-
tion opposite to the direction of flow and on the surface area
of the shell. Because the motion of the second shell is
retarded, that of the next shell is retarded. and so on.
However, because of the continuity constraint, the Aluid near
the center i, accelerated to maintain the same average
velocity as that at the entrance. This simultancous retarda-
tion and acceleration centinues until the profile becomes
parabolic at line F-D.

The variable velocity region that gradualiy consumes the
Huat profile is called the boundary laver. Tt is a direct
consequence of viscour forces. If viscous forces did not
exist, the profile would remain flat and proceed aiong from
the entrance with its original inertia (that is. inertial force)
and none of the fluid elements would be retarded. We should
then expect to be able to characterize the entrance length by
the Reynolds number (Re). Indeed, the entrance length X for
laminar flow in a straight tube is given by (3): X = 0.03d(Re).
As expected. for low Reynolds numbers we have higher
viscous forces and so the boundary layer consumes the flat
profile more rapidly (i.e.. shoder entrance length). The
parabolic profile in the fully developed region for laminar
How can be expressed as follows (Fig. 1b):

Y_on-L

A R?
where V, = centerline velocity: V = velocity at a radial
location. r: and R = radius of tube or vessel.

For fully developed steady laminar flow in a circular tube,
the volumetric flow rate through the tube is related to the
pressure drop (Ap) measured over a length L by the expres-
sion {1):

LY
L md?
where Q = volumetric flow rate: p = fluid viscosity: and d =
tube diameter. This expression is known as the Haagen-
Poisenille equation,

One final note on laminar flow concerns the shear stress
on the fluid particles. The shear stress is an important
variable for blood flow-related problems, because excessive
shear stress can cause sublethal or lethal damage, or both, te
blood cells and endothelial cells. For laminar flow, the shear
stress ¢ 7) is given by Newton's law of viscosity:

T i dr>
Fluids that obey this law are called Newtonian. The fact that
steeper velocity gradients correspond to higher shear stress
will be:ome especially important in turbulent flow consider-
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ations. Note that the shear stress (7) on the tube wall can be
calculated by the following equation:

Apd
7(at the wall) = J-—.

The above expression for the wall shear stress is also valid
for steady turbulent flow in a circular tube.

Transitional flow. Between Reynolds numbers of 1,200
and 2,300, transitional flow occurs. An ink stream injected
into the flow would begin to show oscillations. Radial and
possibly tangential velocities would begin 1o show definite
magnitudes in the transitional regime and the flow cannot be
considerad purely laminar or turbulent.

Turbuient flow. Above Reynolds numbers of 2,300. the
fiow is characterized as turbulent. Turbulence is essentially
characterized by randomly fluctuating velocity and pressure
at a position. Instead of all transport being on the molecular
or particle level, “*packets" of fluid called eddies randomly
move about the tube. A stream of ink injected into turbulent
flow in a tube would be rapidly dissipated from the centerline
to the wall. However, even with this random motion, there is
a well defined average velocity profile in the tube,

Instantaneous velocity (V) at a point is given by the
time-averaged velocity (V) plus the fluctuating velocity at
that instant (V')

V=V+v,

The root mean square magnitude of the fluctuating velocity
(V) is directly proportional to the level of turbulence at a
given spatial location in the flow field (1):

Vims = VV7Z,

Turbulence intensity (1) is defined as:

\J
L= =22 % 100%.
v

Two spatial locations having the same magnitude of mean
velocity (V) may nave very different levels of turhulence
(that is, different magnitudes of V,,,,.}. The turbulent fluctu-
ations result in additional physical forces known as turbulent
or Reynolds shear stresses. Elevated levels of turbulent
shear stresses (>50 N/m®) can cause sublethal or lethal
damage, or botl, to the formed elements of blood (that is,
red cells and platelets).

The velocity profile for fully developed turbulent flove in a
circular tube can be expressed by the following empirical
expression (Fig. 1b):

Y-t
"
where the velocities are time-averaged values (1). The flatter
central profile results in steeper profiles (that is. velocity
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Figure 2. The effect of acceleration and deceleration on flow stability
and development of turbuience: velocity (v) versus time (t).

gradients) near the wall and therefore higher shear stresses
in the boundary layer.

Because of the lateral interactions, the turbulent bound-
ary layer develops more quickly than the laminar boundary
layer. Therefore, the entrance length is shorter. It may be
represented by the expression (3): X = 0.693d Re'™.

The Reynolds number ranges given previously are guide-
lines. With obstructions or other disturbances such as vibra-
tions, the turbulent phenomena begin 10 occur at lower
Reynolds numbers. For very smooth tubes or exceptionally
low levels of disturbance, the turbulent phenomena do not
begin urti! higher Reynolds numbers.

Unsteady Flow Concepts

Steady flow analyses can be useful in certain cases,
especially at the peak flow phase in the cardiac cycle, where
pseudo-steady state flow conditions may be assumed. How-
ever, such analyses neglect the effects of pulsatility on the
meastured quantities such as velocity and pressure and these
effects can change the flow field significantly.

Role of acceleration and deceleration in turbulent flow. The
presence of acceleration and deceleration in a flow field is
particularly important with regard to the development of
turbulence. It has been shown, for example, that accelera-
tion exerts a stabilizing effect on a flow field. In contrast,
deceleration is destabilizing. Consider the velocity trace in
Figure 2. The velocity at a position is plotted as a function of
time during a pulsatile flow cycle. As the velocity ascends to
its peak value, the curve is smooth; i.e.. there are negligible
fluctuations. As the velocity descends, turbulent fluctuations
are observed. Because turbulence was observed during
deceleration, that means that the fluid was above a critical
(turbulent) Reynolds number as it neared its peak in accel-
eration, yet it remained relatively smooth. Over consecutive
cardiac cycles, acceleration can cause relaminarization of
turbulence left over from the previous cycle.

Role of pulse frequency in turbulence. The frequency of
the pulses in unsteady flow is also important 1o the develop-
ment of turbulence. A time is required for turbulence to
develop. It is possible in some cases of pulsatile flow that
there may not be enough time for turbulence to occur even
with the deceleration period. The Aow reaccelerates and is
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Figure 3. Flow velocity increase through a stenotic valve. The
increase in Kkinetic energy between points | and 2 results in a
decrease in potential energy (i.e.. pressure drop) between the two
locations and can be expressed by the Bernoulli equation.

stabilized before the turbulence invited by the deceleration
develops. Therefore, the critical Reynolds number for lami-
nar to turbulent transition in pulsatile flow depends on the
rate of change of the velocitv field. Quantitative studies of
the laminar to turbulent transition in pulsatile flow express
the critical Reynolds number as a function of the frequency
variable called the Womersley number (N,,). The Womers-
ley number is dimensionless and is defined as:

_1\@
Nw~2 Mk

where w = circular frequency of heartbeat; d = tube or
vessel diameter; p = density of fluid; and p = viscosity of
fluid. The Womersley number may be regarded as an *"un-
steady Reynolds number™ in that it describes the relative
importance of inertial to viscous forces.

For example, the Womersiey number in the ascending
aorta of humans (d = 2.54 cm) at a rest heart rate (60 beals/
min) is about 17.5. In an in vivo dog study by Nerem and
Seed (4), it was shown that as the Womersley number
increased, the peak systolic Reynolds number required to
cause the flow field to become turbulent also increased.
Under rest cardiac output conditions in a normal healthy
human, turbulence is not observed. From the study of
Nerem and Seed, it may be extrapolated that a peak systolic
Reynolds number on the order of 8,000 would be required to
cause turbulence in the ascending aorta of humans,

Rotle of different locations in turbulent flow. Furthermore,
turbulence can also be found at different locations in a
pulsatile flow field. In a separation region, for example, the
flow may become turbulent because of deceleration whereas
the main flow remains laminar. Relaminarization can then
occur during forward flow in the region. Turbulence may
occur at different times during a cardiac cycle and at
different places at one instant in time. with heart rate
affecting both of these variables. This is a clear illustration
of the complexities of the human system and the difficul-
ties involved in applying our idealized principles of steady
flow.
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Bernoulli Equation

On the basis of the principie of conservation of energy.
the Bernoulli equation may be derived. For pulsatile flow in
the cardiovascular system (Fig. 3). the pressure difference
between two locations | and 2 along a streamline may be
expressed by the Bernoulli equation (2.5):

N
P-P= I/Z-p(VS—V])-i-pJ RO m
1

where P; = pressure at proximal location 1; P, = pressure at
distal location 2; V, = velocity at proximal location 1; V, =
velocity at distal location 2; p = density of fluid:

W
—-ds
A

= flow acceleration between locations | and 2; R{v) =
viscous friction loss between locations 1 and 2; and 12+ p
{V3 — V7) = convective acceleration.

Estimation of pressures and pressure gradiemt. When ap-
plving the Bernoulli equation 1o clinical situations, the
following simplifications are commonly utilized: 1) At peak
systole or peak diastole the acceleration term on the right-
hand side is zero. 2) For most flow conditions encountered in
the heart and great vessels, the viscous term can be ne-
glected. Therefore,

(P, = Padpee = 12+ p V3 = V] e 121
If P, and P, are expressed in millimeters of mercury, V, and

V, in meters per second and a bloed density of 1.07 gicm’ is
assumed, equation 2 becomes:

(P, = Polpy = 4 (V= Vo Bl

If the peak distal velocity is much larger than the peak
proximal velocity (that is: V,, peak > > V|, ....) then

(P = Padpeus, = APpear, = 4 V3L peake [41
where AP, is the peak systolic or diastolic pressure
gradient. Similarly, when equation ! is integrated over the
duration of systole or diastole, the second and third terms on
the right-hand side (of equation 1) become negligible (2,5).

Therefore, the mean systolic or diastolic pressure gradi-
ent may be expressed as
(B, -P)=aP=4(Vi- Vi, 151

Once again, if V2 >> VI, then

AP=4Vi, 6
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where AP is the mean systolic or diastolic pressure gradient.
Please note that VZ # (V,? and V2 # (V,). VZ is called the
square of the root mean square velocity (V). Equations 4
and 6 are commonly referred to as the simplified Bernoulii
equation.

What are viscous losses and why do they occur? Viscous
loss is the dissipation of flow energy due to the viscosity of
the flowing fluid. If a fluid had no viscosity (an idealized
situation) there would be no viscous losses. Viscous losses

solid boundaries, such as vessel walls; and 2) in regions of
flow separation and in wakes behind obstacles.

For flow through a circular tube or nozzle type of
obstruction (that is, valvular stenosis), viscous effects occur
in a boundary layer adjacent to the tube or nozzle wall and
decrease as you approach the center of the flow field. As
flow through the tube or nozzle decreases or as the viscosity
of the fluid increases, the size of the viscous boundary layer
region increases.

As discussed previously, the larger the Reynolds number,
the smaller the viscous effects (i.e., the smaller the viscous
boundary layer region). For most flow conditions encoun-
tered in the heart and great vessels (except the coronary
arteries) the viscous effects are much smaller than the
inertial forces and therefore can be neglected.

When does the simplified Bernoulli equation ‘‘not work?
(i, APy, = 4V3, o). 1) When the proximal velocity is
of the same order of magnitude as the distal velocity (1-3).
Examples are: a) aortic regurgitation in combination with
aortic stenosis; and b) prosthetic heart valves. Note, thata 1
t0 2 m/s proximal velocity leads to a 4 to 16 mm Hg decrease
in pressure gradient. In such cases use equation 3, that is,
the Bernoulli equation.

2) Improper location of the catheter to measure distal
pressure. The maximal pressure drop across an orifice or
nozzle-like obstruction occurs at a location immediately
downstream of the obstruction called the vena contracta. If
the distal pressure is not measured within the vena con-
tracta, the measured gradient will be lower than the true
maximal gradient. You may then be led to *‘believe” that the
Doppler technique (that is, the simplified Bernoulli equation)
is “‘overestimating” the gradient. Note that this underesti-
mation is possible proximal to the vena contracta, before
maxima! velocity is reached, or distal to the vena contracta
as a result of pressure recovery effects (see confined jet
section).

3) Stenoses in series such as: a) long coarctations; b)
tunnel-like muscular ventricular septal defects.

In all of the preceding situations (i.e., items 1, 2 and 3),
the measured maximal pressure gradient (by catheter) will be
lower than the true maximal gradient occurring in the flow
field, if the catheter is not located in the vena contracta (6).
In such clinical situations it may not be practical for the
cliiician to place the catheter in the vena contracta.
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Figure 4. Tontinuity of fluid flow through an expansion. As the
cross-sectional area (A} increases, the spatially averaged velocity
(V) decreases, maintaining a constant volume flow (Q).

In the case of resistances in series, the pressure drops are
not additive. This is due to the phenomena of pressure
recovery and relaminarization of the flow field downstream
of the vena contracta (6). In most cases, the highest gradient
will occur immediately downstream of the most restrictive
(i.e., most severe) stenosis.

4) True inapplicability of equations 3 and 4 occurs when
viscous forces become significant (1-3). Under these circum-
stances, Doppler ultrasound (that is, the simplified Bernoulli
equation) will underestimate the true gradient: for example,
in long (>10 mm), narrow (<0.10 cm?) tunnel-fike obstruc-
tions at very low flow rates {peak Reynolds number <500)
(see confined jet section). Stenoses in coronary vessels
would fall into this category. The Haagen-Poiseuille equa-
tion could be used in such a case (i.e., the case of coronary
artery stenosis) to obtain a first order estimate of the
pressure drop due to viscous effzcts, which occurs in addi-
tion to that due to convective acceleration.

Continuity Equation and Volume Flow

Continvity equation to estimate stenosis area. As stated
previously, the continuity equation is derived from the
principle of mass conservation. For steady flow through the
geometry shown in Figure 4, the continuity equation states
that (1):

Plel = Pvz Ay,

where V, and V, are the cross-sectionally averaged veloci-
ties at locations 1 and 2. If the flow is pulsatile, then at any
instant in time t;

p V0 A, = p V) A,

where V(1) and V(1) are the cross-scctionally averaged
velocities at locations 1 and 2, at time instant t. Therefore,
A_V
AT
This equation can be used in principle to estimate the area
of a stenotic lesion, if the velocity field and flow geometry
proximal to the lesion and the velocity field distal to the
lesion are known. It should be noted that the distal velocity
profile can not be assumed to be flat.
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Volume flow rate and flow velocity. Now let us consider
the basic fundamentals of volume flow. For flow through a
circular pipe under steady flow conditions:

Volume flow rate = Q = VA, m

where, V = spatially (i.e., cross-sectionally) averaged ve-
locity in the pipe, and A = cross-sectional area of pipe. If the
velocity of the fluid within the pipe can vary with time. then
the total volume flow during time T (for example one cardiac
cycle) is equal to:

Qm=J Qudt=A J T o
T T

where Q(1) and V(t} are the volume flow rate and the
spatially averaged velocity in the pipe at any instant in time
t respectively. For a circular tube, we can write:

Q(T)=[

R
J 2w Vi, )drdt ]
T

o

Note that Q(T) is a cumulative number, it is the total volume
flow over the time period T. Note that the velocity is
dependent on two variables, V(r.t), position and time. By
integrating over position and time it is possible to obtain the
total volume, Q(T).

To make use of equation 9, one must know or assume the
velocity profile. If the velocity profile is radially symmetric,
as shown in Figure 1b, then the velocity V(r,t) may be
expressed as:

Vi) = Vo [ - g, 110}

where n is an integer and V(1) is the maximal velocity at
time t. For a parabolic velocity profile, n = 2. The larger the
value of n, the flatter the velocity profile. Also for a parabolic
profile (i.e..n = 2), V = 0.5 V. whereas forn = 4.5 (i.e.,
turbulent or flat velocity profile, or both,

V=07V,

Equation 10 clearly indicates that the spatial extent of
flow by itself does not necessarily reflect the quantitative
amount of forward or regurgitant volume. It is essential to
know the spatial distribution of the flow field within the
“flow area’ of interest as a function of time in the cardiac
cycle.

If the flow field is three-dimensional in nature, as is the
case in many regurgitant and stenotic lesions. obtaining the
spatial extent of flow in a single plane may be inadequate for
accurate volume flow calculations. Three orthogonal planes
would be required under those circumstances.

The analysis of flow velocity profiles in various physio-
logic locations is the object of much: current research.
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Figure 5. Schematic diagram of a laminar free jet (sce text).

Accurate knowledge of velocity profiles allows potentia
clinical application of equation 9. For example, proximal to
the aortic valve in the outflow tract the velocity profile is
relatively flat. This leaves the velocity term in equation 9 as
a function of time only. We could therefore integrate the
maximal Doppler velocity curve in accordance with equation
9 and obtain the cardiac output.

Basic Principles of Jets

Free Jets

A free jet is defined as a jet issuing into a relatively
stagnant environment where the cross-sectional area of the
jet is less than one-fifth of the cross-sectional area of the
region or chamber into which it is flowing, and it develops
free from influence of external or chamber boundaries (i.e.,
no wall effects) (7,8). Free jets have been studied extensively
in traditional fluid mechanics. Their analysis is also useful
from the standpoint of cardiovascular hemodynamics be-
cause, for example, a regurgitant jet issuing into the left or
right atrium from an incompetent mitrat or tricuspid valve
may be considered in many cases as a free jet. Now that
Doppler flow mapping has allowed us to display jets within
the heart, analysis of the fundamental fluid mechanics is
important in relating jet volume to regurgitant volume in
assessing the severily of the regurgitant lesion.

Features of free jet: momentum and dynamic similarity. A
key feature of a free jet important in its analysis is that axial
momentum is conserved. Consider the schematic of a free jet
in Figure 5. As the jet moves distally from its origin it
diffuses radially. The average velocity across an axial posi-
tion becomes smaller but, simultaneously, mass is entrained
from the surrounding reservoir because of viscous effects or
turbulent mixing, or both. The product of these two varia-
bles—mass and velocity—is the momentum. The property of
constant axial momentum for free jets is a consequence of
the constant pressure throughout the large receiving reser-
voir (9).

A second feature of free jets is the phenomenon of
dvnamic similarity. Consider the plots of velocity profiles at
various axial positions in Figure 6a that show axial velocity
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Figure 6. Phenomenon of dynamic similarity of free jets. A, Devel-
oping jet velocity profile. Free jet velocity profiles spread and
decrease in magnitude at the centerline distal to the orifice. B,

Nondimensional velocity profile. Normalized velecity profile using
dynamic similarity. See text.

versus radial position. Now, let us take away from each
profile its dimension as follows: First, divide each value of
2.al velocity by the centerline velocity at that axial position.
Second, divide each radial position by the radial position at
which the velocity is one-half of the centerfine velocity (this
radial position is commonly called the half-width). If this is
done for each axial profile, all resulting profiles are as shown
in Figure 6b. That is, all the normalized profiles collapse
onto a single curve, This property allows us to develop
useful dimensionless relations for flow or velocity, such as
equations 11 and 12 to follow.

These two features of free jels are typically combined
with reduced forms of the Navier-Stokes equations to yield a
solution for the flow field in a jet. For turbulent jets, an
empiric model is also required for the turbulent shear stress.
Theoretical solutions for both laminar and turbulent free jets
can be found in the engineering studies (8-11).

Jet Revnolds number (Jet Re) is defined as (7):

.
where V,, = orifice jet velocity: d, = orifice diameter; p =
fluid density; and p = fluid viscosity.

Laminar free jet. A laminar free jet is defined as one with
a Reynolds number <2,000 but >300. A jet with a Reynolds
number <300 exists as a dissipative creeping flow (12). A

JetRe =
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Figure 7. Schematic diagram of a turbulent free jet. To the left of line
T-T is the conical potential core region. To the right of line T-T is
the fully developed region.

turbulent free jet is one with a Reynolds number >3.000.
Some references give 2,000 as the lower limit for turbulent
jets (7). The range between 2,000 and 3,000, however, is
usually thought of as a transition region. Figure 5 shows a
laminar free jet. As the jet travels distal to the orifice, it
diffuses radially and entrains surrounding fluid. The center-
line velocity decreases and the velocity profiles spread out.

Turbulent free jet (Fig. 7). The physical structure of the
turbulent jet is different from that of a laminar jet. The
turbulent jet may be divided into two regions: the flow
development region and the fully developed region. The two
regions are divided by the line T-T in Figure 7. Consider a
flat profile with velocity V, at the orifice surface. As this
core moves away from the orifice, it is consumed by the
turbulent shear layer. The core eventually disappears at the
beginning of the fully developed region. This conical volume
of fluid with velocity V, is called the potential core. In the
fully developed region. the centerline velocity begins to
decay and the profiles spread as in Figure 6a. Before line
T-T, the velocity profiles remain partially flat near the center
with a value of V,. A plot of the centerline velocity would
then look similar to Figure 8.

The initial core region is typically about 5 diameters long.
Its development is primarily dependent on the intensity of
the turbulent shear layer that consumes the core. The core
region of the jet is short compared with the potential overall
length of a turbulent free jet. It is the fully developed region
that is of primary import. The following expressions apply to
the fully developed region. The volume rate of flow at a
distance X from the orifice is given by (8):

Figure 8. Plot of centerline velocity of a turbulent jet. It remains
constant through the potential core and then decays through the
fully developed region. See text.
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where Q, and r, are the volumetric flow rate and jet radius at
the orifice, respectively. The decay of centerline velociry,
V.o is given by (8);

12ryVy

m N
The radial expansion of the jet half-width b, is given by b =
0.086X.

Limitations. By examining the references given here. one
will observe that theoretical and experimental results on frec
jets have agreed quite well. The results provided here are
some that are very practical. When applying those equa-
tions, however, one must keep in mind three primary limi-
tations: 1) the jet must. indeed, be free as defined; 2) the
pressure in the large reservoir must be constant or nearly
constant, so that axial momentum is conserved; and 3)
because the solutions were obtained for circular orifices, the
orifice of application needs to be approximately circular.

Clinical implications. By surveying these results and the
references provided, it will be noted that the typical ap-
proach to free jet analysis in the past has been to consider
the development of the flow field for a given orifice size and
flow rate. From the standpoint of cardiovascular hemody-
namics, we are generally faced with the inverse problem:
given a jet, how larger is the orifice and how much flow is
passing through it? The analysis of this problem is not a
trivial reversal of the known results, because many combi-
nations of orifice size and volumetric flow rate can produce
similar jet flow fields. Therefore, a thorough understanding
of the present state of jet theory and its limitations is very
important to attempt to solve the cardiovascular fluid me-
chanics problem.

Furthermore it is apparent that the size of the orifice is a
critical variable in the described equation. Free jet theory is
most applicable to valvular incompetency. such as mitral
regurgitation. In these clinical cases. it is highly unlikely that
we know the size of or can even visualize the lesion.
Therefore, although these types of equations do not allow
immediate clinical application, they do provide a basis on
which to proceed in developing quantitative clinical meth-
ods.

Confined Jets

Bounded or confined jets have been extensively studied
not only in traditional fluid mechanics but also in the
relatively new field of cardiovascular fluid mechanics.
Bounded jet information has obvious application to stenotic
aortic and pulmonary valve lesions as well as atherosclerotic
lesions.

A schematic of a confined jet emerging from a constric-
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Figure 9. Schematic diagram of a confined jet. Reattachment occurs
at point R. See text.

tion is given in Figuie 3. The resuits of analyses of confined
jets have shown that the flow upstream of the jet producing
constriction is important in the resulting behavior of the
downstream flow field. Therefore, confined jets will be
considered from both sides and through the constriction.

Confined jet and severity of constriction. A confined jet
and the severity of the constriction through which it passes
is typically described in terms of pressure considerations.
The discussion here will primarily consider pressure impli-
cations of confined jet flow. As the fluid approaches the
constriction (Fig. 9), it begins to accelerate because of the
decrease in flow area. This increase in kinetic energy is
accompanied by a corresponding loss of potential energy
(pressure). As the constriction begins to expand. so does the
Jjet {although it may possess a vena contracta to be discussed
later). However, unless the expansion of the constriction is
very gradual. the jet will expand more slowly with respect to
the axial position. As a consequence, the annular region of
recircutation in Figure 9 is observed. The region of recircu-
lation is primarily due to the interaction between jet inertia,
viscous effects and axial pressure gradients. The issuing jet
experiences a strong adverse pressure gradient. The fluid
just leaving the orifice has a relatively high axial momentum
and ejects against the gradient. However, as a result of
viscous effects (and turbulent mixing if it is present), the jet
begins to entrain surrounding fluid. causing it to expand
radially. As it expands, it develops progressively smaller and
more distributed velocity profiles (similar in concept to those
for a free jet in Fig. 6a). The fluid near the center has enough
inertia to continue downstream as it loses velocity. The fluid
on the outer fringes of the jet, however, has low velocity aad
cannot overcome the adverse pressure gradient. These fluid
particles are pushed back into the recirculation region by the
adverse gradient or are pulled into the lower pressure
vortices.

At point R in Figure 9, the jet reattaches to the tube wall
and tube flow reconstitutes, The reattachmemt length in-
creases with an orifice Reynolds number up to about 200 and
is constant at about 6 to 12 diamcters above a Reynolds
number of 2,000, In the intermediate range. it is dependent
on inlet flow profile and disturbances (8.13).

The vena contracta. As mentioned previously, the jet
may pass through a minimal cross-sectional area called the
vena contracta before expanding. Let us now consider this
phenomenon. If fluid is led smoothly into an orifice, as in
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Figure 10. The vena contracta. A, Flow led smoothly into an orifice
begins to expand immediately distal to the orifice. B, Flow entering
abruptly into an orifice has its vena contracta distal to the orifice.
See text.

Figure 10a, it is likely that the minimal diameter of the jet
will be that of the orifice or very near that. On the other
hand, if the jet passes through a sharp edged orifice, as in
Figure 10b, the abrupt contraction will cause the jet to form
with a vena contracta. Past the orifice surface, the jet
continues to constrict for a certain length. It then expands
radially. The vena contracta is the point at which the jet has
its minimal area.

If A_ is the cross-sectional area of the jet at the vena
contracta and A, is that at the orifice, the contraction
coefficient is defined as C = A/A, (14). Depending on the
nature of the orifice, C can range from 0.60 to 1.00 (15). The
contraction of a jet decreases with increasing viscosity, As
the ratio of orifice to tube diameter decreases, the contrac-
tion of the jet increases. The location of the vena contracta
is dependent on the geometry of the orifice and usually
independent of flow rate (16).

Clearly, the vena contracta can place the position of
maximal pressure gra “=nat slightly downstream from the
obstruction. The physic. 1ocation of the maximal gradient is
important when an invasive means of pressure measurement
such as catheterization is used. Another phenomenon impor-
tant in this respect is the recovery of pressure.

Recovery of pressure. To illustrate the concept of pres-
sure recovery, let us consider two types of fluid meters—the
orifice and Venturi. These two meters are shown in Figure
11. The orifice meter consists of a flat plate with a central
circular hole. The jet emerges from the orifice and begins to
diffuse radiaily. Eventually, it reattaches as described be-
fore. As the fluid emerges from the hole, there is a minimum
in static pressure at the vena contracta. However, down-
stream from the vena contracta, pressure begins to recover.
That is, the static pressure begins to increase to its original
value, It does not, however, reach that value. There is a
finite, overall, irrecoverable loss due 10 viscous effects. For
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Figure 11. Pressure recovery phenomenon in an orifice meter and a
Venturi meter. See text.

the orifice meter, these losses occur primarily in the region
of recirculation surrounding the jet.

Consider now the Venturi meter. It. 100, experiences a
finite overall pressure loss. Its overall loss, however, is
much less than that of the orifice meter because the fluid—
after passing through the point of maximal constriction——is
gradually led back to the original tube diameter. This process
is in contrast to the events occurring with the orifice, which
opens abruptly back to the original diameter and causes the
regions of recirculation.

Now, instead of thinking of an overall pressure loss for a
Sluid meter, let us think of overall pressure recovery for a
stenosis. It is clear, depending on the magnitude and rate of
pressure recovery, that a catheter displaced downstream
from a vena contracta could significantly underestimate the
magnitude of the maximal pressure gradient that is associ-
ated with stenosis severity. We might, therefore, expect
distally tapering stenoses to show more dramatic pressure
recovery in analogy with the Venturi meter.

Viscous term: relation to pressure gradient. The minimal
pressure in the jet—or the maximal pressure gradient with
respect to the proximal chamber—is primarily due to con-
vective acceleration (that given by the simplified Bernoulli
equation). However, the geometry of the orifice and fluid
properties can sometimes cause the neglected viscous term
1o become important. As found by Teirstein et al. (17), the
viscous term becomes important as diameter decreases and
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stenosis or tunnel length increases. The viscous term also. of
course, becomes important with increasing viscosity. These
results can be simply characterized as a reaffirmation of the
Reynolds number definition (i.e., the ratio of mertial to
viscous forces). Increasing tunnel length provides a surface
on which a boundary layer can develop. This boundary layer
is a result of viscous effects and the phenomenon contributes
to the pressure loss.

In summary, note that the free jet theory has application
primarily to mitral regurgitation in which there are negligible
wall effects. Confined jet flow exists in situations such as
aortic stenosis. Although the flows discussed here are ideal
cases, they are important for understanding the basic con-
cepts of jet flow, which can then be used to analyze more
complex physiologic flows.

Conclusions. In this article we have discussed some basic
and fundamental concepts of hydrodvnamics of value to the
cardiologist. Unfortunately, none of the topics could be
discussed in detail because that endeavor would require an
entire textbook. The reader is strongly urged to read ihe
reference material listed at the end of the article for the
necessary details. References 2 and 3 are essential.

The secretarial assistance of Harolyn Ingram. Jamie Lockwood and Cecille
Miller in preparing this ipt is greatly app d
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