-

P
brought to you by . CORE

View metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

Engineering Science and Technology, an International Journal xxx (2016) XXX-XXx

Contents lists available at ScienceDirect
Engineering Science and Technology,
an International Journal
journal homepage: www.elsevier.com/locate/jestch = L

Full Length Article

Design of fractional order differentiator using type-III and type-IV
discrete cosine transform

Manjeet Kumar *, Tarun Kumar Rawat

Department of Electronics and Communication Engineering, Bennett University, Greater Noida, Uttar Pradesh 201310, India
Department of Electronics and Communication Engineering, Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi 110078, India

ARTICLE INFO ABSTRACT

Article history:
Received 31 July 2015
Revised 2 July 2016
Accepted 4 July 2016
Available online xxxx

In this paper, an interpolation method based on discrete cosine transform (DCT) is employed for digital
finite impulse response-fractional order differentiator (FIR-FOD) design. Here, a fractional order digital
differentiator is modeled as finite impulse response (FIR) system to get an optimized frequency response
that approximates the ideal response of a fractional order differentiator. Next, DCT-III and DCT-IV are
utilized to determine the filter coefficients of FIR filter that compute the Fractional derivative of a given
signal. To improve the frequency response of the proposed FIR-FOD, the filter coefficients are further
modified using windows. Several design examples are presented to demonstrate the superiority of the
proposed method. The simulation results have also been compared with the existing FIR-FOD design
methods such as DFT interpolation, radial basis function (RBF) interpolation, DCT-II interpolation and
DST interpolation methods. The result reveals that the proposed FIR-FOD design technique using
DCT-III and DCT-IV outperforms DFT interpolation, RBF interpolation, DCT-II interpolation and DST
interpolation methods in terms of magnitude error.
© 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Fractional calculus was invented by Leibnitz in 1695 [1,2], but
have only recently focused on the theory and applications, partic-
ularly in the areas of science and engineering. The field of fractional
calculus has maintained tremendous vitality over the past few dec-
ades and there is a clear indication that this trend will continue.
The fractional calculus has been used to describe many phenomena
in almost all fields such as fluid dynamics [2], physics [3], auto-
matic control [2], image processing [1], electromagnetism [4], sig-
nal processing [5] and chaotic systems [6]. The computational
complexity involved with fractional calculus make the early
research difficult. Advances in computational capability offer the
practical implementation of fractional calculus. New applications
continue to be found and the existing applications continue to be
expend in diverse area of science and engineering. Some existing
applications of fractional derivative are described below. The
fractional derivative can be applied in linear prediction of speech
signal [7], image denoising, signature verification, edge detection
and texture enhancement of image signal [8,9], R wave detection
of ECG signal [10], one dimensional (1-D) linear phase filter design
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[11] and two dimensional (2-D) linear phase filter design [12],
design of multiplier-less filter [13], quadrature mirror filter bank
design [14], and FIR filter design [15].

Digital differentiators are used to find the time derivative of the
input signal. For real time applications it is mandatory that a
differentiator should have smaller order for easier implementation.
Fractional order digital differentiator is an extended version of
integer order differentiator which provide more flexibility in real
applications [1]. Fractional order calculus is a generalization of
our traditional integral and differential equations. The integer
order derivative D"f(x) = %f‘ ) (nth order derivative of the function
f(x)) has been generalized to fractional order derivative
D*f(x) = d;{(&"), where n is an integer and « is a real number [2].

From last few decades, many techniques have been put forward
for the design of fractional order differentiators [16]. Samadi et al.
presented a FOD for polynomial signal using Newton series expan-
sion. This method gives exact fractional derivative of polynomial
signal [17]. Tseng applied the logarithm and Taylor series expan-
sion to approximate the variable fractional order integrator and
differentiator [18]. Tseng also presented a FOD design using frac-
tional sample delay and design accuracy was improved in the high
frequency region [19]. Tseng and Lee investigated the design of
FOD using interpolation techniques such as radial basis function
[20], DFT interpolation [21], DCT interpolation [22], and DST
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interpolation [23] to approximate the fractional derivative of a
signal. Chen et al. reported a fractional order Savitzky-Golay
differentiator for estimating the fractional order derivative of a
contaminated signal [24]. Khare et al. applied DCT-III interpolation
to design FOD [25]. Kumar and Rawat reported the windowing
function based approximation of fractional order differentiator
with radial basis function [26]. Kumar and Rawat also introduced
the design of fractional order differentiator using power series
and least squares method where FOD is modelled as an FIR system
that gives fractional order derivative of the Grunwald-Letnikov
type for a power function [27]. Further, DCT, DST, DFT and DHT
have been applied for the design of matrix fractional order
differentiators [28,29].

In recent years, there has been an increasing interest with a
class of orthogonal transforms in general area of digital signal pro-
cessing. The discrete cosine transform (DCT) [30] is a sinusoidal
unitary transform which has been applied to many applications
of signal processing such as filter design and multi-rate digital sig-
nal processing. Some of the popular applications of DCT for the
designing of adaptive filter [31], ECG compression, speech
enhancement and channel prediction [32], signal compression,
image coding and compression [33], very large scale (VLSI) imple-
mentation [34] etc. DCT is robust approximation which can be
implemented very efficiently and comparable with that of the
Karhunen-Loeve transform (KLT), which is considered to be opti-
mal [35].

This paper is dedicated to the implementation of discrete cosine
transform for the designing of fractional order differentiator.
Griinwald-Letnikov definition of fractional derivative along with
DCT interpolation is used to approximate the impulse response
of an ideal fractional order differentiator. The rationale behind this
work is to improve the design accuracy and performance of the
designed FIR-FOD. This is achieved by applying DCT-III and DCT-
IV to compute the fractional derivative of the given input signal.
Further, the performance of the designed FIR-FOD is improved
using window methods. The main contribution of this paper is to
implement transform method for the design of FIR-FOD. The per-
formance of the proposed FIR-FOD is compared with existing inter-
polation based FIR-FOD design methods namely DFT interpolation,
radial basis function (RBF) interpolation, DCT-II interpolation and
DST interpolation methods. Furthermore, analysis of magnitude
error and phase error is carried out to justify the superiority of
the proposed FIR-FOD.

The paper is organized as follows: Following a detail survey in
Section 1, Section 2 presents the brief review of the definitions of
fractional derivatives. In Section 3, mathematical articulation to
compute the fractional derivative using DCT-III has been
presented. Also, the design of FIR-FOD using DCT-III and DCT-IV
is described. The design examples to illustrate the effectiveness
of the proposed FIR-FOD using DCT-IIl and DCT-IV are given in
Section 4. Finally, the paper is concluded in Section 5.

2. Review of fractional derivative

In this section, some basic concepts and commonly used defini-
tions of the fractional order differentiator are reviewed briefly. Let
us start with some basic concepts of fractional calculus commonly
used in fractional order differentiator. The unique feature of frac-
tional calculus is its ability to generalize the integral and differen-
tial operators to noninteger order. The generalized continuous
integral-differential Davis operator is given by [1,2]

£ «>0
DE =11, o=0 (1)
ffdr)*, a<0

where ,D; denotes integral-differential operator to calculate the «th
order fractional differentiation and integration of the input signal
with respect to t and a is the initial condition of the operation.
The result of fractional derivatives depends on the bounds a and t.
Most commonly used definitions for fractional order differentiation
and integral are Riemann-Liouville (R-L), Griinwald-Letnikov (G-L)
and the Caputo definitions [1,2]. In this paper, the Griinwald-
Letnikov definition of a fractional derivative is used to compute
the fractional order differentiation of f(t), which is given by

[(t—a)/A] ( 1 )kcz

k=0

D (1) =i

lim f(t—kA) (2)
where C}, is the binomial coefficient. The value of C;, is given by
using the relation between Euler’'s Gamma function and factorial,
defined as

L () [(o+1)
Ci *<k>7l"(k+1)1"(<%—k+]) ;

where I'(-) is the gamma function. From the above definition, the
fractional derivative of a trigonometric function [36] is given by

D*A cos(wt + ¢) = Aw™* cos (wt +¢ +goc> (5)

This fractional derivative of trignometric functions is used to com-
pute the fractional derivative of a given digital signal using DCT.

3. Design of fractional order differentiator

In this section, DCT method is presented to compute fractional
derivative D*f(t) of a continuous time signal f(t). There are four
types of DCT, DCT-I through DCT-IV, which differ in the boundary
conditions at the ends of the interval. Here, we have implemented
the DCT-III which is same as discrete symmetric cosine transform
(DSCT) with a specific preprocessing of input data with less com-
putational complexity than DCT in terms of multiplication and
slightly more additions.

3.1. Fractional derivative using DCT-III
Given the discrete-time sequence f(0),f(1),...,f(N — 1) which

are sampled from continuous-time signal f(t). The DCT-III is
defined as [37]

2 2k +1)m
F(k) = \/;mzockf(m) 0s (T) (6)
\/>chF k) cos( (Zk;]) ) (7)
where
L k=0
_J V2
*= { 12 otherwise ®

Substituting the F(k) from Eq. (6) into Eq. (7), we obtain

= \/g:ZiCk \/72Ckf m)cos (2’;—;\_]1)” cos <w>
= gf( ch cos < m(2k+ 1) ) cos (n(zgi\rl 1)”>

9
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Replaceing discrete-time variable n with continuous-time variable
t, to obtain f(t) which is given by

ZC cos T(2k +1)m cos T2k + 1)t
k 2N 2N
N-1

f(ty="_f(m)b(m,t) (10)

m=0

N-1

fy="> f(m)

m=0

where interpolation basis is given by

ch (%) cos (%) (11)

Apply the oth order fractional derivative on both sides of Eq. (10),
we get

N-1

Df(t) = _f(m)[D*b(m. )] (12)

m=0

Using linear property of the fractional differentiation along with
Egs. (5) and (12), we get

23 (n(2k+ 1) > cos <nm(2k+])> cos <m(2k+ D +g°‘>

=R 2N 2N
(13)
From Egs. (12) and (13), we get
N-1
Df(t) = f(m)qn(t) (14)
m=0
where
2= (2k+1) nm(2k+1) nt(2k+1) w
() == cz< > cos( )cos( +—oc>
® N; k 2N 2N 2N 2
(15)

The result obtained in Eq. (14) is applied to design fractional order
differentiator in the following section.

3.2. Fractional order differentiator design

The frequency response of an ideal fractional order differentia-
tor is given by
Hig() = (jo)*e ! (16)

where I is a prescribed delay. In this section, the aim is to obtain the
transfer function of fractional order differentiator by using the
results of Eq. (14) whose frequency response approximates the ideal
response. The transfer function of a FIR filter is given by

H@z) =) h(nz”’ (17)

If a signal g(n) is applied at the input of this FIR filter then its output

is the weighted average of the integer delayed samples
g(n),g(n—1),g(n—2),...,g(n — N+ 1), which is given as
N-1
n) = h(rig(n—r) (18)
r=0

Now, the objective is to compute the filter coefficients h(r) such that
the filter output y(n) matches the delayed fractional derivative
D*g(n —1I), that is

N-1

y(n) ~Dg(n—1)= h(r)g(n—r) (19)

r=0

To solve this problem index mapping technique is applied by
choosing

gn) =f(N-1)
gn-1)=f(N-2)
(20)
gn-N+1)=f(0)
In general, it can be written as
fm)y=gln—-(N-1)+m) 0<m<gN-1 (21)

By using index mapping technique, Eqs. (14) and (18) are related
with each other.

Substituting Eq. (21) and f(t) = g(n — (N — 1) + t) into Eq. (14),

we get
N-1

Dign—(N=1)+t)=> gn—(N—1)—m)qy(t) (22)
m=0

Let r = (N —1) —m, Eq. (22) becomes
N-1

D’g(n—(N—1)+1t) = g(n—r)qy__(t) (23)
r=0

Furthermore, let I = (N — 1) — t, Eq. (23) reduces to

Dig(n—1) = 2&’(” =Nn--r(N=1-1) (24)
Comparing Eq. (24) with Eq. (18), we get

Zh (n—r) xg(n —Naya(N=1-1  (25)
where
h(r) =ay-1,(N-=1-1) (26)

Substituting Eq. (15) into Eq. (26), the filter coefficients are given by

~ 2% (2k+1) aN-1-r)2k+1)
h(r)_ﬁkz:;ck< 5N )cos( SN >

nN-1-0)2k+1) =n
xcos( N +§OC, 0<r<N-1 (27)

From the above equation filter coefficients are easily computed
without applying optimization techniques. Here, the length-N filter
coefficients h(r) can be viewed as obtained by using rectangular
window. To improve the performance of the designed filter, the
filter coefficients are further modified using tapered windows. For
simplicity, we are using Hann window which is given as

w(r) = 0.5(1 ~ cos <217V”>> 0<r<N-1 (28)

The modified filter coefficients can be obtained by
hy(r) = h(r)w(r) (29)

3.3. Design of fractional differentiator using DCT-IV

The FIR fractional order differentiator can also be designed
using other variants of DCT, one being DCT-IV which finds its appli-
cation in multi-carrier modulator in frequency offset channels and
image processing. In this section, DCT-IV is applied to obtain the
filter coefficients using the similar approach as used in the previ-
ous section.
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Given the discrete-time sequence f(0),f(1),...,f(N — 1) which
are sampled from continuous-time signal f(t). The DCT-IV is
defined as [37]

2 n2k+1)2n+1)
F(k) = ,\/%nzof(n) cos (T) (30)
S n2k+1)2n+1)
f(n) = \/;I;F(k) cos (T) (31)

Using the same approach as that of DCT-III, we obtain the filter
coefficients for DCT-IV. They are given by

28 w2k + 1)\* 2N —1)—1)2k + 1)
h(r)fﬁk:()(iZN )cos( anN >

 cos <77:(2(N—1)4;\11)(2k+1)+§a> 32

4. Design examples

In this section, the design of FIR fractional order differentiator
using DCT-III and DCT-IV is presented. In order to evaluate the per-
formance of proposed FIR-FOD using DCT-III and DCT-IV, two
design examples are presented. The performance of the proposed
method is measured by magnitude error, phase error and integral
square error. In addition, the effect of delay value I and fractional
order o on the performance of designed FIR-FOD are investigated
in this section. All the simulations have been done in MATLAB
7.11 version on Intel core (TM) i5 processor, 3.20 GHz with 4 GB
RAM.

Example 1. In this example, we implement transform methods,
namely, DCT-III and DCT-IV to design the fractional order differ-
entiator. The design parameters are chosen as filter length N = 60,
filter order o« = 0.5 and delay I = 30. The ideal magnitude and
phase response of FIR-FOD are given by w* and 900, respectively.

4.1. DCT-1II based design

Here, FIR fractional order differentiator is designed using
DCT-IIL First, the filter coefficients of FIR-FOD are computed using
Eq. (27). Then, Hann window defined in Eq. (28) is employed to
modify the computed filter coefficients. Fig. 1 depicts the magni-
tude response of the proposed FIR-FOD using DCT-III. The normal-
ized phase response 90[/(H(e™))+ wl]/0.57 in degree of the
designed FIR-FOD using DCT-III is shown in Fig. 2.

4.2. DCT-1V based design

Here, FIR fractional order differentiator is designed using
DCT-IV. First, the filter coefficients of FIR-FOD are computed using
Eq. (32). Then Hann window defined in Eq. (28) is employed to
modify the computed filter coefficients. The magnitude response
of the proposed FIR-FOD using DCT-IV is demonstrated in Fig. 3.
The normalized phase response of the designed FIR-FOD using
DCT-1V is plotted in Fig. 4.

The magnitude and phase response of the proposed FIR-FOD
using DCT-II [22] with above mentioned parameter have been
plotted in Figs. 5 and 6, respectively. From the graphical results
shown in Figs. 1-6, it can concluded that the proposed FIR-FOD
using DCT-III outperforms the other type of DCTs in terms of
magnitude error. Whereas, the comparison of the phase response
reveals that DCT-IV gives slightly better results compared to
others. Finally, it can be concluded that the DCT-III based

2
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0 0.5 1 1.5 2 2.5 3

Frequency ()

Fig. 1. Magnitude response of the designed FIR-FOD using DCT-III with
N =60,]=30and a = 0.5.
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2
2 30}
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= Ideal
DCT-III
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0 0.5 1 1.5 2 2.5 3

Frequency (w)

Fig. 2. Phase response of the designed FIR-FOD using DCT-III with N = 60,1 = 30
and o = 0.5.

FIR-FOD yields superior result in terms of magnitude response
and comparable for phase response.

4.3. Comparison of the proposed FOD with the other reported works

We evaluate the performance of the proposed FIR-FOD with the
existing FOD design methods, namely, frequency response approx-
imation method [38], fractional sample delay method [19], DFT
interpolation method [21], radial basis function interpolation
method [20], DCT-II interpolation method [22] and DST interpola-
tion method [23]. Here, a comparative analysis of the frequency
response of FIR-FOD using different types of DCTs is demonstrated
taking design parameters as N =60,I =30 and o =0.5. Fig. 7
depicts the comparison of the magnitude response of designed
FIR-FOD based on different types of DCTs interpolation method.
Comparison of the phase response of the proposed FIR-FOD based
on different types of the DCTs interpolation method is shown in
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Fig. 3. Magnitude response of the designed FIR-FOD using DCT-IV with
N =60, =30and a = 0.5.
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Fig. 4. Phase response of the designed FIR-FOD using DCT-IV with N = 60,1 = 30
and o = 0.5.

Fig. 8. Based on the graphical results in Fig. 7, it is evident that the
proposed FIR-FOD design method using DCT-III produces smaller
magnitude error in comparison to that of the other DCT
interpolation based methods. It is observed from Fig. 8 that the
proposed FIR-FOD design method using DCT-IV gives the best
approximation to the phase response compared to other type of
DCTs methods.

Table 1 summarizes the magnitude error reported by the
already existing methods such as frequency response approxima-
tion method [38], fraction sample delay method [19], DFT interpo-
lation method [21], radial basis function interpolation method [20],
DCT interpolation method [22], and DST interpolation method [23].
Zhao et al. applied the frequency response approximation method
for the designing of 10th order FIR-FOD and reported the minimum
magnitude error of 0.623 [38]. Whereas, the proposed FIR-FOD
method using DCT-III and DCT-IV observed much smaller magni-
tude errors. Tseng described the design of 80th order FOD by

Ideal 4
DCT-II

Magnitude
o o
[o)} ] —_
T T T
. . .

I
»
T
I

0.2 1

0 L L L L L L
0 0.5 1 1.5 2.5 3

Frequency (®)

)

Fig. 5. Magnitude response of the designed FIR-FOD using DCT-II [22] with
N =60, =30and o =0.5.

60

40+ 1

Phase (degree)
(%)
[=]

Ideal
20 DCT-II 1
10 E
0 . . . . . .
0 0.5 1 1.5 2 2.5 3

Frequency (®)

Fig. 6. Phase response of the designed FIR-FOD using DCT-II [22] with
N =60, =30 and o =0.5.

applying fractional sample delay and magnitude error of 0.2587
was attained [19]. The magnitude error achieved with the pro-
posed method is smaller with lower order FOD design. Tseng and
Lee utilized the DFT interpolation method to design 100th order
FOD and error of 0.0225 is obtained [21]. Tseng and Lee reported
minimum magnitude error of 0.0550, 0.0529, 0.0371 and 0.0356
for 10th, 60th, 80th and 100th order FOD, respectively, when Gaus-
sian radial basis function interpolation is applied [20]. Tseng and
Lee employed DCT interpolation for the design of 100th order
FOD and minimum magnitude error reported is 0.0122 [22]. Tseng
and Lee also implemented DST interpolation technique for the
design of FOD of the order 100 and the error achieved is 0.0169
[23]. It is noticed from Table 1 that the magnitude error of
0.0095 and 0.0120 prevailed for DCT-III and DCT-1V, respectively,
for 60th order proposed FIR-FOD design. From Table 1 and Figs. 7
and 8, it can be inferred that the proposed FOD using DCT-III is bet-
ter than the other existing FODs.
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Fig. 7. Comparison of Magnitude response of FIR-FOD designed using DCT-II [22],
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Fig. 8. Comparison of Phase response of FIR-FOD designed using DCT-II [22], DCT-III
and DCT-IV with N = 60,1 = 30 and o = 0.5.

Table 1
Comparison of magnitude error attained by other reported work.

Example 2. In this example, we assess the performance of the
proposed FIR-FOD with delay values (30 — 50) and order (0 — 1).
Performance of the designed FIR-FOD is measured in terms of
integral square root error of the frequency response which is given
b

y
€= ¢ / IH(®)  Ho()|do> (33)
JO

First, performance of the proposed FIR-FOD is measured with differ-
ent values of delay I. For this purpose, order is fixed to oo = 0.5 and
N = 80, and the integral square root error is computed for different
delay values. Fig. 9 depicts the integral square root error of the
designed FIR-FOD using DCT-III with different delay values. Integral
square root error of the designed FIR-FOD using DCT-IV with differ-
ent delay values is shown in Fig. 10. We can observe that the error
decreases for a particular range of delay, in this case the minimum
error is obtained at I = 40. Comparison of the integral square root
error of the designed FIR-FOD with DCT-II, DCT-III and DCT-IV for
different delay values are shown in Figs. 11 and 12. One can infer
that DCT-III based FIR-FOD design method is the best among the
reported literature.

Second, performance of the proposed FIR-FOD is measured with
different values of fractional order. For this purpose, order is fixed
to N =80 and delay I = 40, and the integral square root error is

0.3 -

——windowed design
using DCT-III

Error

0 T T T 1
30 35 40 45 50
Delay

Fig. 9. The error curve € of the proposed FIR-FOD using DCT-III for different delay
values I.

Reference Method Type Filter order Magnitude error
Zhao et al. (2005) [38] Frequency response approximation - 10 0.623
Tseng (2006) [19] Fractional sample delay - 80 0.2587
Tseng and Lee (2010) [21] DFT - 100 0.0225
Tseng and Lee (2010) [20] RBF Gaussian 10 0.0550
RBF Gaussian 60 0.0529
RBF Inverse multiquadric 60 0.0583
RBF Gaussian 80 0.0371
RBF Gaussian 100 0.0356
Tseng and Lee (2013) [22] DCT Type-II 100 0.0122
Tseng and Lee (2013) [23] DST Type-I 100 0.0169
Present study DCT Type-III 60 0.0095
DCT Type-IV 60 0.0120
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0.3 1
——windowed design
using DCT-IV
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Fig. 10. The error curve € of the proposed FIR-FOD using DCT-IV for different delay
values I.
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Fig. 11. Error € comparison of designed FIR-FOD using DCT-IIl and DCT-IV with
DCT-II [22] for different delay values I.
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Fig. 12. Comparison of designed FIR-FOD using DCT-III and DCT-IV with DCT-II [22]
in term of error € for different delay values I.
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Fig. 13. The error curve € of the proposed FIR-FOD using DCT-III for different
fractional order values o.
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Fig. 14. The error curve € of the proposed FIR-FOD using DCT-IV for different
fractional order values o.

0.12 -
= = =DCT-II
0.09 -
—— DCT-IlI
—DCT-1V
g
£ 0.06 1
m
0.03 -
0 T T T T T T T
0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.9
Order

Fig. 15. Error € comparison of designed FIR-FOD using DCT-IIl and DCT-IV with
DCT-II [22] for different fractional order values o.
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Fig. 16. Comparison of designed FIR-FOD using DCT-III and DCT-IV with DCT-II [22]
in term of error ¢ for different fractional order values .

computed with different fractional order values. Fig. 13 depicts the
integral square root error of designed FIR-FOD using DCT-III with
different fractional order values. The integral square root error of
designed FIR-FOD using DCT-IV with different fractional order val-
ues is shown in Fig. 14. From results, it can be concluded that as the
order of the filter increases the error decreases. The comparison of
the integral square root error of the designed FIR-FOD with DCT-II,
DCT-III and DCT-I1V for different fractional order values are shown
in Figs. 15 and 16.

5. Conclusions

In this work, the discrete cosine transform is applied for the
design of FIR fractional order differentiator. Here, DCT-III and
DCT-IV are incorporated to model the fractional order system such
that the output closely approximates the actual system output. In
order to evaluate the performance of the proposed FIR-FOD, an
integral squared error function is considered. Comparative study
has been carried out for the proposed FIR-FOD with different val-
ues of delay and fractional orders. Another study has been per-
formed for the proposed FIR-FOD with existing FIR-FOD design
methods such as DFT interpolation, radial basis function (RBF)
interpolation, DCT-II interpolation, and DST interpolation methods.
Simulation results affirm that the proposed FIR-FOD using DCT-III
gives best results in terms of magnitude error compared to other
type of DCTs. Whereas, proposed FIR-FOD using DCT-IV outper-
forms other type of DCTs in terms of phase error. It is clear from
the graphical result that the change in the value of delay reflect
change in the performance of the designed FIR-FOD.

Further, the proposed method needs to be explored as a future
scope, for the designing of 2-D FIR fractional order differentiator.
The future research may also focus on the designing of fractional
Hilbert transformer and fractional order integrator.
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