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In this paper, after referring to the Rastall theory, we address some of its cosmological consequences. 
Moreover, bearing the Clausius relation in mind, using Friedman equations in Rastall theory and the 
Cai–Kim temperature, we obtain a relation for the apparent horizon entropy of a flat FLRW universe. In 
addition, we impose the entropy positivity condition on the obtained relation for the horizon entropy, 
to find some constraints on the Rastall parameters. Moreover, we investigate the second and generalized 
second laws of thermodynamics. The results of considering a dominated prefect fluid of constant state 
parameter are also addressed helping us familiarize with the Rastall theory.
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(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Generalization of the T μν ;μ = 0 condition from flat to the 
curved spacetimes is one of the Einstein’s basic assumptions to 
get the general relativity [1,2]. Indeed, by insisting on this gener-
alization in his attempt to formulate the Mach principle, Einstein 
could get his famous tensor and thus the corresponding field equa-
tions leading to the second order equations of motion [1,2], which 
have also vast applications in the cosmological and astrophysical 
studies [2,3]. Many years after Einstein, Jacobson showed that one 
can reobtain Einstein equations by applying the Clausius relation 
on the local Rindler causal horizon [4]. In fact, the Jacobson work 
proposes that for spacetimes with a causal horizon the Einstein 
equations on the horizon may be considered as a thermodynami-
cal equation of state if one generalizes the four law of black holes 
to the causal horizon, i.e. a causal horizon may be taken into ac-
count as a proper causal boundary. Moreover, the Jacobson’s idea 
has been generalized to f (R) theory by Eling et al. showing that 
terms other than the Einstein–Hilbert action produce entropy due 
to their non-equilibrium thermodynamical aspects [5], which leads 
to the modification of the event horizon entropy [5,6]. One can 
also use the Eling et al.’s proposal to get the equation of mo-
tion in scalar–tensor gravity theory [7]. It is useful to note here 
that one may use the thermodynamics laws and gravitational field 
equations to get the horizon entropy in the vast theories of gravity 
[8], which may satisfy the second law of thermodynamics [9]. The 
horizon entropy, indeed, is not the total entropy in a gravitational 
system. In fact, the total entropy of a gravitational system, includ-
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ing the sum of horizon entropy and the entropy of fields confined 
by the horizon, should increase during every gravitational process. 
The latter referred to as the generalized second law of thermody-
namics [10,11].

Introducing the unified first law of thermodynamics, Hayward 
could show that the Einstein field equations on the trapping hori-
zon of a dynamic black hole are nothing but the unified first law 
of thermodynamics [12–15]. This shows that the trapping hori-
zon may be considered as a causal boundary for non-stationary 
spherically symmetric spacetimes. In fact, extending the Hayward 
method to the apparent horizon of a FLRW universe, as its causal 
boundary [16], we can get the apparent horizon entropy and Fried-
man equations in the various theories of gravity [6,7,17,18]. This 
approach may also be employed to investigate the thermodynamic 
properties of apparent horizon of the FLRW universe in some 
braneworld models such as the Gauss–Bonnet and warped DGP 
braneworlds [19,20]. Moreover, one can also use the Hayward pro-
posal to study the effects of interactions between the dark energy 
and other parts of cosmos on the horizon entropy in the Einstein 
and quasi-topological theories [21,22]. Here, it is worthwhile to 
mention that this approach does not lead to the Friedman equa-
tions in the scalar–tensor theory, a result which is due to the 
non-equilibrium thermodynamic aspect of the scalar–tensor the-
ory [7].

In another approach, Cai et al. applied the Clausius relation to 
the apparent horizon of the FLRW universe, and used the hori-
zon entropy relation to get Friedman equations in various theo-
ries of gravity [17,23]. In addition, one can also use the Fried-
man equations as well as the Clausius relation to get an expres-
sion for the effects of interactions between the dark energy and 
other parts of cosmos on the horizon entropy in the Einstein and 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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quasi-topological theories [21,22,24]. Although, following such ap-
proaches, the definition of temperature differs from that of the 
Hayward–Kodama temperature, the result for the horizon entropy 
is equal to that of the approaches by which authors use the 
Hayward–Kodama temperature and the unified first law of ther-
modynamics [21–23,25]. Besides, it seems that the Cai–Kim tem-
perature is more suitable than that of the Hayward–Kodama for 
investigating the horizon thermodynamics [26]. Indeed, their def-
inition of temperature is equal to that of a Hawking radiation for 
a locally defined apparent horizon of the FLRW universe [27], and 
may be used to investigate the mutual relation between Friedman 
equations and the thermodynamic properties of apparent horizon 
in various gravitational theories [17,21–26]. Here, it is useful to 
note that the thermodynamic analysis of the total entropy of uni-
verse, including the horizon entropy and the entropy of fields con-
fined by it, signals us to a universe satisfying thermodynamical 
equilibrium conditions, in vast models of gravity [28].

In 1972, by relating T μν ;μ to the derivative of Ricci scalar, 
Rastall proposed a new formulation for gravity [29], which con-
verges to the Einstein formulation in the flat background (empty 
universe). Indeed, he argued that the T μν ;μ = 0 assumption, 
made by Einstein to obtain his field equations, is questionable in 
the curved spacetimes [29]. In fact, the T μν ;μ �= 0 condition is 
phenomenologically confirmed by particle creation in cosmology 
[30–32]. Indeed, in gravitational systems, quantum effects lead to 
the violation of the classical condition T μν ;μ = 0 [33]. Therefore, 
since T μν ;μ is related to the Ricci scalar, the Rastall theory may 
be considered as a classical formulation for the particle creation 
in cosmology [34], and it helps us in investigating the possibility 
of coupling the geometry to the matter fields in a non-minimal 
way. For the first time, Smalley tried to get a lagrangian for this 
theory [35]. In addition, it seems that astrophysical analysis, in-
cluding the Neutron stars evolution, and cosmological data do not 
reject this theory [36–38]. Recently, this theory attracts more in-
vestigators to itself, and its combinations with the Brans–Dicke and 
Scalar–Tensor theories of gravity can be found in [39,40]. More 
investigations on the various aspects of the Rastall theory in the 
context of current phase of the universe expansion can also be 
found in [34,41–46]. It is also shown that this theory reproduces 
some loop quantum cosmological features of the universe expan-
sion [47].

Our aim in this paper is to study the thermodynamics of the 
FLRW universe in the Rastall theory. For this propose, after re-
ferring to the Rastall theory, we address some of its cosmological 
features. In addition, by using Friedmann equations in the Rastall 
theory, attributing the Cai–Kim temperature to horizon and ap-
plying the Clausius relation on the apparent horizon of the FLRW 
universe, we get a relation for the apparent horizon entropy in the 
Rastall theory. Since the entropy of a physical system is to be a 
positive quantity [48], we study the effects of applying this condi-
tion to the horizon entropy. The second and generalized second 
laws of thermodynamics are also investigated. Our investigation 
shows that the thermodynamic analysis of the FLRW universe im-
poses some restrictions on the Rastall theory parameters which are 
in line with previous studies. The results of considering a universe 
filled by a prefect fluid with constant state parameter are also ad-
dressed.

The paper is organized as follows. In the next section, after 
referring to the Rastall theory, we derive the corresponding Fried-
man, Raychaudhuri and continuity equations and point to some of 
the cosmological consequences of the Rastall theory. In addition, 
some general remarks of the FLRW universe are also addressed. 
Bearing the Cai–Kim temperature together with the Clausius re-
lation in mind, we use the Friedman and continuity equations to 
get the horizon entropy in the Rastall theory, in section 3. The 
results of imposing the entropy positivity condition on the ob-
tained relation for the horizon entropy are also studied. We also 
investigate the second and generalized second laws of thermody-
namics in the third section. Throughout the paper, the results of 
considering a prefect fluid with constant state parameter filling the 
universe, are investigated in more details. Section 4 is devoted to 
a summary and concluding remarks. Throughout this paper we set 
G = h̄ = c = 1 for the sake of simplicity.

2. Rastall theory and basic assumptions

Rastall questioned the assumption T μν ;μ = 0 in curved space-
time, and gets a new theory for gravity by proposing T μν ;μ =
λR ,ν , where λ is an unknown constant which should be speci-
fied from observations and other parts of physics [29]. Therefore, 
for a spacetime metric gμν , the corresponding gravitational field 
equations can be written as

Gμν + kλgμν R = kTμν, (1)

where Gμν and Tμν are the Einstein and energy–momentum ten-
sors, respectively [29]. Moreover, R is Ricci scalar, and k is also 
gravitational constant in Rastall theory and should probably be 
specified from other parts of physics and observations [29]. It is 
obvious that for λ = 0 and k = 8π the Einstein field equations are 
reobtained wherever T μν ;μ = 0 [29].

Consider a cosmological background described by FLRW metric:

ds2 = −dt2 + a2 (t)

[
dr2

1 − κr2
+ r2d�2

]
. (2)

Here, a(t) and κ denote the scale factor and the curvature pa-
rameter, respectively, while κ = −1, 0, 1 denotes the open, flat 
and closed universes, respectively [3]. Apparent horizon as the 
marginally trapped surface of FLRW universe is defined as

∂α r̃∂α r̃ = 0 → rA, (3)

where r̃ = a(t)r, leading to

r̃ A = a(t)rA = 1√
H2 + κ

a(t)2

, (4)

for the physical radii of apparent horizon. In fact, it seems that 
the apparent horizon can play the role of causal boundary for the 
FLRW spacetime [14–16,19,20]. Since cosmological data points to a 
flat universe [3], we only consider the flat case (κ = 0) throughout 
this paper. For a prefect fluid source (T ν

μ = diag(−ρ, p, p, p)), by 
using Eqs. (1) and (2), we get the corresponding Friedmann equa-
tions in the Rastall theory

(12kλ − 3)H2 + 6kλḢ = −kρ, (5)

and

(12kλ − 3)H2 + (6kλ − 2)Ḣ = kp, (6)

where ρ and p are the energy density and pressure of the energy–
momentum source, respectively. The Rastall field equations can 
also be written as

Gμν = κ(Tμν − κλT

4κλ − 1
gμν), (7)

in which T is the trace of energy–momentum tensor. Bianchi iden-
tity implies G;μ

μν = 0, which finally leads to [41]

(
3kλ − 1

)ρ̇ + (
3kλ

)ṗ + 3H(ρ + p) = 0, (8)

4kλ − 1 4kλ − 1
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as the continuity equation in the Rastall theory. It is worth men-
tioning here that one can rediscover the Friedmann and continuity 
equations in the Einstein theory by inserting λ = 0 and k = 8π in 
the above formulas. Moreover, by combining Eqs. (5) and (6) with 
each other, one may get the Raychaudhuri equation

Ḣ = −k

2
(ρ + p), (9)

which is independent of λ, and it is indeed the same as that of the 
standard cosmology, which is based on the Einstein theory and the 
FLRW metric. For a fluid with state parameter ω = p

ρ , by combin-
ing this equation with Eq. (5) one can get

H2 = k(3kλ(1 + ω) − 1)

3(4kλ − 1)
ρ. (10)

Moreover, for a fluid, the ρ(a) relation may be obtained by insert-
ing ω = p

ρ into Eq. (8) and taking integral from the result. This 

leads to ρ = ρ0a
−3(1+ω)(4kλ−1)

3kλ(1+ω)−1 for a fluid of constant state parame-
ter. It is easy to check that the famous first Friedman equation in 
the Einstein relativity framework is reobtained by inserting λ = 0
and k = 8π into Eq. (10). Moreover, by combining Eqs. (5) and (6)
one reaches

kT = 2(12kλ − 3)(2H2 + Ḣ), (11)

in which T = 3p − ρ is the trace of energy–momentum source. 
For a traceless energy–momentum tensor, this equation leads to 
H = 1

2t which is nothing but the Hubble parameter of radiation 
dominated era [3]. Therefore, its prediction about the Hubble pa-
rameter of the radiation dominated era is the same as that of 
Einstein theory (the Friedman equations). In addition, for a pres-
sureless source (p = 0), Eq. (5) yields H = (6kλ−2)

(12kλ−3)t which, only 
for λ = 0, covers the Friedman results about the matter dominated 
era (H = 2

3t ). Briefly, apart of a coefficient, this theory predictions 
about the Hubble parameter of the matter dominated era is the 
same as that of Einstein theory. Now, regarding a universe of a 
constant density (ρ = ρ0) in which ω = −1 that leads to a con-
stant density, we can rewrite Eq. (10) as

H =
√

−k

3(4kλ − 1)
ρ0. (12)

Therefore, for the k > 0 case, a Rastall theory with λ < 1
4k leads 

to a constant positive Hubble parameter if ρ0 > 0. Additionally, a 
source with ρ0 < 0 may also lead to a constant positive Hubble 
parameter whenever k > 0 and λ > 1

4k . In sum, the Rastall theory 
with k > 0 may cover the primary inflationary era (ω = −1 and 
ρ0 > 0), if λ < 1

4k . In fact, since H2 is a positive quantity (H2 > 0), 
for the k > 0 case, the RHS of Eq. (10) will be positive for a fluid 
with −1 ≤ ω ≤ 1

3 and ρ > 0, if λ either satisfies λ < 1
4k or λ ≥

1
3k(1+ω)

. These results indicate that the Rastall theory may also be 
used to describe the current accelerating phase [34,41–46], as well 
as the primary inflationary era [47].

3. Thermodynamics of apparent horizon

Since the Rastall gravitational field equations (1) differ from 
those of the Einstein theory, the Rastall lagrangian also differs from 
that of Einstein [35]. Therefore, one may expect that the horizon 
entropy in this theory differs from the Bekenstein entropy. Now, 
by using the Cai–Kim approach [23], we try to get an expression 
for the horizon entropy. Indeed, we apply the Clausius relation on 
the apparent horizon and use the Cai–Kim approach together with 
the Friedmann equations in the Rastall theory, to get a relation for 
the horizon entropy in this theory. Following that, we study the re-
sults of imposing the entropy positivity condition on the obtained 
entropy relation. Finally, we point to the second law of thermo-
dynamics [9] and required conditions for meeting this law in the 
corresponding Rastall cosmology.

3.1. The entropy of apparent horizon

In the Cai–Kim approach, horizon temperature meets the 
T = H

2π relation in the flat FLRW universe, while the volume 
change of universe in the infinitesimal time dt is neglected 
(dV ≈ 0) [18,23,27]. The projection of the total four-dimensional 
energy–momentum tensor T b

a in the normal direction of the two-
dimensional sphere with radii r̃ is defined as [18,23,27]

ψa = T b
a ∂br̃ + W ∂ar̃, (13)

where W = ρ−p
2 is the work density, and a, b = t, r [18,23,27]. The 

energy flux (δQ m) crossing the apparent horizon during the in-
finitesimal time dt and small radius change dr is defined as

δQ m ≡ Aψadxa. (14)

A being the surface area of two-dimensional sphere with radii r̃
[18,23,27]. Simple calculations lead to [18,21–24,27]

δQ m = −3V (ρ + p)H

2
dt + A(ρ + p)

2
(dr̃ − r̃Hdt). (15)

In obtaining this equation we have used dr̃ = rda + adr and Ar̃ =
3V . By applying the dr̃ ≈ 0 approximation to this result, we get

δQ m = −3V H(ρ + p)dt. (16)

Now, combining Eq. (16) with the Clausius relation (T dS A = δQ m) 
and the Cai–Kim temperature (T = H

2π ), we reach

dS A ≡ −δQ m

T
= 6π V (ρ + p)dt, (17)

in which the extra mines sign comes from the universe expansion 
[18,21–24,27]. Now, using Eq. (8), one can rewrite this equation as

dS A = − 2π

(4kλ − 1)H
((3kλ − 1)dρ + (3kλ)dp). (18)

Also, applying Eqs. (5) and (6) we get

dρ = −1

k
[2(12kλ − 3)HdH + 6kλdḢ], (19)

and

dp = 1

k
[2(12kλ − 3)HdH + (6kλ − 2)dḢ], (20)

respectively. Inserting these two last equations into Eq. (18) leads 
to

dS A = −8π2

kH3
dH + 32π2λ(3kλ − 1)

4kλ − 1

dḢ

H4
. (21)

Taking integral from this equation and using the A = 4π
H2 relation 

one obtains

S A = 2π A

k
+ 32π2λ(3kλ − 1)

4kλ − 1

∫
dḢ

H4
. (22)

This is nothing but the apparent horizon entropy in the Rastall 
theory. It is easy to check that the Bekenstein limit (Einstein result) 
is also deducible by inserting λ = 0 and k = 8π .
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3.2. The entropy positivity condition

As we know, entropy is a positive quantity [48] and therefore, 
since Eq. (9) indicates Ḣ = 0 for a universe filled by a prefect fluid 
with ω = −1, it is apparent that the S A ≥ 0 condition is met if 
k > 0. Therefore, we take into account k > 0 now on. Applying the 
S A ≥ 0 condition to Eq. (22), we get

4kλ(1 − 3kλ)H2

4kλ − 1

∫
dḢ

H4
≤ 1. (23)

As further investigations on the S A ≥ 0 condition are considered, 
we confine ourselves to a universe filled by a prefect fluid with 
constant state parameter. Combining Eqs. (9) and (10) with each 
other, inserting the result into Eq. (22) and taking integral, one 
reaches

S A = 2π A

k
+ 4π

1
2 λ(3kλ − 1)(1 + ω)

3kλ(1 + ω) − 1
A

3
2 , (24)

for the apparent horizon entropy of the flat FLRW universe filled 
by a prefect fluid source with constant state parameter ω. This 
relation is similar to the entropy of apparent horizon in Dvali–
Gabadadze–Porrati (DGP) model [19,49–51]. It is also useful to 
note a similarity between this equation and the dark energy cor-
rection to the horizon entropy in the Einstein framework [21,22,24,
50,51]. Based on Eq. (24), it is obvious that the second right hand 
side term of this equation vanishes for a prefect fluid with ω = −1. 
In the Einstein relativity framework, only dark energy candidates 
with state parameter ω �= −1 affect the Bekenstein entropy [21,
22,24]. Therefore, for a source with ω = −1, the apparent horizon 
entropy in the Rastall theory is the same as that of the appar-
ent horizon in the Einstein theory if k = 8π and thus, we see that 
the ω = −1 case again necessitates k > 0. In fact, it is shown that, 
in the Einstein relativity framework, a dark energy candidate with 
energy density proportional to the Hubble parameter and state 
parameter ω �= −1, leads to the similar relation for the horizon 
entropy [21,22]. Moreover, in order to get a positive entropy for 
all values of H , the coefficient of A

3
2 should be positive. For the 

prefect fluids with −1 < ω ≤ 0 and 0 ≤ ω, the latter leads to

0 ≤ λ ≤ 1

3k
, and

1

3k(1 + ω)
< λ, (25)

and

0 ≤ λ <
1

3k(1 + ω)
, and

1

3k
≤ λ, (26)

respectively. Therefore, a negative λ does not respect the entropy 
positivity condition. In short, the positivity of entropy signals us 
to the k > 0 and λ ≥ 0 conditions which are in line with previous 
studies [36–38] as well as the results obtained from Eq, (12). Bear-
ing the results obtained from the H2 > 0 condition in mind and 
comparing them with the above results, we find out if the sate 
parameter of dominated prefect fluid meets, in the Rastall theory 
with k > 0, the −1 ≤ ω ≤ 0 condition, where 3k(1 + ω) < 3k < 4k, 
and wherever λ either satisfies 0 ≤ λ ≤ 1

4k or λ > 1
3k(1+ω)

all of the 
above mentioned conditions will be satisfied. In addition, for the 
0 ≤ ω ≤ 1

3 case, where 3k ≤ 3k(1 + ω) ≤ 4k, λ should either satisfy 
0 ≤ λ ≤ 1

4k or λ > 1
3k to meet the entropy positivity as well as the 

H2 > 0 conditions.

3.3. The second and generalized second laws of thermodynamics

In order to investigate the second law of thermodynamics, we 
use Eq. (17) to get
dS A

dt
= 6π V (ρ + p), (27)

i.e. the second law of thermodynamics ( Ṡ A ≥ 0) is obeyed if the 
prefect fluid, which supports the geometry, satisfies the ρ + p ≥ 0
condition. Indeed, if we define the state parameter to be ω = p

ρ , so 
ω is not necessary constant, then for ω ≥ −1 and ρ ≥ 0 the sec-
ond law of thermodynamics is obtainable. Here, it is also useful to 
note that this result is the same as those of the Einstein and quasi-
topological gravity theories [21,22]. Finally, by inserting Eq. (9) into 
this equation, one obtains

dS A

dt
= −12π V Ḣ

k
. (28)

Since cosmological data indicates Ḣ ≤ 0 [3], the second law of 
thermodynamics is met if k > 0 which is in agreement with the re-
sult of employing the entropy positivity condition. The generalized 
second law of thermodynamics states that the sum of the entropy 
of cosmos parts, which include the horizon and the fluids confined, 
should increase during the universe expansion [10,11]. In order to 
study this law, we need evaluate the entropy of prefect fluid sup-
porting the background. Taking into account the apparent horizon 
as the boundary and using the Gibbs law [48] as

TmdSm = dE + pdV , (29)

where Sm and Tm are the matter entropy and temperature, respec-
tively, one obtains

TmdSm = (ρ + p)dV + V dρ. (30)

In obtaining this equation we used the E = ρV relation. From now 
on, we assume that horizon and prefect fluid confined by it are in 
thermal equilibrium i.e. Tm = T = H

2π . In fact, since, due to their 
temperature difference, an energy flux between horizon and the 
materials confined has not yet been observed, such assumption is 
not far from reality. Moreover, it is shown that there is a Hawk-
ing radiation with the Cai–Kim temperature for the fields near the 
apparent horizon of FLRW universe [27], and thus, such Hawking 
radiation may be considered as a mechanism for producing such 
assumed thermal equilibrium. Therefore, the Tm = H

2π assump-
tion is not an unlikely guess. Now, by combining this result with 
Eqs. (27) and (30) and using Eq. (9) together with the V = 4π

3H3

relation we obtain

T (dS A + dSm) = 3V H(ρ + p)(1 + k

2H2
)dt + V dρ, (31)

yielding

dST

dt
= 6π V (ρ + p)(1 + k

2H2
) + 2π V

H
ρ̇, (32)

where ST = S A + Sm is the total entropy. Since the generalized 
second law of thermodynamics states that ST should satisfy the 
Ṡ T ≥ 0 condition [10], this law will be met if the

−3(ρ + p)H(1 + k

2H2
) ≤ ρ̇, (33)

condition is obeyed by the prefect fluid source. Bearing the results 
obtained from investigating the second law in mind, it is obvious 
that for k > 0, −1 ≤ ω and whenever ρ̇ meets Eq. (33), the sec-
ond law of thermodynamics and its generalized form are satisfied 
simultaneously. Combining this equation with Eq. (8) we get

ṗ ≤ ρ + p

2Hλ
(3kλ − 2H2λ − 1), (34)

which expresses that the generalized second law of thermodynam-
ics holds if the time derivative of the prefect fluid pressure satisfies 
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this equation. Now, we focus on a dominated fluid of constant state 
parameter. Since for a prefect fluid with constant state parameter, 
ṗ = ωρ̇ (as is the case for radiation), one can reach

1 + 2H2λ − 3kλ

6H2λ(1 + k
2H2 )

≤ ω, (35)

by combining Eqs. (33) and (34). Now, for a fluid with −1 ≤ ω, 
which satisfies the second law, we get

λ ≤ − 1

8H2 + 6k
, (36)

if 1+2H2λ−3kλ

6H2λ(1+ k
2H2 )

≤ −1. In this situation λ is negative in conflict 

with the results obtained in Eqs. (25) and (26). Moreover, if −1 ≤
1+2H2λ−3kλ

6H2λ(1+ k
2H2 )

one reaches

− 1

8H2 + 6k
≤ λ, (37)

which covers the intervals obtained in Eqs. (25) and (26). There-
fore, the validity of the second and generalized second laws of 
thermodynamics lead to a lower bound for the λ factor (37). This 
is in agreement with the requirements for covering the H2 > 0
condition, the results obtained by applying the entropy positivity 
condition, and some previous works [36–38].

4. Summary and concluding remarks

After referring to the Rastall theory of gravity, we considered 
the flat FLRW universe, and find the corresponding Friedman equa-
tions in this theory. We also addressed some cosmological conse-
quences of this theory. Thereinafter, we used the Cai–Kim approach 
to get the energy flux crossing horizon during the infinitesimal 
time dt . In addition, by applying the Clausius relation on the ap-
parent horizon (as the causal boundary of system) and using the 
obtained Friedman equations, we got a relation for the apparent 
horizon entropy (Eq. (22)). As we have shown, the entropy positiv-
ity condition binds up the k and λ parameters to be positive quan-
tities. Our study suggests that, if the state parameter of dominated 
prefect fluid meets the −1 ≤ ω ≤ 0 condition for a Rastall the-
ory with k > 0, and if λ either satisfies 0 ≤ λ ≤ 1

4k or λ > 1
3k(1+ω)

, 
then both the entropy positivity and H2 > 0 conditions are also 
satisfied. In addition, for the 0 ≤ ω ≤ 1

3 case, λ should either obey 
0 ≤ λ ≤ 1

4k or λ > 1
3k to meet the mentioned conditions. Moreover, 

we found out that the validity of the second law of thermody-
namics requires that k > 0 and ρ + p ≥ 0. The generalized second 
law of thermodynamics has also been studied. Our investigation 
shows that, in order to meet the generalized second law of ther-
modynamics, the time derivatives of energy density and pressure 
of source supporting the background should satisfy a lower and 
an upper bound, respectively. We also found out, for a universe 
filled by a prefect fluid of constant state parameter, the validity of 
the generalized second law leads to a lower bound for the state 
parameter of prefect fluid supporting the geometry. Finally, our 
study shows that, in a universe filled by a prefect fluid with con-
stant state parameter, the validity of the generalized second law 
of thermodynamics leads to the − 1

8H2+6k
≤ λ condition for the λ

parameter, which is in agreement with the results obtained by em-
ploying both the H2 > 0 and entropy positivity conditions.
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